
Applied Cryptography and Computer

Security

CSE 664 Spring 2020

Lecture 9: Hash Functions

Department of Computer Science and Engineering

University at Buffalo

1

Lecture OutlineLecture Outline

• So far we learned about

– theoretical tools

– practical algorithms

• In this lecture we learn about another practical tool of great importance in

cryptography

– hash functions

– HMAC

– other uses of hash functions

CSE 664 Spring 2020

2Marina Blanton

Quick Detour: One-Way FunctionsQuick Detour: One-Way Functions

• A one-way function is easy to compute, but is hard to invert

• More formally, if f is one-way, then it is easy to compute f(x) from x, but

given f(x) it is infeasible to find x

hard

easy

f(x)x

• Example: breaking a glass

• One-way functions are a very powerful tool

• It is not known whether they exist

CSE 664 Spring 2020

3Marina Blanton

Hash FunctionsHash Functions

• A hash function h at minimum should satisfy the following properties:

– compression: h maps an input x of an arbitrary length to a (short)

fixed-length output h(x)

– ease of computation: given h and x, h(x) is easy to compute

• Hash functions have many uses including hash tables

• We are interested in cryptographic hash function that must satisfy certain

security properties

• Informally, what we are looking for in a hash function h is:

– given h(x), it is hard to compute x

– it is hard to find x and x′ such that h(x) = h(x′)

CSE 664 Spring 2020

4Marina Blanton

Hash FunctionsHash Functions

• Cryptographic hash functions are often used as a real-life substitute for ideal

one-way functions

• But they have other important uses as well:

– data integrity

– message authentication

– password hashing and one-time passwords

– in digital signatures

– timestamping

– and others

CSE 664 Spring 2020

5Marina Blanton

Hash FunctionsHash Functions

• More formally, let h : X → Y be a cryptographic hash function

• h must satisfy the following security properties:

– Preimage resistance (one-way): given h and y ∈ Y , it is difficult to find

x ∈ X such that h(x) = y

– Second preimage resistance (weak collision resistance): given h and

x ∈ X , it is difficult to find x′ ∈ X such that x′ 6= x and

h(x′) = h(x)

– Collision resistance (strong collision resistance): given h, it is difficult to

find x, x′ ∈ X such that x′ 6= x and h(x′) = h(x)

CSE 664 Spring 2020

6Marina Blanton

Hash FunctionsHash Functions

• Normally the input domain is all strings {0,1}∗ and the output is

{0,1}ℓ(n) for security parameter n

• Collision resilience formally: collision finding experiment Hash-collA,h(n):

1. adversary A is given h and outputs x, x′

2. output 1 (A wins) if x 6= x′ and h(x) = h(x′), and 0 otherwise

• Definition: A function h is collision resistant if any PPT adversary A can’t

win the game with more than a negligible probability, i.e.:

Pr[Hash-collA,h(n) = 1] ≤ negl(n)

CSE 664 Spring 2020

7Marina Blanton

Hash FunctionsHash Functions

• A good cryptographic hash function (satisfying the definition) will have:

– non-correlation: input bits and output bits should not be correlated (and

it is desirable that every input bit affects every output bit)

– near-collision resistance: it should be hard to find any two inputs x and

x′ such that h(x) and h(x′) differ only in a small number of bits

– partial-preimage resistance or local one-wayness: it should be as difficult

to recover any substring as to recover the entire input

• and even if part of the input is known, it should difficult to find the

remainder

CSE 664 Spring 2020

8Marina Blanton

Hash FunctionHash Function

• A cryptographic hash function can be keyed

– it takes a secret key as its another parameter

– that secret key defines the function’s behavior

• i.e., each new key makes it a new hash function

• Formally, a hash family is defined by algorithms (Gen,H)

– key generation algorithm Gen, on input security parameter 1n, outputs

key k

– hashing algorithm H, on input a key k and string x ∈ {0,1}∗, outputs a

string y ∈ {0,1}ℓ(n)

• The key k can be public or private

CSE 664 Spring 2020

9Marina Blanton

Hash FunctionsHash Functions

• Commonly used hash function algorithms:

– MD5

– SHA-1

– SHA-2 family (SHA-256, SHA-384, and others)

• Normally hash function algorithms are iterated

– they use a compression function

– the input is partitioned into blocks

– a compression function is used on the current block mi and the previous

output hi−1 to compute

hi = f(mi, hi−1)

CSE 664 Spring 2020

10Marina Blanton

Hash FunctionsHash Functions

• Most unkeyed hash functions use a compression function f

– f takes a fixed length ℓ-bit input and outputs an intermediate result of

length n (ℓ > n)

