Public-Key Cryptography

• **What we already know**
 – symmetric key cryptography enables **confidentiality**
 • achieved through secret key encryption
 – symmetric key cryptography enables **authentication and integrity**
 • achieved through MACs

• In all of the above the sender and received must share a secret key
 – need a secure channel for key distribution
 – not possible for parties with no prior relationship
 – public-key cryptography can aid with this
Public-Key Cryptography

- Other limitations of symmetric key cryptography
 - authentication to multiple receivers is difficult
 - non-repudiation cannot be achieved

- What’s the solution?
 - the concept of more powerful asymmetric key encryption

- Public-key cryptography was proposed by Diffie and Hellman
 - it was in 1976 in their work “New directions in cryptography”
• **Diffie and Hellman** introduced
 – public-key encryption
 – public-key key agreement protocols
 – digital signatures

• It also turned out that public-key encryption was proposed earlier
 – James Ellis proposed it in 1970 in a classified paper
 – the paper was made public by the British government in 1997

• The concept of key agreement and digital signatures is still due to Diffie and Hellman
Public-Key Cryptography

• Public-key encryption
 – a party creates a public-private key pair
 • the public key is pk
 • the private or secret key is sk
 – the public key is used for encryption $Enc_{pk}(m)$ and is publicly available
 – the private key is used for decryption only $Dec_{sk}(c)$
 – knowing the public key and the encryption algorithm only, it is computationally infeasible to find the secret key
• (Public-key) **Key agreement or key distribution**
 – prior to the protocol the parties do not share a common secret
 – after the protocol execution they hold a key not known to any eavesdropper

• **Digital signatures**
 – a party generates a public-private signing key pair
 – private key is used to sign a message
 – public key is used to verify a signature on a message
 – can be viewed as single-source message authentication
A public-key encryption scheme consists of three PPT algorithms (Gen, Enc, Dec) such that:

1. **key generation** Gen, on input security parameter 1^n, outputs a public-private key pair (pk, sk)

2. **encryption** Enc, on input public key pk and messages m from the message space, outputs ciphertext $c \leftarrow \text{Enc}_{pk}(m)$
 - message space often depends on pk

3. **decryption** Dec, on input private key sk and ciphertext c, outputs a message $m := \text{Dec}_{sk}(c)$ or a special failure symbol ⊥.
Public Key Encryption

- **Message space** \mathcal{M} can now be different from, e.g., all strings of size n
 - if we use arithmetic modulo p, a message can be any number in
 \[\{0, \ldots, p - 1\} \]

- **Properties**
 - correctness
 - as before, we want $\text{Dec}_{sk}(\text{Enc}_{pk}(m)) = m$
 - but we can permit a negligible probability of failure
 - security
 - what is different from our previous definitions?
• We are given public-key encryption scheme $\mathcal{E} = (\text{Gen}, \text{Enc}, \text{Dec})$

• The eavesdropping indistinguishability experiment $\text{PubK}_{\mathcal{A},\mathcal{E}}^{\text{eav}}(n)$

 1. $\text{Gen}(1^n)$ is run to produce keys (pk, sk)

 2. adversary \mathcal{A} is given pk and outputs two messages m_0, m_1 from message space

 3. random bit $b \leftarrow \{0, 1\}$ is chosen, and ciphertext $c \leftarrow \text{Enc}_{pk}(m_b)$ is given to \mathcal{A}

 4. \mathcal{A} outputs bit b'; if $b = b'$, the experiment outputs 1 (\mathcal{A} wins), and 0 otherwise
The CPA indistinguishability experiment $\text{PubK}_{\mathcal{A}, \mathcal{E}}^\text{cpa}(n)$

1. $\text{Gen}(1^n)$ is run to produce keys (pk, sk)

2. adversary \mathcal{A} is given pk and oracle access to $\text{Enc}_{pk}(\cdot)$; it outputs two messages m_0, m_1 from message space

3. random bit $b \leftarrow \{0, 1\}$ is chosen, and ciphertext $c \leftarrow \text{Enc}_{pk}(m_b)$ is given to \mathcal{A}

4. \mathcal{A} continues to have oracle access to $\text{Enc}_{pk}(\cdot)$ and outputs bit b'

5. if $b = b'$, the experiment outputs 1 (\mathcal{A} wins), and 0 otherwise
Notions of Security

