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Lecture OutlineLecture Outline

• So far we learned about

– theoretical tools

– practical algorithms

• In this lecture we learn about another practical tool of great importance in

cryptography

– hash functions

– HMAC

– other uses of hash functions
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Quick Detour: One-Way FunctionsQuick Detour: One-Way Functions

• A one-way function is easy to compute, but is hard to invert

• More formally, if f is one-way, then it is easy to compute f(x) from x, but

given f(x) it is infeasible to find x

hard

easy

f(x)x

• Example: breaking a glass

• One-way functions are a very powerful tool

• It is not known whether they exist
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Hash FunctionsHash Functions

• A hash function h at minimum should satisfy the following properties:

– compression: h maps an input x of an arbitrary length to a (short)

fixed-length output h(x)

– ease of computation: given h and x, h(x) is easy to compute

• Hash functions have many uses including hash tables

• We are interested in cryptographic hash function that must satisfy certain

security properties

• Informally, what we are looking for in a hash function h is:

– given h(x), it is hard to compute x

– it is hard to find x and x′ such that h(x) = h(x′)
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Hash FunctionsHash Functions

• Cryptographic hash functions are often used as a real-life substitute for ideal

one-way functions

• But they have other important uses as well:

– data integrity

– message authentication

– password hashing and one-time passwords

– in digital signatures

– timestamping

– and others
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Hash FunctionsHash Functions

• More formally, let h : X → Y be a cryptographic hash function

• h must satisfy the following security properties:

– Preimage resistance (one-way): given h and y ∈ Y , it is difficult to find

x ∈ X such that h(x) = y

– Second preimage resistance (weak collision resistance): given h and

x ∈ X , it is difficult to find x′ ∈ X such that x′ 6= x and

h(x′) = h(x)

– Collision resistance (strong collision resistance): given h, it is difficult to

find x, x′ ∈ X such that x′ 6= x and h(x′) = h(x)
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Hash FunctionsHash Functions

• Normally the input domain is all strings {0,1}∗ and the output is

{0,1}ℓ(n) for security parameter n

• Collision resilience formally: collision finding experiment Hash-collA,h(n):

1. adversary A is given h and outputs x, x′

2. output 1 (A wins) if x 6= x′ and h(x) = h(x′), and 0 otherwise

• Definition: A function h is collision resistant if any PPT adversary A can’t

win the game with more than a negligible probability, i.e.:

Pr[Hash-collA,h(n) = 1] ≤ negl(n)

CSE 664 Spring 2020

7Marina Blanton



Hash FunctionsHash Functions

• A good cryptographic hash function (satisfying the definition) will have:

– non-correlation: input bits and output bits should not be correlated (and

it is desirable that every input bit affects every output bit)

– near-collision resistance: it should be hard to find any two inputs x and

x′ such that h(x) and h(x′) differ only in a small number of bits

– partial-preimage resistance or local one-wayness: it should be as difficult

to recover any substring as to recover the entire input

• and even if part of the input is known, it should difficult to find the

remainder
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Hash FunctionHash Function

• A cryptographic hash function can be keyed

– it takes a secret key as its another parameter

– that secret key defines the function’s behavior

• i.e., each new key makes it a new hash function

• Formally, a hash family is defined by algorithms (Gen,H)

– key generation algorithm Gen, on input security parameter 1n, outputs

key k

– hashing algorithm H, on input a key k and string x ∈ {0,1}∗, outputs a

string y ∈ {0,1}ℓ(n)

• The key k can be public or private
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Hash FunctionsHash Functions

• Commonly used hash function algorithms:

– MD5

– SHA-1

– SHA-2 family (SHA-256, SHA-384, and others)

• Normally hash function algorithms are iterated

– they use a compression function

– the input is partitioned into blocks

– a compression function is used on the current block mi and the previous

output hi−1 to compute

hi = f(mi, hi−1)
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Hash FunctionsHash Functions

• Most unkeyed hash functions use a compression function f

– f takes a fixed length ℓ-bit input and outputs an intermediate result of

length n (ℓ > n)

• Most unkeyed hash functions use chaining

– output of the current block depends on all previous blocks

– let the input be m = m1m2. . .mt

– set h0 = IV ; hi = f(mi, hi−1); and h(m) = ht

h0 = IV

f

mi

hi

m = m1 . . .mt

ht

hi−1
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Hash FunctionsHash Functions