• Most unkeyed hash functions use chaining

– output of the current block depends on all previous blocks

– let the input be m = m1m2. . .mt

– set h0 = IV ; hi = f(mi, hi−1); and h(m) = ht

h0 = IV

f

mi

hi

m = m1 . . .mt

ht

hi−1

CSE 664 Spring 2020

11Marina Blanton

Hash FunctionsHash Functions

• Often, before the iterated compression function is called a preprocessing

step is used

• Also, after the compression function, output transformation can be applied

function

original input m

formatted input m = m1 . . .mt

fixed length output

preprocessing

iterated compression

output h(m)

output transformation

CSE 664 Spring 2020

12Marina Blanton

Hash FunctionsHash Functions

• The preprocessing step typically includes:

– padding the message (i.e., appending extra bits) to obtain a bitlength

multiple of the blocklength ℓ

– appending the length of the unpadded input

• this prevents collisions and thus improves security

• The output transformation g is optional

– it can map the n-bit output ht to a result of another length

– often g(ht) = ht

CSE 664 Spring 2020

13Marina Blanton

Hash Functions: Detailed ViewHash Functions: Detailed View

g

f

mi

hi

hi−1

m = m1 . . .mt

compression
function f

formatted input

ht

preprocessing hash function h

append input length

append padding

output h(m) = g(ht)

original input m

h0 = IV

CSE 664 Spring 2020

14Marina Blanton

Hash FunctionsHash Functions

• Merkle-Damgard construction

– we are given a compression function f : {0,1}ℓ+n → {0,1}n

– divide the input m into t blocks m1m2. . .mt of size ℓ padding the last

block with 0s if necessary

– define an extra final block mt+1 to hold the right justified binary

representation of original m’s length

– set h0 = 0n and compute hi = f(hi−1||mi) for i = 1, . . ., t+1

– output h(m) = ht+1

• Theorem: If f is (fixed-length) collision resistant hash function, this

construction is collision resistant

CSE 664 Spring 2020

15Marina Blanton

Hash FunctionsHash Functions

• Cascading hash functions

– we are given two hash functions h1 and h2

– if either h1 or h2 is collision resistant, h(x) = h1(x)||h2(x) is a

collision resistant hash function

– if h1 and h2 are independent, have to find a collision in both

simultaneously

– hopefully this would require the product of the effort to attack them

individually

– this is a simple yet powerful way to increase strength using available

functions

CSE 664 Spring 2020

16Marina Blanton

Attacks on Hash FunctionsAttacks on Hash Functions

• Attacks on the bitsize of a hash

– assume we are given a message m and its hash h(m)

– we want to find another message m′ with the same hash

– a naive approach for finding a collision is to pick a random m′ and check

whether h(m) = h(m′)

– this can result in very little effort, but for well-distributed hashes the

probability of a match is 2−n

– however, if we have control over m as well, the effort greatly reduces

– colliding pairs of messages m and m′ where h(m) = h(m′) can be

done in 2n/2 time

CSE 664 Spring 2020

17Marina Blanton

Birthday AttackBirthday Attack

• Birthday attack is one of cryptographic applications of birthday paradox

• Birthday paradox:

– we are given a group of people

– what is the minimum group size required to find two people who who

share the same birthday with probability at least 1/2?

• General problem statement:

– we are given a random variable that is an integer with uniform

distribution between 1 and n

– given a selection of k instances (k < n) of the variable, what is the

probability Pr(n, k) that there is at least one duplicate?

CSE 664 Spring 2020

18Marina Blanton

Birthday ParadoxBirthday Paradox

• Calculating Pr(365, k)

– if we pick k random days out of 365, what is the probability that there

are no collisions?

– the number of possibilities with no collision:

365× 364× · · · × (365− k +1) = 365!/(365− k)!

– the total number of possibilities: 365k

– thus, we obtain

Pr(365, k) = 1− 365!

(365− k)!365k

– if k = 23, Pr(365,23) = 0.5073

CSE 664 Spring 2020

19Marina Blanton

Birthday ParadoxBirthday Paradox

• In general:

Pr(n, k) = 1− n!

(n− k)!nk
= 1− n(n− 1) · · · (n− k +1)

nk

= 1− n

n
· n− 1

n
· n− 2

n
· · · n− (k − 1)

n

= 1−
(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− k − 1

n

)

– if x is a small real number, then 1− x ≈ e−x

– using it in our equations, we obtain:

Pr(n, k) ≈ 1− e−
1
n · e−

2
n · · · e−

k−1
n = 1− e−

k(k−1)
2n

CSE 664 Spring 2020

20Marina Blanton

Birthday ParadoxBirthday Paradox

• Say, we want Pr(n, k) > 0.5. What k is needed?

