
Applied Cryptography and Computer

Security

CSE 664 Spring 2020

Lecture 8: Data Integrity

Department of Computer Science and Engineering

University at Buffalo

1

OverviewOverview

• Going back to the security objectives cryptography helps to achieve:

– confidentiality

– integrity

– authentication

• entity authentication

• data authentication

– access control

– non-repudiability

• We’ll discuss the integrity objective next (in the symmetric key setting)

CSE 664 Spring 2020

2Marina Blanton

Data IntegrityData Integrity

• Encryption does not protect data from modification by another party

– recall the modes of encryption we talked about

• We normally want to ensure that the data arrives in its original form

– i.e., we want data integrity

• How can we do that?

– attach a verification tag?

– how can we make sure that an adversary cannot compute the tag for

messages of its choice?

CSE 664 Spring 2020

3Marina Blanton

Data IntegrityData Integrity

• This means that we also want to ensure that data comes from an

authenticated source

– i.e., we want data origin authentication

• We’ll use message authentication codes (MAC)

– a secret key is shared by two communicating parties

– a MAC cannot be computed (or verified) without the key

• To achieve source authentication and message integrity:

– the sender computes t = MACk(m) and sends (m, t)

– the receiver recomputes t′ = MACk(m) for received m and compares it

to t

CSE 664 Spring 2020

4Marina Blanton

Message Authentication CodesMessage Authentication Codes

• Formally, a message authentication code is composed of PPT algorithms

(Gen, Mac, Vrfy) s.t.:

1. key generation algorithm Gen, on input a security parameter 1n, outputs

a key k, where |k| ≥ n.

2. tag generation algorithm Mac, on input a key k and message

m ∈ {0,1}∗, outputs a tag t, i.e., t← Mack(m)

3. verification algorithm Vrfy, on input a key k, a message m, and a tag t,

outputs a bit b, where b = 1 means the tag is valid and b = 0 means it

is invalid, i.e., b := Vrfyk(m, t)

CSE 664 Spring 2020

5Marina Blanton

MACMAC

• What properties do we want?

– correctness

• ?

– security

• someone without the key shouldn’t be able to forge a MAC on a

message

• given pairs (mi,Mack(mi)), computing a new pair (m,Mack(m))

such that m 6= mi should be hard

CSE 664 Spring 2020

6Marina Blanton

MACMAC

• Classification of attacks on MACs:

– known-text attack: one or more pairs (mi,Mack(mi)) are available

– chosen-text attack: one of more pairs (mi,Mack(mi)) are available for

mi’s chosen by the adversary

– adaptive chosen-text attack: the mi’s are chosen by the adversary, where

successive choices can be based on the results of prior queries

• Which one do we want?

CSE 664 Spring 2020

7Marina Blanton

MACMAC

• Classification of forgeries:

– selective forgery: an adversary is able to produce a new MAC pair for a

message under her control

– existential forgery: an adversary is able to produce a new MAC pair but

with no control of the value of the message

• Which would we prefer??

• And, as usual, key recovery is the most damaging attack on MAC

CSE 664 Spring 2020

8Marina Blanton

MAC SecurityMAC Security

• We construct an experiment for MACs existentially unforgeable under an

adaptive chosen-message attack

• Let Π = (Gen,Mac,Vrfy) be a message authentication code

• Message authentication experiment Mac-forgeA,Π(n):

1. generate k ← Gen(1n)

2. adversaryA is given 1n and oracle access to Mack(·); let Q denote the

set of queriesA makes to the oracle

3. A eventually outputs a pair (m, t)

4. output 1 (A wins) iff (a) Vrfyk(m, t) = 1 and (b) m 6∈ Q

CSE 664 Spring 2020

9Marina Blanton

MAC SecurityMAC Security

• Definition: A message authentication code Π = (Gen,Mac,Vrfy) is secure

if any PPT adversaryA has at most negligible probability of suceeding in

the above experiment, i.e.,

Pr[Mac-forgeΠ,A(n) = 1] ≤ negl(n)

