
Applied Cryptography and Computer
Security

CSE 664 Spring 2020

Lecture 13: Public-Key Cryptography and RSA

Department of Computer Science and Engineering
University at Buffalo

1



Public-Key CryptographyPublic-Key Cryptography

• What we already know

– symmetric key cryptography enables confidentiality

• achieved through secret key encryption

– symmetric key cryptography enables authentication and integrity

• achieved through MACs

• In all of the above the sender and received must share a secret key

– need a secure channel for key distribution

– not possible for parties with no prior relationship

– public-key cryptography can aid with this
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Public-Key CryptographyPublic-Key Cryptography

• Other limitations of symmetric key cryptography

– authentication to multiple receivers is difficult

– non-repudiation cannot be achieved

• What’s the solution?

– the concept of more powerful asymmetric key encryption

• Public-key cryptography was proposed by Diffie and Hellman

– it was in 1976 in their work “New directions in cryptography”
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Public-Key CryptographyPublic-Key Cryptography

• Diffie and Hellman introduced

– public-key encryption

– public-key key agreement protocols

– digital signatures

• It also turned out that public-key encryption was proposed earlier

– James Ellis proposed it in 1970 in a classified paper

– the paper was made public by the British government in 1997

• The concept of key agreement and digital signatures is still due to Diffie and
Hellman
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Public-Key CryptographyPublic-Key Cryptography

• Public-key encryption

– a party creates a public-private key pair

• the public key is pk

• the private or secret key is sk

– the public key is used for encryption Encpk(m) and is publicly available

– the private key is used for decryption only Decsk(c)

– knowing the public key and the encryption algorithm only, it is
computationally infeasible to find the secret key
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Public-Key CryptographyPublic-Key Cryptography

• (Public-key) Key agreement or key distribution

– prior to the protocol the parties do not share a common secret

– after the protocol execution they hold a key not known to any
eavesdropper

• Digital signatures

– a party generates a public-private signing key pair

– private key is used to sign a message

– public key is used to verify a signature on a message

– can be viewed as single-source message authentication

CSE 664 Spring 2020

6Marina Blanton



Public Key Encryption FormallyPublic Key Encryption Formally

• A public-key encryption scheme consists of three PPT algorithms (Gen, Enc,
Dec) such that:

1. key generation Gen, on input security parameter 1n, outputs a
public-private key pair (pk, sk)

2. encryption Enc, on input public key pk and messages m from the
message space, outputs ciphertext c← Encpk(m)

– message space often depends on pk

3. decryption Dec, on input private key sk and ciphertext c, outputs a
message m := Decsk(c) or a special failure symbol ⊥.
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Public Key EncryptionPublic Key Encryption

• Message spaceM can now be different from, e.g., all strings of size n

– if we use arithmetic modulo p, a message can be any number in
{0, . . ., p− 1}

• Properties

– correctness

• as before, we want Decsk(Encpk(m)) = m

• but we can permit a negligible probability of failure

– security

• what is different from our previous definitions?
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Security Against EavesdroppersSecurity Against Eavesdroppers

• We are given public-key encryption scheme E = (Gen, Enc,Dec)

• The eavesdropping indistinguishability experiment PubKeav
A,E(n)

1. Gen(1n) is run to produce keys (pk, sk)

2. adversaryA is given pk and outputs two messages m0,m1 from
message space

3. random bit b← {0,1} is chosen, and ciphertext c← Encpk(mb) is
given toA

4. A outputs bit b′; if b = b′, the experiment outputs 1 (A wins), and 0
otherwise
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Chosen-Plaintext SecurityChosen-Plaintext Security

• The CPA indistinguishability experiment PubKcpa
A,E(n)

1. Gen(1n) is run to produce keys (pk, sk)

2. adversaryA is given pk and oracle access to Encpk(·); it outputs two
messages m0,m1 from message space

3. random bit b← {0,1} is chosen, and ciphertext c← Encpk(mb) is
given toA

4. A continues to have oracle access to Encpk(·) and outputs bit b′

5. if b = b′, the experiment outputs 1 (A wins), and 0 otherwise
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Notions of SecurityNotions of Security

• A public-key encryption scheme E = (Gen, Enc,Dec) has indistinguishable
encryptions under a chosen-plaintext attack (or is CPA-secure) if for all PPT
adversariesA,

Pr[PubKcpa
A,E(n) = 1] ≤

1

2
+ negl(n)

i.e.,A cannot win the game with significantly better chances than random
guess

• Similar definition can be constructed for eavesdropping adversaries

• What is the gap between the two notions of security?
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Notions of SecurityNotions of Security

• We obtain that no deterministic public-key encryption scheme has
indistinguishable encryptions in the presence of eavesdropper and under
CPA attack

• Does anything change if we deal with multiple messages?