1

2
= 1− e−

k(k−1)
2n ⇒ e−

k(k−1)
2n =

1

2
⇒

−k(k − 1)

2n
= ln(1/2) ⇒ k(k − 1)

2n
= ln2

• For large k, k(k − 1) ≈ k2, thus we obtain:

k2

2n
≈ ln 2 ⇒ k2 ≈ (ln 2)2n ⇒

k ≈
√

(2 ln 2)n = 1.18
√
n ≈

√
n

CSE 664 Spring 2020

21Marina Blanton

Security of Hash FunctionsSecurity of Hash Functions

• This directly applies to hash functions:

– for a hash function that produces n-bit output, there are 2n possible

output values

– but about
√
2n = 2n/2 tries are needed to find a collision with a good

probability

• Choosing output length

– to achieve 128-bit security, we need 256-bit output values

• As applied to hash functions, birthday paradox is used in Yuval’s birthday

attack

CSE 664 Spring 2020

22Marina Blanton

Birthday AttackBirthday Attack

• We have a legitimate message m1 and a fraudulent message m2

• We want to find m′
1 and m′

2 resulting from minor modifications of m1 and

m2 with h(m′
1) = h(m′

2)

– then a signature on the hash of m′
1 is a valid signature on m′

2’s hash

• Birthday attack:

– find n/2 places to tweak m1

– generate 2n/2 minor modifications m′
1 of m1

– hash each modified message and store message-hash pairs (searchable by

the hash value)

– generate minor modifications m′
2 of m2 computing h(m′

2) for each and

checking for matches with any m′
1 above until a match is found

CSE 664 Spring 2020

23Marina Blanton

Birthday AttackBirthday Attack

• Example:

– message m1 and its 214 modifications:
{

This letter is
I am writing

}

to introduce

{

you to
to you

} {

Mr.
–

}

Alfred

{

P.
–

}

Barton,

the

{

new
newly appointed

} {

chief
senior

}

jewelry buyer for

{

our
the

}

Northern
{

European
Europe

} {

area
division

}

. He

{

will take
has taken

}

over

{

the
–

}

responsibility for

{

all
the whole of

}

our interests in
{

watches and jewellery
jewellery and watches

}

in the

{

area
region

}

.

• No generic attacks of effort less than 2n are known for other security

properties (pre-image and second pre-image resistance)

CSE 664 Spring 2020

24Marina Blanton

Random Oracle ModelRandom Oracle Model

• The Random Oracle Model (ROM) models an “ideal” hash function

• This ideal function is such that

– the only efficient way to determine the value of h(x) is to actually

evaluate the function on x

– the output is truly random and cannot be predicted even if other values

h(x′), h(x′′), etc. are known

• Every time the ideal hash function is used, you consult an “oracle”

– you send x to the oracle and obtain h(x) back

• This model was introduced by Bellare and Rogaway in 1993

CSE 664 Spring 2020

25Marina Blanton

Random Oracle ModelRandom Oracle Model

• The rationale for using the random oracle model is

– collision or preimage resistance of a hash function is not always

sufficient to prove security

– constructions that use hash functions can be more efficient than

constructions without them

– if we use an ideal function, we can prove construction with hash

functions secure

• Is this model secure?

– generally it is secure, but there are counterexamples

– avoid this model if alternatives exist

CSE 664 Spring 2020

26Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• Families of customized hash functions

– MD2, MD4, MD5 (MD = message digest)

• a family of cryptographic hash functions designed by Ron Rivest

• all have 128-bit output

• MD2 was perceived as slower and less secure than MD4 and MD5

• MD4 is specified as internet standard in RFC 1320

• MD5 was designed as a strengthened version of MD4 before

weaknesses in MD4 were found

• MD5 is specified as internet standard RFC 1321

– SHA-0, SHA-1

– SHA-2 family

CSE 664 Spring 2020

27Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• MD4/MD5

– for 128-bit hashes, collisions are expected in 264 time

– collisions have been found for MD4 in 220 compression function

computations (90s)

– MD5 was widely used until relatively recently

– attacks on MD5

• Boer and Bosselaers found a pseudo collision (same message, two

different IV’s) in 1993

• Dobbertin created collisions for MD5 compression function with a

chosen IV in 1996

• Wang et al. in 2004 found collisions for MD5 for any IV which are

easy to find

CSE 664 Spring 2020

28Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• Secure Hash Algorithm (SHA)

– SHA was designed by NIST and published in FIPS 180 in 1993

– In 1995 a revision, known as SHA-1, was specified in FIPS 180-1

• it is also specified in RFC 3174

– SHA-0 and SHA-1 have 160 bit output and MD4-based design

– In 2002 NIST produced a revision of the standard in FIPS 180-2

– SHA-2 hash functions have length 256, 384, and 512 to be compatible

with the increased security of AES

• they are known as SHA-256, SHA-384, and SHA-512

– Also, SHA-224 was added to compatibility with 3DES

CSE 664 Spring 2020

29Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• Comparison of SHA parameters

