Applied Cryptography and Computer

Security
CSE 664 Spring 2020

Lecture 10: Applications of Hash Functions

Department of Computer Science and Engineering
University at Buffalo

[E—

e Going back to our security goal of data integrity:
— theoretical MAC constructions
— CBC-MAC
— HMAC

e Sample applications of hash functions

\

CSE 664

Marina Blanton

. oevew B

Spring 2020 /
2

e Constructing a MAC algorithm from a hash function

Macy(z) = h(k||x)

— but how about MAC forgery?

\

CSE 664

Marina Blanton

| MAC Algorithms A

— one approach is to include the key k as part of the hash function input:

— 1if the hash function is one-way, we won’t be able to recover the key

Spring 2020 /
3

| MAC Algorithms A

e Macy(z) = h(k||x)
— assume we have a message m = mqm»...my

— consider an iterated hash function: hg = IV, h; = f(m;, h;_1);
h(xz) = hy

— then we can extend m by an arbitrary single block b and compute the
MAC on m’' = mimo...mb

— compute Mac,(m') = h(k||m]|b) as f(Mac,(m), b)

e What if we construct a MAC from a hash function using the key k as the IV
for the compression function?

\ CSE 664 Spring 2020 /

Marina Blanton 4

| MAC Algorithms A

e Hash-Based MAC — HMAC

e Goals:
— use available hash functions without modifications
— preserve the original performance of the hash function
— use and handle keys in a simple way
— allow replacement of the underlying hash function

— have a well-understood cryptographic analysis of its strength

\ CSE 664 Spring 2020 /

Marina Blanton 5

B : N
MAC Algorithms

e HMAC
— HMAC,,(2) = h((K @ opad)||h((K @ ipad)||z))
— K 1s the key k padded to a full block
— tpad = 0x3636...36 and opad = 0x5C5C. . .5C are fixed

padding constants

e Properties of HMAC:

— efficient

— security is related to that of the underlying hash function

e we want k1 = h(K @ opad) and ko = h(K @ ipad) to be rather
independent and close to random

e then HMAC is existentially unforgeable under an adaptive
chosen-message attack for messages of any length

\ CSE 664 Spring 2020 /

Marina Blanton 6

| MAC Algorithms A

e HMAC Security

— provides greater security than the security of the underlying hash

function
— no known practical attacks if a secure hash function is used and
according to the specifications
e In general, HMAC can be attacked by:
— brute force search on the key space

— attacks on the hash function

\

CSE 664 Spring 2020 /

Marina Blanton 7

| Other Uses of Hash Functions A

e Hash Chains
— a method for authenticating multiple user logins or packet streams
— consists of successive application of a hash function to a string
— n applications of the hash function on x is denoted by h™(x)

— this produces a hash chain of length n

e Example:

— h*(z) = h(h(h(h(z)))) produces a hash chain of length 4

\ CSE 664 Spring 2020 /

Marina Blanton 8

user generates a hash chain of length n

e Authentication using hash chains

| Uses of Hash Functions A

at time 1, the user sends authq1 = h"™(x) (and possibly authenticates it

through other means)

the recipient stores auth = authy

at time 2, the user sends autho = A"~ 1(z)

the recipient checks whether h(auth,) = authq and, if so, accepts

the recipient updated auth = autho

h"(x)

— eftc.
2 n—1)
z [, h(x) h*(x) Rt (x
\CSE664

Spring 2020 /

Marina Blanton

9

| Uses of Hash Functions A

e Why is such authentication secure?

e Authentication in packet streams
— we can similarly authenticate each packet as belonging to the stream
— need to take into account packet delivery delay
— a packet authentication value is opened several packets later

— see Perrig et al. “Efficient Authentication and Signing of Multicast
Streams over Lossy Channels” (2000) for more information

\

CSE 664 Spring 2020 /

Marina Blanton 10

| Uses of Hash Functions A

e Merkle Hash Tree

— 1integrity verification mechanism for hierarchically structured documents
or databases

— the technique works on trees only

— the hash of the tree is computed in the bottom-up fashion

e Generation of a Merkle hash tree
— for a leaf node v, simply compute its hash h(v)

— for a non-leaf node v with children vq, . . ., v¢, compute its hash as
h(ul|h(v1)|]. . [|R(ve))

\ CSE 664 Spring 2020 /

Marina Blanton 11

Uses of Hash Functions

e Merkle Hash Tree

K@ h(ul|h(v)]] ... [[h(ve))
h(vi) h(v2) h(vt)

— this computation continues until the hash of the root is computed

— the hash of the root corresponds to the hash of the entire tree

e Integrity verification
— node integrity verification is much faster than hashing the entire tree

— to check node v, obtain hashes of the nodes on the path from v to the root

\ CSE 664 Spring 2020 /

Marina Blanton 12

| Uses of Hash Functions A

e Integrity verification in Merkle Hash Tree
h(root)

<\D @ your node
O hash is given

e compute the hash

v

— compute the hash of v and combine it with other hashes on the path to
the root

— compare your hash of the root with what you are given

— the node you are authenticating doesn’t have to be a leaf

\

CSE 664 Spring 2020 /

Marina Blanton 13

| Uses of Hash Functions A

e Merkle Hash Tree
— why does this work?