• What can we say about encrypting long messages?

• How about perfect secrecy in the public-key setting?
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Encrypting Long MessagesEncrypting Long Messages

• In practice, to encrypt long messages hybrid encryption is used

– the simplest way is to choose a random symmetric key k and send it
encrypted with the recipient’s public key Encpk(k)

– encrypt the message m itself using k and symmetric key encryption
E ′ = (Gen′, Enc′,Dec′)

• m might need to be partitioned as m1, . . .,mt

• send Enc′k(m1), . . ., Enc
′
k(mt)

• Why do we use a combination of two different encryption algorithms?
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RSA CryptosystemRSA Cryptosystem

• The RSA algorithm

– invented by Ron Rivest, Adi Shamir, and Leonard Adleman in 1978

– its security requires that factoring large numbers is hard

– but there is no proof that the algorithm is as hard to break as factoring

– sustained many years of attacks on it
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BackgroundBackground

• Recall Euler’s φ function

– for a product of two primes n = pq, φ(n) = (p− 1)(q − 1)

• Euler’s theorem

– given m > 1 and a with gcd(a,m) = 1, aφ(m) ≡ 1 (mod m)

• Recall Euler’s theorem’s corollary

– given x, y, m, and a with gcd(m,a) = 1, if x ≡ y (mod φ(m)),
then ax ≡ ay (mod m)

• Computation of a multiplicative inverse modulo m

– given a and m with gcd(a,m) = 1, there is a unique x (between 0 and
m) such that ax ≡ 1 (mod m)
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RSA CryptosystemRSA Cryptosystem

• The idea

– for modulus n > 1 and integer e > 0, let x ∈ Z∗n

– then f(x) = xe mod n is a permutation if gcd(e, n) = 1

– if d = e−1 mod φ(n), f ′(x) = xd mod n is the inverse of f

• The hardness assumption is called the RSA problem and is to compute the
inverse function

– easy if factorization of n or φ(n) is known

– believed to be hard otherwise
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Plain or “Textbook” RSAPlain or “Textbook” RSA

• Key generation

– given security parameter 1k, generate two large prime numbers p and q,
each k/2 bits long

– compute n = pq

– select a small prime number e

– compute φ(n) = (p− 1)(q − 1)

– and then compute d – the inverse of e modulo φ(n)

• i.e., ed ≡ 1 (mod φ(n))

• The public key is pk = (e, n)

The private key is sk = d
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Plain RSAPlain RSA

• Encryption

– given a message m ∈ Z∗n

– given a public key pk = (e, n)

– encrypt as c = Encpk(m) = me mod n

• Decryption

– given a ciphertext c

– given a public key pk = (e, n) and the corresponding private key
sk = d

– decrypt as m = Decsk(c) = cd mod n
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RSARSA

• Example

– generate a key pair

• pick p = 7, q = 11

• compute n = 77

• pick e = 37

• compute φ(n) = 6 · 10 = 60

• compute d ≡ e−1 ≡ 13 (mod 60)

– public key (37,77)

– private key 13
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RSARSA

• Example (cont.)

– encryption

• given a message m = 15

• encryption is c = me mod n

• c = 1537 mod 77 = 71

– decryption

• given ciphertext c = 71

• decryption is m = cd mod n

• m = 7113 mod 77 = 15
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RSARSA

• Why does it work?