SHA-1 SHA-256 SHA-384 SHA-512

hash size 160 256 384 512

message size < 264 < 264 < 2128 < 2128

block size 512 512 1024 1024
word size 32 32 64 64
number of steps 80 64 80 80
security (birthday 80 128 192 256
attack)

CSE 664 Spring 2020

30Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• SHA-1 algorithm

– pad the input before processing

– initialize the 5-word (160-bit) buffer with

• A = 67452301; B = EFCDAB89; C = 98BADCFE

• D = 10325476; E = C3D2E1F0

– message is processed in 16 32-bit words

• expand 16 words into 80 words by XORing and shifting

• use 4 rounds of 20 steps each on a message block and the buffer

– the buffer is updated as (t is the step number)

(A,B,C,D,E) =

((E + ft(B,C,D)+ (A ≪ 5)+Wt+Kt), A, (B ≪ 30), C,D)

CSE 664 Spring 2020

31Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• One step of SHA-1

≪ 30

A B C D E

A B C D E

+

+

+

+

ft

Wt

Kt

≪ 5

CSE 664 Spring 2020

32Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• SHA-1 details

– t is the step number

– Kt is the a constant value derived from the sin function

– Wt is derived from the message block mi = W0W1. . .W15 as

• Wt = Wt for t = 0, . . .,15

• Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪ 1 for

t = 16, . . .,79

• The difference between SHA-0 and SHA-1 is that SHA-0 doesn’t have 1-bit

shift in the construction of W16, . . .,W79

CSE 664 Spring 2020

33Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• Security of SHA

– brute force attack is harder than in MD5 (160 bits vs. 128 bits)

– SHA performs more complex transformations that MD5

• it makes finding collisions more difficult

– Joux and also Wang et al. found collisions in SHA-0 in 2004

• collisions can be found in SHA-0 in < 240

– in 2005 collisions have been found in 58-round “reduced” SHA-1 (233

work)

– finding collisions in the full version of SHA-1 is estimated at < 269

– several other results followed

CSE 664 Spring 2020

34Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• Search for SHA-3

– Feb 2007: NIST announces requests for candidate algorithms for SHA-3

family

– Oct 2008: 64 algorithms were received

– Dec 2008: 51 first-round algorithms meeting minimum requirements

were announced

– Jul 2009: 14 second-round candidates were announced

– Dec 2010: 5 finalists were selected

– Oct 2012: the winner, Keccak, was announced

– 2013: controversy about NIST-announced changes

– Aug 2015: SHA-3 standard was released

CSE 664 Spring 2020

35Marina Blanton

Hash Function AlgorithmsHash Function Algorithms

• SHA-3 Requirements

– digest sizes of 224, 256, 384, and 512 bits

– support of maximum message length of at least 264 − 1 bits

– must be implementable in a wide range of hardware and software

platforms

– other requirements

• Evaluation criteria (ordered)

– security

– cost and performance

– algorithm and implementation characteristics

CSE 664 Spring 2020

36Marina Blanton

SHA-3SHA-3

• SHA-3 is specified in NIST’s FIPS 202 standard

– it is based on Keccak family of sponge functions

– the sponge construction is a mode of operation that builds a function

mapping variable-length input to variable-length output using a

fixed-length permutation and a padding rule

– Keccak instances call one of seven permutations with SHA-3 using the

largest permutation Keccak-f[1600]

– each permutation uses a round function with simple operations such as

XOR, AND and NOT and rotations

– the design is dictinct from other widely used techniques (SHA-2, AES,

etc.)

CSE 664 Spring 2020

37Marina Blanton

SHA-3SHA-3

• In December 2016, NIST released Special Publication (SP) 800-185 with

SHA-3 derived functions:

– cSHAKE is a customizable variant of the SHAKE function used in

Keccak and is a building block for all functions below

– KMAC (= Keccak MAC) is a PRF and keyed hash function based on

Keccak

• it is faster than HMAC

– TupleHash is a variable-length hash function designed to hash tuples of

input strings without trivial collisions

– ParallelHash is a variable-length hash function that can hash very long

messages in parallel

CSE 664 Spring 2020

38Marina Blanton

SummarySummary

• Hash function design

– iterated functions with chaining

– Merkle-Damgard construction

• Attacks on hash functions

– birthday attack applies to find collisions

– finding preimage requires brute force search

• Customized hash functions

– MD4/MD5

– SHA-0, SHA-1, SHA-2

– new SHA-3

CSE 664 Spring 2020

39Marina Blanton