• A public-key encryption scheme $\mathcal{E} = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under a chosen-plaintext attack (or is CPA-secure) if for all PPT adversaries A,

$$\Pr[\text{PubK}_{A,\mathcal{E}}(n) = 1] \leq \frac{1}{2} + \text{negl}(n)$$

i.e., A cannot win the game with significantly better chances than random guess

• Similar definition can be constructed for eavesdropping adversaries

• What is the gap between the two notions of security?
Notions of Security

- We obtain that no deterministic public-key encryption scheme has indistinguishable encryptions in the presence of eavesdropper and under CPA attack.
- Does anything change if we deal with multiple messages?
- What can we say about encrypting long messages?
- How about perfect secrecy in the public-key setting?
In practice, to encrypt long messages **hybrid encryption** is used

- the simplest way is to choose a random symmetric key k and send it encrypted with the recipient’s public key $\text{Enc}_{pk}(k)$
- encrypt the message m itself using k and symmetric key encryption $\mathcal{E}' = (\text{Gen}', \text{Enc}', \text{Dec}')$
 - m might need to be partitioned as m_1, \ldots, m_t
 - send $\text{Enc}'_k(m_1), \ldots, \text{Enc}'_k(m_t)$

- Why do we use a combination of two different encryption algorithms?
RSA Cryptosystem

- The RSA algorithm
 - invented by Ron Rivest, Adi Shamir, and Leonard Adleman in 1978
 - its security requires that factoring large numbers is hard
 - but there is no proof that the algorithm is as hard to break as factoring
 - sustained many years of attacks on it
Background

- Recall Euler’s \(\phi \) function
 - for a product of two primes \(n = pq \), \(\phi(n) = (p - 1)(q - 1) \)

- Euler’s theorem
 - given \(m > 1 \) and \(a \) with \(\gcd(a, m) = 1 \), \(a^{\phi(m)} \equiv 1 \pmod{m} \)

- Recall Euler’s theorem’s corollary
 - given \(x, y, m, \) and \(a \) with \(\gcd(m, a) = 1 \), if \(x \equiv y \pmod{\phi(m)} \),
 then \(a^x \equiv a^y \pmod{m} \)

- Computation of a multiplicative inverse modulo \(m \)
 - given \(a \) and \(m \) with \(\gcd(a, m) = 1 \), there is a unique \(x \) (between 0 and \(m \)) such that \(ax \equiv 1 \pmod{m} \)
The idea

- for modulus $n > 1$ and integer $e > 0$, let $x \in \mathbb{Z}_n^*$
- then $f(x) = x^e \mod n$ is a permutation if $\gcd(e, n) = 1$
- if $d = e^{-1} \mod \phi(n)$, $f'(x) = x^d \mod n$ is the inverse of f.

The hardness assumption is called the RSA problem and is to compute the inverse function

- easy if factorization of n or $\phi(n)$ is known
- believed to be hard otherwise
Plain or “Textbook” RSA

• Key generation
 – given security parameter 1^k, generate two large prime numbers p and q, each $k/2$ bits long
 – compute $n = pq$
 – select a small prime number e
 – compute $\phi(n) = (p - 1)(q - 1)$
 – and then compute d – the inverse of e modulo $\phi(n)$
 • i.e., $ed \equiv 1 \pmod{\phi(n)}$

• The public key is $pk = (e, n)$
The private key is $sk = d$
Plain RSA

- **Encryption**
 - given a message \(m \in \mathbb{Z}_n^* \)
 - given a public key \(pk = (e, n) \)
 - encrypt as \(c = \text{Enc}_{pk}(m) = m^e \mod n \)

- **Decryption**
 - given a ciphertext \(c \)
 - given a public key \(pk = (e, n) \) and the corresponding private key \(sk = d \)
 - decrypt as \(m = \text{Dec}_{sk}(c) = c^d \mod n \)
Example

- generate a key pair
 - pick $p = 7$, $q = 11$
 - compute $n = 77$
 - pick $e = 37$
 - compute $\phi(n) = 6 \cdot 10 = 60$
 - compute $d \equiv e^{-1} \equiv 13 \pmod{60}$
- public key $(37, 77)$
- private key 13
• **Example** (cont.)

 – encryption

 • given a message \(m = 15 \)

 • encryption is \(c = m^e \mod n \)

 • \(c = 15^{37} \mod 77 = 71 \)

 – decryption

 • given ciphertext \(c = 71 \)

 • decryption is \(m = c^d \mod n \)

 • \(m = 71^{13} \mod 77 = 15 \)
• **Why does it work?**

 – we would like to see how the message is recovered from the ciphertext

• **Decrypting encrypted message**

 – $\text{Dec}_{sk}(\text{Enc}_{pk}(m)) = m$

 – recall that $ed \equiv 1 \mod \phi(n)$

 – also recall that $x \equiv y \mod \phi(n) \Rightarrow m^x \equiv m^y \mod n$

 – thus, we obtain $m^{ed} \equiv m$
More on RSA

• All of the above works when a message \(m \in \mathbb{Z}_n^* \)
 – the algorithm doesn’t go through if \(\gcd(m, n) \neq 1 \)
 – the problem is that the space \(\mathbb{Z}_n^* \) is not known without private key