— what are the computation savings compared to just applying the hash
function to the entire tree?

— what needs to be done when a node’s content changes?

\

CSE 664 Spring 2020 /

Marina Blanton 14

| Uses of Hash Functions A

e Commitment schemes

— a commitment scheme allows one to “commit” to a message m by

computing a committed value com
— 1t can later be opened to reveal m

— the following properties are required to hold:

e hiding property: commitment com reveals nothing about message m

e binding property: it is infeasible to find another message m’ %= m
such that com can be opened to m/

\

CSE 664 Spring 2020 /

Marina Blanton 15

| Uses of Hash Functions A

e A commitment scheme is defined by three algorithms

— Gen: randomized algorithm that takes a security parameter 1" and
outputs public parameters params

— Com: randomized algorithm that takes params and a message
m € {0, 1}" and outputs commitment com

e we make the randomness that Com uses explicit, denote it by r, and

use com = Com(param,m, r)

— Open: a deterministic algorithm that decommits to m by typically
disclosing m and r

e the verifier that check whether com is in fact equal to

Com(params, m,)

\ CSE 664 Spring 2020 /

Marina Blanton 16

| Uses of Hash Functions A

e The security properties of a commitment scheme can be fromally defined as
two experiments

— to achieve hiding, A chooses mg, m1, receives a commitment to one of
them and 1s asked to determine which message was used

— to achieve binding, A is challenged to create a commitment com and two
different opennings for it (m, r) and (m/, ")
e We require that a commitment scheme is secure if

— the probability of succeeding in the hiding experiment is at most
negligibly larger than 1/2 and

— the success in the binding experiement 1s at most negligigle

\ CSE 664 Spring 2020 /

Marina Blanton 17

| Uses of Hash Functions A

e We can use hash functions to create a commitment scheme (in the random

oracle model):

— Gen takes a security prameter 1" and chooses an appropriate hash

funcion h

— to commit to m, choose uniform r € {0, 1}" and output
com := h(ml|r)

— hiding follows because adversary can query h(x||r) with only a
negligible probability

— binding follows from the collision resistant property of A

\

CSE 664 Spring 2020 /

Marina Blanton 18

\

CSE 664

e How do we use a MAC in combination with encryption?

message authentication
,Mac
. 4 Mo g

encrypt and authenticate

. A Enc;€1 (m),_l\/l)ack2 (m)

authenticate then encrypt

 Enciy (mMac (m)

encrypt then authenticate

Ency, (m),Mﬁ (Eanl (m)) B

Marina Blanton

(Confidentiality + Integrity A

Spring 2020 /
19

(Confidentiality + Integrity A

e Which construction is good for achieving both objectives?
— how do we define “good”?
e We want a combination that always achieves both confidentiality and
integrity

— given any CPA-secure encryption scheme and any secure MAC scheme,
the construction must achieve both goals

— 1f there are secure encryption and MAC schemes using which a
construction doesn’t achieve both goals, we say it is insufficient

\ CSE 664 Spring 2020 /

Marina Blanton 20

(Confidentiality + Integrity A

e How do we combine two schemes into one?

— we are given encryption £ = (Geng, Enc, Dec) and MAC
M = (Geny;, Mac, Vrfy)

— we build message transmission scheme 7' = (Gen, EncMac, DecVrfy)
e Correctness 1s defined as before

e Security is based on meeting the requirements of two experiments:
authenticated communication and confidentiality experiments

— there 1s a single authenticated communication experiment
AuthComm 4 7(n)

\

CSE 664 Spring 2020 /

Marina Blanton 21

(Confidentiality + Integrity A

e Analysis of our constructions:

— encrypt and authenticate

e transmitting Macy,, (m) may leak information about m

— authenticate then encrypt

* has a chosen-ciphertext attack against the general version, which has
been successfully applied in practice

e tampering with ciphertext might permit predictable changes to the
encrypted content

— encrypt then authenticate

o satisfies the definition and 1s CCA-secure

e The keys k71 and ko must be different!

\

CSE 664 Spring 2020 /

Marina Blanton 22

| Authenticated Encryption A

e Do I have to use encryption and MAC separately or are there authenticated
encryption modes?

— recently, authenticated encryption modes have been proposed

e Some good reads:

— https://blog.cryptographyengineering.com/2012/05/19/
how-to-choose-authenticated-encryption/

— https://stackoverflow.com/questions/1220751/how-to-choose-an-aes-
encryption-mode-cbc-ecb-ctr-ocb-cfb

\ CSE 664 Spring 2020 /

Marina Blanton 23

| Authenticated Encryption A

e Good options to consider:

— Offset Codebook (OCB) mode

state of the art in authenticated encryption

proposed internet standard

has licensing restrictions

see http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-fag.htm for more
information

— Galois/Counter Mode (GCM)

e does not have licensing restrictions

e can be used as an alternative for commercial software

\

CSE 664 Spring 2020 /

Marina Blanton 24

[sy)

e Hash functions have many uses:
— data integrity
— data and user authentication

— 1in various protocols as a one-way function
e Combining confidentiality and integrity requires care

e Next time:
— public key cryptography!

— number theory

\

CSE 664 Spring 2020 /

Marina Blanton 25