• Often, before the iterated compression function is called a preprocessing

step is used

• Also, after the compression function, output transformation can be applied

function

original input m

formatted input m = m1 . . .mt

fixed length output

preprocessing

iterated compression

output h(m)

output transformation

CSE 664 Spring 2020

12Marina Blanton



Hash FunctionsHash Functions

• The preprocessing step typically includes:

– padding the message (i.e., appending extra bits) to obtain a bitlength

multiple of the blocklength ℓ

– appending the length of the unpadded input

• this prevents collisions and thus improves security

• The output transformation g is optional

– it can map the n-bit output ht to a result of another length

– often g(ht) = ht
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Hash Functions: Detailed ViewHash Functions: Detailed View

g

f

mi

hi

hi−1

m = m1 . . .mt

compression
function f

formatted input

ht

preprocessing hash function h

append input length

append padding

output h(m) = g(ht)

original input m

h0 = IV
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Hash FunctionsHash Functions

• Merkle-Damgard construction

– we are given a compression function f : {0,1}ℓ+n → {0,1}n

– divide the input m into t blocks m1m2. . .mt of size ℓ padding the last

block with 0s if necessary

– define an extra final block mt+1 to hold the right justified binary

representation of original m’s length

– set h0 = 0n and compute hi = f(hi−1||mi) for i = 1, . . ., t+1

– output h(m) = ht+1

• Theorem: If f is (fixed-length) collision resistant hash function, this

construction is collision resistant
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Hash FunctionsHash Functions

• Cascading hash functions

– we are given two hash functions h1 and h2

– if either h1 or h2 is collision resistant, h(x) = h1(x)||h2(x) is a

collision resistant hash function

– if h1 and h2 are independent, have to find a collision in both

simultaneously

– hopefully this would require the product of the effort to attack them

individually

– this is a simple yet powerful way to increase strength using available

functions
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Attacks on Hash FunctionsAttacks on Hash Functions

• Attacks on the bitsize of a hash

– assume we are given a message m and its hash h(m)

– we want to find another message m′ with the same hash

– a naive approach for finding a collision is to pick a random m′ and check

whether h(m) = h(m′)

– this can result in very little effort, but for well-distributed hashes the

probability of a match is 2−n

– however, if we have control over m as well, the effort greatly reduces

– colliding pairs of messages m and m′ where h(m) = h(m′) can be

done in 2n/2 time
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Birthday AttackBirthday Attack

• Birthday attack is one of cryptographic applications of birthday paradox

• Birthday paradox:

– we are given a group of people

– what is the minimum group size required to find two people who who

share the same birthday with probability at least 1/2?

• General problem statement:

– we are given a random variable that is an integer with uniform

distribution between 1 and n

– given a selection of k instances (k < n) of the variable, what is the

probability Pr(n, k) that there is at least one duplicate?
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Birthday ParadoxBirthday Paradox

• Calculating Pr(365, k)

– if we pick k random days out of 365, what is the probability that there

are no collisions?

– the number of possibilities with no collision:

365× 364× · · · × (365− k +1) = 365!/(365− k)!

– the total number of possibilities: 365k

– thus, we obtain

Pr(365, k) = 1− 365!

(365− k)!365k

– if k = 23, Pr(365,23) = 0.5073
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Birthday ParadoxBirthday Paradox

• In general:

Pr(n, k) = 1− n!

(n− k)!nk
= 1− n(n− 1) · · · (n− k +1)

nk

= 1− n

n
· n− 1

n
· n− 2

n
· · · n− (k − 1)

n

= 1−
(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− k − 1

n

)

– if x is a small real number, then 1− x ≈ e−x

– using it in our equations, we obtain:

Pr(n, k) ≈ 1− e−
1
n · e−

2
n · · · e−

k−1
n = 1− e−

k(k−1)
2n
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Birthday ParadoxBirthday Paradox

• Say, we want Pr(n, k) > 0.5. What k is needed?

