Lecture 11: Introduction to Number Theory

Department of Computer Science and Engineering
University at Buffalo
• What we’ve covered so far:
 – symmetric encryption
 – hash functions

• Where we are heading:
 – number theory
 – public-key encryption
 – digital signatures
• Introduction to number theory
 – divisibility
 – GCD and Euclidean algorithm
 – prime and composite numbers
 – Chinese remainder theorem
 – Euler ϕ function
 – Fermat’s theorem
Divisibility

• Divisibility
 – given integers a and b, we say that a divides b (denoted by $a|b$) if $b = ac$ for integer c
 – a is called a divisor of b

• Transitivity theorem
 – we are given integers a, b, and c, all of which > 1
 – if $a|b$ and $b|c$, then $a|c$

• Linear combination theorem
 – let a, b, c, x, and y be integers > 1
 – if $a|b$ and $a|c$, then $a|(bx + cy)$
• Division algorithm (theorem)
 – let $a > 0$ and b be two integers
 – then there exist two unique integers q and r such that $0 \leq r < a$ and $b = aq + r$

• Notation
 – the integer q is called the quotient
 – the integer r is called the remainder
 – $\lfloor x \rfloor$ is the floor of x (largest integer $\leq x$)
 – $\lceil x \rceil$ is the ceiling of x (smallest integer $\geq x$)
 – then $q = \lfloor b/a \rfloor$ and $r = b \mod a$
• Greatest common divisor (GCD)
 – suppose we are given integers a and b which are not both 0
 – their greatest common divisor $gcd(a, b) = c$ is the greatest number that divides both a and b
 – example: $gcd(128, 100) = 4$
 – it is clear that $gcd(a, b) = gcd(b, a)$

• GCD and multiplication
 – we are given integers a, b, and $m > 1$
 – if $gcd(a, m) = gcd(b, m) = 1$, then $gcd(ab, m) = 1$
 – example: $gcd(25, 7) = gcd(3, 7) = 1 \Rightarrow gcd(75, 7) = 1$
• GCD and division

 – Theorem 1

 • we are given integers a and b

 • if $g = \gcd(a, b)$, then $\gcd\left(\frac{a}{g}, \frac{b}{g}\right) = 1$

 • example: $\gcd(25, 45) = 5 \Rightarrow \gcd\left(\frac{25}{5}, \frac{45}{5}\right) = \gcd(5, 9) = 1$

 – Theorem 2

 • if a is a positive integer and b, q, and r are integers with $b = aq + r$,
 then $\gcd(b, a) = \gcd(a, r)$

 • we can use this theorem to find GCD
Euclidean Algorithm

• Fact: given integers $a > 0$, b, q, and r such that $b = aq + r$,
 \[\gcd(a, b) = \gcd(a, r) \]

• Euclidean algorithm for finding $\gcd(a, b)$
 – apply the division algorithm iteratively to compute the remainder
 – the last non-zero remainder is the answer
 – while $a \neq 0$ do
 \[r \leftarrow b \mod a \]
 \[b \leftarrow a \]
 \[a \leftarrow r \]
 return b
Example:

- compute GCD of 165 and 285
- steps of Euclidean algorithm:

- the answer is $gcd(165, 285) =$
Towards Extended Euclidean Algorithm

- **Theorem:**
 - If integers a and b are not both 0, then there are integers x and y so that $ax + by = \gcd(a, b)$
 - We can find x and y using the extended Euclidean algorithm

- **Example:**
 - Find x and y such that $285x + 165y = \gcd(285, 165) = 15$
 - We start with the next to last equation in our example and work backwards
• Example (cont.)
 – algorithm steps:

 – thus, we get

• Also, if \(\gcd(a, b) = 1 \), then \(ax + by = 1 \), i.e., \(ax \mod b = 1 \)
Extended Euclidean Algorithm

- **Input**: integers \(a \geq b > 0 \)

- **Output**: \(g = \gcd(a, b) \) and \(x \) and \(y \) with \(ax + by = \gcd(a, b) \)

- **The algorithm itself**:

 \[
 x = 1; \quad y = 0; \quad g = a; \quad r = 0; \quad s = 1; \quad t = b
 \]

 while \((t > 0)\) {

 \[
 q = \lfloor g/t \rfloor
 \]

 \[
 u = x - qr; \quad v = y - qs; \quad w = g - qt
 \]

 \[
 x = r; \quad y = s; \quad g = t
 \]

 \[
 r = u; \quad s = v; \quad t = w
 \]