– we would like to see how the message is recovered from the ciphertext

• Decrypting encrypted message

– Decsk(Encpk(m)) =

– recall that ed ≡ 1 mod φ(n)

– also recall that x ≡ y mod φ(n)⇒ mx ≡ my (mod n)

– thus, we obtain med ≡
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More on RSAMore on RSA

• All of the above works when a message m ∈ Z∗n

– the algorithm doesn’t go through if gcd(m,n) 6= 1

– the problem is that the space Z∗n is not known without private key

• The good news is that we can still use any m between 0 and n− 1

– for n = pq, the probability that gcd(m,n) 6= 1 is negligible

– and if gcd(m,n) 6= 1, there are bigger problems than algorithm’s
failure
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RSA SecurityRSA Security

• Security of RSA requires that the RSA problem is hard

• We start with factoring which must also be hard

– let algorithm GenMod on input 1k output n = pq, where p and q are
k/2-bit primes

• The factoring experiment FactorA,GenMod(k)

1. run GenMod(1k) and obtain (p, q, n)

2. A is given n and outputs p′, q′ > 1

3. output 1 (A wins) if p′ · q′ = n, and 0 otherwise

• Factoring is hard (relative to GenMod) if for all PPT algorithmsA

Pr[FactorA,GenMod(k) = 1] ≤ negl(k)
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RSA SecurityRSA Security

• Let GenRSA be the key generation algorithm for RSA that takes 1k and
outputs (n, e, d)

• The RSA experiment RSAInvA,GenRSA(k)

1. run GenRSA(1k) to obtain (n, e, d)

2. choose y ∈ Z∗n and give n, e, and y toA

3. A outputs x ∈ Z∗n and wins (the experiment outputs 1) iff
y = xe mod n

• The RSA problem is hard (relative to GenRSA) if any PPT algorithmA wins
the RSA experiment with at most negligible probability

Pr[RSAInvA,GenRSA(k) = 1] ≤ negl(k)
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Insecurity of Plain RSAInsecurity of Plain RSA

• Hardness of RSA problem implies that it can generally be hard to decrypt
messages without the private key (or factorization of the modulus)

• The above description of RSA, however, is not secure

– why?

• What does the above construction exactly guarantee?

– given a message m chosen uniformly at random from Z∗n and the public
key (n, e)

– adversary cannot recover the entire m
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RSA ImplementationRSA Implementation

• Choosing p, q, and n

– today the modulus n needs to be at least 1536 bits long

– often a random number is chosen for p and q and is tested for primality

– Miller-Rabin primality test is common

• the algorithm has a probability of error

• but it is popular due to its speed

• how large the error is can be controlled

• composite numbers that pass this primality test are called strong
pseudo-prime numbers
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RSA ImplementationRSA Implementation

• Choosing e

– the smaller e is, the faster encryption is performed

– recall that the square-and-multiply algorithm for computing me mod n

depends on the length of the exponent

• the number of multiplications also directly depends on the number of
1’s in the binary representation of e

– common choices for e are 3, 17, 216 +1 = 65537

• such numbers require only a few modulo multiplications to encrypt
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RSA ImplementationRSA Implementation

• Speeding up decryption

– we don’t have control over d – it’ll have to be long

– but we can still decrypt faster using smaller moduli

– since p and q are known, we can exploit their shorter size

– we apply the Chinese Remainder Theorem

• recall that the CRT solves a system of congruences
xi ≡ ai (modni)

• the solution is a congruence modulo n =
∏
ni
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RSA ImplementationRSA Implementation

• Using the CRT for decryption

– we have c and the goal is to compute m = cd mod n

– we first compute m1 = cd mod p and m2 = cd mod q

– this gives us m1 = m mod p and m2 = m mod q

– we then combine m1 and m2 using the CRT to obtain m mod n

• the equations we are solving are m ≡ m1 (mod p) and
m ≡ m2 (mod q)

• the unique solution is

m ≡ m1(q
−1 mod p)q+m2(p

−1 mod q)p (mod n)
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SummarySummary

• Public key cryptography achieves many objectives

• Security of public key encryption can be modeled similar to symmetric
encryption

– but security against chosen-plaintext attack (CPA) is now the weakest
reasonable security model

• RSA is the most commonly used public-key encryption algorithm

– requires that factoring large numbers is hard

– the plain or “textbook” RSA doesn’t meet our definition of security

• RSA implementations target at faster performance
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