• The good news is that we can still use any \(m \) between 0 and \(n - 1 \)
 – for \(n = pq \), the probability that \(\gcd(m, n) \neq 1 \) is negligible
 – and if \(\gcd(m, n) \neq 1 \), there are bigger problems than algorithm’s failure
RSA Security

• Security of RSA requires that the RSA problem is hard

• We start with factoring which must also be hard
 – let algorithm GenMod on input 1^k output $n = pq$, where p and q are $k/2$-bit primes

• The factoring experiment $\text{Factor}_{A,\text{GenMod}}(k)$
 1. run $\text{GenMod}(1^k)$ and obtain (p, q, n)
 2. A is given n and outputs $p', q' > 1$
 3. output 1 (A wins) if $p' \cdot q' = n$, and 0 otherwise

• Factoring is hard (relative to GenMod) if for all PPT algorithms A

$$\Pr[\text{Factor}_{A,\text{GenMod}}(k) = 1] \leq \text{negl}(k)$$
Let GenRSA be the key generation algorithm for RSA that takes 1^k and outputs (n, e, d)

The RSA experiment $\text{RSAInv}_{A, \text{GenRSA}}(k)$

1. run $\text{GenRSA}(1^k)$ to obtain (n, e, d)
2. choose $y \in \mathbb{Z}_n^*$ and give $n, e,$ and y to A
3. A outputs $x \in \mathbb{Z}_n^*$ and wins (the experiment outputs 1) iff $y = x^e \mod n$

The RSA problem is hard (relative to GenRSA) if any PPT algorithm A wins the RSA experiment with at most negligible probability

$$\Pr[\text{RSAInv}_{A, \text{GenRSA}}(k) = 1] \leq \text{negl}(k)$$
Insecurity of Plain RSA

- Hardness of RSA problem implies that it can generally be hard to decrypt messages without the private key (or factorization of the modulus)

- The above description of RSA, however, is not secure
 - why?

- What does the above construction exactly guarantee?
 - given a message m chosen uniformly at random from \mathbb{Z}_n^* and the public key (n, e)
 - adversary cannot recover the entire m
• **Choosing** \(p, q, \) **and** \(n \)

 – today the modulus \(n \) needs to be at least 1536 bits long
 – often a random number is chosen for \(p \) and \(q \) and is tested for primality
 – **Miller-Rabin** primality test is common
 • the algorithm has a probability of error
 • but it is popular due to its speed
 • how large the error is can be controlled
 • composite numbers that pass this primality test are called strong pseudo-prime numbers
• Choosing e

 – the smaller e is, the faster encryption is performed

 – recall that the square-and-multiply algorithm for computing $m^e \mod n$ depends on the length of the exponent

 • the number of multiplications also directly depends on the number of 1’s in the binary representation of e

 – common choices for e are 3, 17, $2^{16} + 1 = 65537$

 • such numbers require only a few modulo multiplications to encrypt
• **Speeding up decryption**

 – we don’t have control over d – it’ll have to be long

 – but we can still decrypt faster using smaller moduli

 – since p and q are known, we can exploit their shorter size

 – we apply the **Chinese Remainder Theorem**

 • recall that the CRT solves a system of congruences

 $x_i \equiv a_i \pmod{n_i}$

 • the solution is a congruence modulo $n = \prod n_i$
• Using the CRT for decryption
 - we have c and the goal is to compute $m = c^d \mod n$
 - we first compute $m_1 = c^d \mod p$ and $m_2 = c^d \mod q$
 - this gives us $m_1 = m \mod p$ and $m_2 = m \mod q$
 - we then combine m_1 and m_2 using the CRT to obtain $m \mod n$
 - the equations we are solving are $m \equiv m_1 \pmod{p}$ and $m \equiv m_2 \pmod{q}$
 - the unique solution is
 $$m \equiv m_1(q^{-1} \mod p)q + m_2(p^{-1} \mod q)p \pmod{n}$$
Public key cryptography achieves many objectives

Security of public key encryption can be modeled similar to symmetric encryption

- but security against chosen-plaintext attack (CPA) is now the weakest reasonable security model

RSA is the most commonly used public-key encryption algorithm

- requires that factoring large numbers is hard
- the plain or “textbook” RSA doesn’t meet our definition of security

RSA implementations target at faster performance