1

2
= 1− e−

k(k−1)
2n ⇒ e−

k(k−1)
2n =

1

2
⇒

−k(k − 1)

2n
= ln(1/2) ⇒ k(k − 1)

2n
= ln2

• For large k, k(k − 1) ≈ k2, thus we obtain:

k2

2n
≈ ln 2 ⇒ k2 ≈ (ln 2)2n ⇒

k ≈
√

(2 ln 2)n = 1.18
√
n ≈

√
n
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Security of Hash FunctionsSecurity of Hash Functions

• This directly applies to hash functions:

– for a hash function that produces n-bit output, there are 2n possible

output values

– but about
√
2n = 2n/2 tries are needed to find a collision with a good

probability

• Choosing output length

– to achieve 128-bit security, we need 256-bit output values

• As applied to hash functions, birthday paradox is used in Yuval’s birthday

attack
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Birthday AttackBirthday Attack

• We have a legitimate message m1 and a fraudulent message m2

• We want to find m′
1 and m′

2 resulting from minor modifications of m1 and

m2 with h(m′
1) = h(m′

2)

– then a signature on the hash of m′
1 is a valid signature on m′

2’s hash

• Birthday attack:

– find n/2 places to tweak m1

– generate 2n/2 minor modifications m′
1 of m1

– hash each modified message and store message-hash pairs (searchable by

the hash value)

– generate minor modifications m′
2 of m2 computing h(m′

2) for each and

checking for matches with any m′
1 above until a match is found
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Birthday AttackBirthday Attack

• Example:

– message m1 and its 214 modifications:
{

This letter is
I am writing

}

to introduce

{

you to
to you

} {

Mr.
–

}

Alfred

{

P.
–

}

Barton,

the

{

new
newly appointed

} {

chief
senior

}

jewelry buyer for

{

our
the

}

Northern
{

European
Europe

} {

area
division

}

. He

{

will take
has taken

}

over

{

the
–

}

responsibility for

{

all
the whole of

}

our interests in
{

watches and jewellery
jewellery and watches

}

in the

{

area
region

}

.

• No generic attacks of effort less than 2n are known for other security

properties (pre-image and second pre-image resistance)
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Random Oracle ModelRandom Oracle Model

• The Random Oracle Model (ROM) models an “ideal” hash function

• This ideal function is such that

– the only efficient way to determine the value of h(x) is to actually

evaluate the function on x

– the output is truly random and cannot be predicted even if other values

h(x′), h(x′′), etc. are known

• Every time the ideal hash function is used, you consult an “oracle”

– you send x to the oracle and obtain h(x) back

• This model was introduced by Bellare and Rogaway in 1993
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Random Oracle ModelRandom Oracle Model

• The rationale for using the random oracle model is

– collision or preimage resistance of a hash function is not always

sufficient to prove security

– constructions that use hash functions can be more efficient than

constructions without them

– if we use an ideal function, we can prove construction with hash

functions secure

• Is this model secure?

– generally it is secure, but there are counterexamples

– avoid this model if alternatives exist
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Hash Function AlgorithmsHash Function Algorithms

• Families of customized hash functions

– MD2, MD4, MD5 (MD = message digest)

• a family of cryptographic hash functions designed by Ron Rivest

• all have 128-bit output

• MD2 was perceived as slower and less secure than MD4 and MD5

• MD4 is specified as internet standard in RFC 1320

• MD5 was designed as a strengthened version of MD4 before

weaknesses in MD4 were found

• MD5 is specified as internet standard RFC 1321

– SHA-0, SHA-1

– SHA-2 family
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Hash Function AlgorithmsHash Function Algorithms

• MD4/MD5

– for 128-bit hashes, collisions are expected in 264 time

– collisions have been found for MD4 in 220 compression function

computations (90s)

– MD5 was widely used until relatively recently

– attacks on MD5

• Boer and Bosselaers found a pseudo collision (same message, two

different IV’s) in 1993

• Dobbertin created collisions for MD5 compression function with a

chosen IV in 1996

• Wang et al. in 2004 found collisions for MD5 for any IV which are

easy to find

CSE 664 Spring 2020

28Marina Blanton



Hash Function AlgorithmsHash Function Algorithms

• Secure Hash Algorithm (SHA)

– SHA was designed by NIST and published in FIPS 180 in 1993

– In 1995 a revision, known as SHA-1, was specified in FIPS 180-1

• it is also specified in RFC 3174

– SHA-0 and SHA-1 have 160 bit output and MD4-based design

– In 2002 NIST produced a revision of the standard in FIPS 180-2

– SHA-2 hash functions have length 256, 384, and 512 to be compatible

with the increased security of AES

• they are known as SHA-256, SHA-384, and SHA-512

– Also, SHA-224 was added to compatibility with 3DES
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Hash Function AlgorithmsHash Function Algorithms

