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Public-Key Cryptography

e What we already know

— symmetric key cryptography enables confidentiality

 achieved through secret key encryption

— symmetric key cryptography enables authentication and integrity

e achieved through MACs

e In all of the above the sender and received must share a secret key
— need a secure channel for key distribution
— not possible for parties with no prior relationship

— public-key cryptography can aid with this

CSE 664 Spring 2020

Marina Blanton 2




Public-Key Cryptography

e Other limitations of symmetric key cryptography
— authentication to multiple receivers is difficult

— non-repudiation cannot be achieved

e What’s the solution?

— the concept of more powerful asymmetric key encryption

e Public-key cryptography was proposed by Diffie and Hellman

— 1t was in 1976 in their work “New directions in cryptography”
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Public-Key Cryptography

e Diffie and Hellman introduced
— public-key encryption
— public-key key agreement protocols

— digital signatures

e [t also turned out that public-key encryption was proposed earlier
— James Ellis proposed it in 1970 in a classified paper
— the paper was made public by the British government in 1997

e The concept of key agreement and digital signatures is still due to Diffie and
Hellman
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Public-Key Cryptography

e Public-key encryption
— a party creates a public-private key pair
e the public key is pk
e the private or secret key is sk
— the public key is used for encryption Encpk(m) and 1is publicly available
— the private key is used for decryption only Dec . (c)

— knowing the public key and the encryption algorithm only, it is
computationally infeasible to find the secret key
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Public-Key Cryptography

e (Public-key) Key agreement or key distribution
— prior to the protocol the parties do not share a common secret
— after the protocol execution they hold a key not known to any
eavesdropper
e Digital signatures
— a party generates a public-private signing key pair
— private key is used to sign a message
— public key is used to verify a signature on a message

— can be viewed as single-source message authentication
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Public Key Encryption Formally

e A public-key encryption scheme consists of three PPT algorithms (Gen, Enc,
Dec) such that:

1. key generation Gen, on input security parameter 1", outputs a
public-private key pair (pk, sk)

2. encryption Enc, on input public key pk and messages m from the
message space, outputs ciphertext ¢ <— Enc,;,(m)

— message space often depends on pk

3. decryption Dec, on input private key sk and ciphertext c, outputs a
message m .= Dec;(c) or a special failure symbol L.
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Public Key Encryption

e Message space M can now be different from, e.g., all strings of size n
— if we use arithmetic modulo p, a message can be any number in
{0,...,p—1}
e Properties

— correctness

e as before, we want Decgy.(Encp,(m)) = m
e but we can permit a negligible probability of failure

— security

e what is different from our previous definitions?
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Security Against Eavesdroppers

e We are given public-key encryption scheme £ = (Gen, Enc, Dec)

€av

e The eavesdropping indistinguishability experiment PubK7’ (n)
1. Gen(1™) is run to produce keys (pk, sk)

2. adversary A is given pk and outputs two messages mq, mq from

message space

3. random bit b <— {0, 1} is chosen, and ciphertext ¢ <— Enc,;,(m;) is
given to A

4. A outputs bit b'; if b = ¥/, the experiment outputs 1 (A wins), and 0
otherwise
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Chosen-Plaintext Security

e The CPA indistinguishability experiment PubeX,ag(n)

1.
2.
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Gen(1™) is run to produce keys (pk, sk)

adversary A is given pk and oracle access to Encpk(-); 1t outputs two
messages mq, m1 from message space

. random bit b <— {0, 1} is chosen, and ciphertext ¢ <= Ency,,(my) is

given to A
A continues to have oracle access to Enc,,; () and outputs bit &’

if b = b/, the experiment outputs 1 (A wins), and 0 otherwise
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Notions of Security

e A public-key encryption scheme £ = (Gen, Enc, Dec) has indistinguishable
encryptions under a chosen-plaintext attack (or is CPA-secure) if for all PPT
adversaries A,

1
Pr[Pubejf‘g(n) =1] < 5 + negl(n)

i.e., A cannot win the game with significantly better chances than random
guess

e Similar definition can be constructed for eavesdropping adversaries

e What is the gap between the two notions of security?
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Notions of Security

e We obtain that no deterministic public-key encryption scheme has

indistinguishable encryptions in the presence of eavesdropper and under
CPA attack

e Does anything change if we deal with multiple messages?
e What can we say about encrypting long messages?

e How about perfect secrecy in the public-key setting?
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Encrypting Long Messages

e In practice, to encrypt long messages hybrid encryption is used

— the simplest way is to choose a random symmetric key k£ and send it
encrypted with the recipient’s public key Enc,,;, (k)

— encrypt the message m itself using k£ and symmetric key encryption
E" = (Gen’, Enc’, Dec’)

* m might need to be partitioned as m1, .. ., my

e send Enci.(mq), ..., Ency(my)

e Why do we use a combination of two different encryption algorithms?
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RSA Cryptosystem

e The RSA algorithm
— invented by Ron Rivest, Adi Shamir, and Leonard Adleman in 1978
— its security requires that factoring large numbers is hard
— but there is no proof that the algorithm is as hard to break as factoring

— sustained many years of attacks on it
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Background

e Recall Euler’s ¢ function

— for a product of two primes n = pq, p(n) = (p—1)(¢ — 1)

e FEuler’s theorem

— given m > 1 and a with ged(a, m) = 1, a®(™) = 1 (mod m)

e Recall Euler’s theorem’s corollary
— given x, y, m, and a with ged(m,a) = 1,if x = y (mod ¢(m)),
then a® = a¥ (Mmod m)
e Computation of a multiplicative inverse modulo m