 }

- **Algorithm invariants**: \(ax + by = g \) and \(ar + bs = t \)
Extended Euclidean Algorithm

- **Complexity** of the algorithm (theorem)
 - this result is due to Lamé, 1845
 - the number of steps (division operations) needed by the Euclidean algorithm is no more than five times of decimal digits in the smaller of the two numbers

- **Corollary**
 - the number of bit operations needed by the Euclidean algorithm is $O((\log_2 a)^3)$, where a is the larger of the two numbers
Prime and Composite Numbers

- **Prime numbers**
 - a prime number is an integer greater than 1 which is divisible by 1 and itself
 - the first prime numbers are 2, 3, 5, 7, 11, 13, 17, etc.

- **Composite numbers**
 - a composite number is an integer greater than 1 which is not prime
 - the composite numbers are 4, 6, 8, 9, 10, 12, 14, etc.

- **Relatively prime numbers**
 - integers a and b are relatively prime is $gcd(a, b) = 1$
 - relatively prime numbers don’t have common divisors other than 1
Decomposition of Numbers

• **Fundamental Theorem of Arithmetics:**

 – every integer $n > 1$ can be written as a product of prime numbers

 – and this product is unique if the primes are written in non-decreasing order

 $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} = \prod_{i=1}^{k} p_i^{e_i}$

 – here p_1, \ldots, p_k are the primes that divide n and $e_i \geq 1$ is the number of factors of p_i dividing n

 – this decomposition is called the **standard representation**

• **Example:** $84 = 2 \cdot 2 \cdot 3 \cdot 7 = 2^2 \cdot 3^1 \cdot 7^1$
Using Standard Representation

- **GCD and LCM**
 - we are given $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ and $m = p_1^{f_1} p_2^{f_2} \cdots p_k^{f_k}$, where p_i are prime numbers and $e_i, f_i \geq 0$
 - $gcd(n, m) = p_1^{\min(e_1, f_1)} p_2^{\min(e_2, f_2)} \cdots p_k^{\min(e_k, f_k)}$
 - the least common multiple of integers a and b is the smaller positive integer divisible by both a and b
 - $lcm(n, m) = p_1^{\max(e_1, f_1)} p_2^{\max(e_2, f_2)} \cdots p_k^{\max(e_k, f_k)}$
 - also, $gcd(a, b) \cdot lcm(a, b) = ab$
Examples:

- \(n = 84 = 2^2 \cdot 3 \cdot 7 \)
- \(m = 63 = 3^2 \cdot 7 \)
- \(\gcd(84, 63) = \)
- \(\text{lcm}(84, 63) = \)
- \(\gcd(84, 63) \cdot \text{lcm}(84, 63) = \)
• In cryptography, we’ll need to use large primes and would like to know how prime numbers are distributed

• (Theorem) The number of prime numbers is infinite

• (Theorem) Gaps between primes
 – for every positive integer n, there are n or more consecutive composite numbers

• For a positive real number x, let $\pi(x)$ be the number of prime numbers $\leq x$
The Prime Number Theorem

- \(\pi(x) \) tends to \(x/\ln x \) as \(x \) goes to infinity. In symbols,

\[
\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1.
\]

- this tells us that there are plenty of large primes

The question now is how we find prime numbers

Theorem

- if integer \(n > 1 \) is composite, it has a prime divisor \(p \leq \sqrt{n} \)
- in other words, if \(n > 1 \) has no prime divisor \(p \leq \sqrt{n} \), then it is prime
This suggests a simple algorithm for testing a small number for primality (and factoring if it is composite)

- Input: a positive integer n
- Output: whether n is prime, or one or more factors of n

\[
m = n; \quad p = 2
\]

while ($p \leq \sqrt{m}$) {
 if ($m \mod p = 0$) {
 print “n is composite with factor p”; $m = m/p$
 }
 else {
 $p = p + 1$
 }
}

if ($m = n$) { print “n is prime” }
else if ($m > 1$) { print “the last factor of n is m”}
Today we’ve learned:

- divisibility theorems
- how to use Euclidean algorithm to compute GCD and more
- the number of prime numbers is large and they are well distributed

More on number theory is still ahead