• Comparison of SHA parameters

SHA-1 SHA-256 SHA-384 SHA-512

hash size 160 256 384 512

message size < 264 < 264 < 2128 < 2128

block size 512 512 1024 1024
word size 32 32 64 64
number of steps 80 64 80 80
security (birthday 80 128 192 256
attack)
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Hash Function AlgorithmsHash Function Algorithms

• SHA-1 algorithm

– pad the input before processing

– initialize the 5-word (160-bit) buffer with

• A = 67452301; B = EFCDAB89; C = 98BADCFE

• D = 10325476; E = C3D2E1F0

– message is processed in 16 32-bit words

• expand 16 words into 80 words by XORing and shifting

• use 4 rounds of 20 steps each on a message block and the buffer

– the buffer is updated as (t is the step number)

(A,B,C,D,E) =

((E + ft(B,C,D)+ (A ≪ 5)+Wt+Kt), A, (B ≪ 30), C,D)
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Hash Function AlgorithmsHash Function Algorithms

• One step of SHA-1

≪ 30

A B C D E

A B C D E

+

+

+

+

ft

Wt

Kt

≪ 5
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Hash Function AlgorithmsHash Function Algorithms

• SHA-1 details

– t is the step number

– Kt is the a constant value derived from the sin function

– Wt is derived from the message block mi = W0W1. . .W15 as

• Wt = Wt for t = 0, . . .,15

• Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪ 1 for

t = 16, . . .,79

• The difference between SHA-0 and SHA-1 is that SHA-0 doesn’t have 1-bit

shift in the construction of W16, . . .,W79
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Hash Function AlgorithmsHash Function Algorithms

• Security of SHA

– brute force attack is harder than in MD5 (160 bits vs. 128 bits)

– SHA performs more complex transformations that MD5

• it makes finding collisions more difficult

– Joux and also Wang et al. found collisions in SHA-0 in 2004

• collisions can be found in SHA-0 in < 240

– in 2005 collisions have been found in 58-round “reduced” SHA-1 (233

work)

– finding collisions in the full version of SHA-1 is estimated at < 269

– several other results followed

CSE 664 Spring 2020

34Marina Blanton



Hash Function AlgorithmsHash Function Algorithms

• Search for SHA-3

– Feb 2007: NIST announces requests for candidate algorithms for SHA-3

family

– Oct 2008: 64 algorithms were received

– Dec 2008: 51 first-round algorithms meeting minimum requirements

were announced

– Jul 2009: 14 second-round candidates were announced

– Dec 2010: 5 finalists were selected

– Oct 2012: the winner, Keccak, was announced

– 2013: controversy about NIST-announced changes

– Aug 2015: SHA-3 standard was released
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Hash Function AlgorithmsHash Function Algorithms

• SHA-3 Requirements

– digest sizes of 224, 256, 384, and 512 bits

– support of maximum message length of at least 264 − 1 bits

– must be implementable in a wide range of hardware and software

platforms

– other requirements

• Evaluation criteria (ordered)

– security

– cost and performance

– algorithm and implementation characteristics
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SHA-3SHA-3

• SHA-3 is specified in NIST’s FIPS 202 standard

– it is based on Keccak family of sponge functions

– the sponge construction is a mode of operation that builds a function

mapping variable-length input to variable-length output using a

fixed-length permutation and a padding rule

– Keccak instances call one of seven permutations with SHA-3 using the

largest permutation Keccak-f[1600]

– each permutation uses a round function with simple operations such as

XOR, AND and NOT and rotations

– the design is dictinct from other widely used techniques (SHA-2, AES,

etc.)
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SHA-3SHA-3

• In December 2016, NIST released Special Publication (SP) 800-185 with

SHA-3 derived functions:

– cSHAKE is a customizable variant of the SHAKE function used in

Keccak and is a building block for all functions below

– KMAC (= Keccak MAC) is a PRF and keyed hash function based on

Keccak

• it is faster than HMAC

– TupleHash is a variable-length hash function designed to hash tuples of

input strings without trivial collisions

– ParallelHash is a variable-length hash function that can hash very long

messages in parallel
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SummarySummary

• Hash function design

– iterated functions with chaining

– Merkle-Damgard construction

• Attacks on hash functions

– birthday attack applies to find collisions

– finding preimage requires brute force search

• Customized hash functions

– MD4/MD5

– SHA-0, SHA-1, SHA-2

– new SHA-3
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