— given a and m with ged(a, m) = 1, there is a unique = (between 0 and
m) such that ax = 1 (mod m)
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RSA Cryptosystem

e The idea
— for modulus n > 1 and integer e > O, let x € Z,
— then f(x) = € mod n is a permutation if ged(e,n) = 1
— ifd =e~1 mod &(n), f'(z) = z% mod n is the inverse of f
e The hardness assumption is called the RSA problem and is to compute the
inverse function
— easy if factorization of n or ¢(n) is known

— believed to be hard otherwise
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Plain or “Textbook” RSA

e Key generation

— given security parameter 1%, generate two large prime numbers p and g,
each k /2 bits long

— compute n = pq
— select a small prime number e
— compute ¢(n) = (p—1)(¢ — 1)

— and then compute d — the inverse of e modulo ¢(n)

e ie,ed=1(mod ¢(n))

e The public key is pk = (e, n)
The private key is sk = d
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Plain RSA

e Encryption
— given a message m € 7Z;,
— given a public key pk = (e, n)

— encrypt as ¢ = Encpp(m) = m® mod n

e Decryption
— given a ciphertext ¢
— given a public key pk = (e, n) and the corresponding private key
sk =d

d

— decrypt as m = Decg.(c) = c¢* mod n
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e Example

— generate a key pair

pickp=7,g=11

compute n = 77

picke = 37

compute ¢(n) = 6-10 = 60

compute d = e~ = 13 (mod 60)
— public key (37,77)

— private key 13
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e Example (cont.)

— encryption

e given a message m = 15
e encryption is ¢ = m® mod n
e c=153"mod 77 =71
— decryption
e given ciphertextc = 71
e decryption is m = @ mod n

em=7113 mod 77 = 15
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e Why does it work?

— we would like to see how the message is recovered from the ciphertext

e Decrypting encrypted message

~ Decyy(Ency(m)) =

— recall thated = 1 mod ¢(n)

— also recall that x = y mod ¢(n) = m* = m¥Y (mod n)
d

— thus, we obtain m*®
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More on RSA

e All of the above works when a message m € Z;,
— the algorithm doesn’t go through if ged(m,n) = 1

— the problem is that the space Z;, is not known without private key

e The good news is that we can still use any m between 0 and n — 1
— for n = pq, the probability that ged(m,n) % 1 is negligible

— and if ged(m,n) # 1, there are bigger problems than algorithm’s
failure
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RSA Security

e Security of RSA requires that the RSA problem is hard

e We start with factoring which must also be hard
— let algorithm GenMod on input 1% output n = pq, where p and ¢ are
k /2-bit primes

e The factoring experiment Factor 4 GenMod (k)
1. run GenMod(1%) and obtain (p, g, n)
2. Ais given n and outputs p’, ¢’ > 1

3. output 1 (A wins) if p’ - ¢/ = n, and 0 otherwise

e Factoring is hard (relative to GenMod) if for all PPT algorithms A

Pr[Factor 4 GenMod (k) = 1] < negl(k)
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RSA Security

e Let GenRSA be the key generation algorithm for RSA that takes 1% and
outputs (n, e, d)
e The RSA experiment RSAlnv 4 Genrsa (k)
1. run GenRSA(1%) to obtain (n, e, d)
2. choose y € Z and give n, e, and y to A
3. A outputs x € Z7 and wins (the experiment outputs 1) iff

y=2x°modn

e The RSA problem is hard (relative to GenRSA) if any PPT algorithm A wins
the RSA experiment with at most negligible probability

Pr[RSAInv 4 Genrsa(k) = 1] < negl(k)
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Insecurity of Plain RSA

e Hardness of RSA problem implies that it can generally be hard to decrypt
messages without the private key (or factorization of the modulus)
e The above description of RSA, however, is not secure

— why?

e What does the above construction exactly guarantee?

— given a message m chosen uniformly at random from 7Z;, and the public
key (n,e)

— adversary cannot recover the entire m
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RSA Implementation

e Choosing p, q, and n
— today the modulus n needs to be at least 1536 bits long
— often a random number 1s chosen for p and g and is tested for primality

— Miller-Rabin primality test is common

the algorithm has a probability of error

but it is popular due to its speed

how large the error is can be controlled

composite numbers that pass this primality test are called strong
pseudo-prime numbers
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RSA Implementation

e Choosing e
— the smaller e is, the faster encryption is performed

— recall that the square-and-multiply algorithm for computing m® mod n
depends on the length of the exponent

 the number of multiplications also directly depends on the number of

I’s in the binary representation of e

— common choices for e are 3, 17, 216 + 1 = 65537

e such numbers require only a few modulo multiplications to encrypt
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RSA Implementation

e Speeding up decryption
— we don’t have control over d — it’ll have to be long
— but we can still decrypt faster using smaller moduli
— since p and g are known, we can exploit their shorter size

— we apply the Chinese Remainder Theorem

* recall that the CRT solves a system of congruences
x; = a; (Modn;)

e the solution is a congruence modulo n = [[n;
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RSA Implementation

e Using the CRT for decryption

d

— we have c and the goal is to compute m = c* mod n

d d

— we first compute m1 = c mod p and mo = c* mod q
— this givesus m1 = m mod p and mo> = m mod ¢
— we then combine m and m» using the CRT to obtain m mod n

e the equations we are solving are m = m1 (mod p) and
m = m»o> (mod q)

 the unique solution is

m = m1 (¢~ mod p)g + ma(p~ ! mod ¢)p (mod n)
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e Public key cryptography achieves many objectives
e Security of public key encryption can be modeled similar to symmetric
encryption
— but security against chosen-plaintext attack (CPA) is now the weakest
reasonable security model
e RSA i1s the most commonly used public-key encryption algorithm
— requires that factoring large numbers is hard

— the plain or “textbook” RSA doesn’t meet our definition of security

e RSA implementations target at faster performance
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