• Important: MACs do not prevent all traffic injections (e.g., replay attacks)

– a replayed message will pass verification process

– addressing this problem by MACs only cannot be done and is left to the

application

• use sequence numbers or time-stamps to make each message unique

CSE 664 Spring 2020

10Marina Blanton

Constructing Message Authentication CodesConstructing Message Authentication Codes

• We can use pseudo-random functions for constructing fixed-length MACs

– let F : {0,1}n × {0,1}n → {0,1}n be a pseudo-random function

• MAC construction (for security parameter n):

– Gen: on input 1n, choose k
R
← {0,1}n

– Mac: on input key k ∈ {0,1}n and message m ∈ {0,1}n, output tag

t := Fk(m)

– Vrfy: on input key k ∈ {0,1}n, message m ∈ {0,1}n, and tag

t ∈ {0,1}n, output 1 if and only if t = Fk(m); and output 0 otherwise

CSE 664 Spring 2020

11Marina Blanton

Constructing Message Authentication CodesConstructing Message Authentication Codes

• Security of our MAC construction:

– Theorem: assuming that F is a pseudo-random function, the above

fixed-length MAC construction is secure (existentially unforgeable under

an adaptive chosen-message attack)

– Proof intuition

• as before, first substitute the pseudo-random object with a truly

random

• what is the probability that the output of random function can be

predicted on a “new point”?

• what is the “difference” between pseudo-random and random

functions?

CSE 664 Spring 2020

12Marina Blanton

Variable-Length MACsVariable-Length MACs

• Now how do we authenticate messages longer than n bits?

– can partition a message into n-bit blocks

– authenticate each block separately?

– combine all messages into a single block?

• It is possible to construct secure MACs using only pseudo-random functions

– must sequentially tie all blocks together

– must ensure that tag forging based on message length is not possible

CSE 664 Spring 2020

13Marina Blanton

Variable-Length MACsVariable-Length MACs

• MAC algorithms widely used in practice use chaining:

– CBC-MAC (based on a block cipher)

– HMAC (based on a hash function)

• They produce only one n-bit tag for messages of any length

– specifically were designed to be efficient

CSE 664 Spring 2020

14Marina Blanton

MAC AlgorithmsMAC Algorithms

• CBC-MAC

– DES in the cipher block chaining (CBC) mode has been a widely used

MAC algorithm (FIPS 113 and ANSI standard X9.17)

– uses the initialization vector 0

– last block is used as the MAC

. . .0
F

kk k
m1 m2 mt

Mack(m)
F F

CSE 664 Spring 2020

15Marina Blanton

CBC-MACCBC-MAC

• Security of CBC-MAC

– random IV is not used, it is set to constant 0n

– CBC-MAC is secure for messages of a fixed number of t blocks

• Compare this with CBC mode of encryption

– random IV was necessary in encryption to prevent a codebook attack

– random IV in a MAC construction gives room to tampering

– all ciphertext blocks are necessary for decryption

– using all ciphertext blocks as a MAC tag results in an insecure

construction

CSE 664 Spring 2020

16Marina Blanton

CBC-MACCBC-MAC

• If the number of blocks can vary, (adaptive chosen-text) existential forgery is

possible

– assume the adversary obtains a message-MAC pair (m1, t1)

– the adversary queries a MAC for m2 = t1 and obtains (m2, t2)

– then t2 = Fk(Fk(m1)) and is the MAC for the 2-block message

(m1||0)

CSE 664 Spring 2020

17Marina Blanton

CBC-MACCBC-MAC

• Another example of forgery in CBC-MAC

– assume we have two pairs (m1, t1) and (m2, t2) for one-block

messages m1 and m2

– we request the MAC on a 2-block third message m3 = (m1||z) and

obtain ((m1||z), t3)

– then t1 = Fk(m1), t2 = Fk(m2), and t3 = Fk(t1 ⊕ z)

– we are able to construct the MAC for the new 2-block message

m4 = m2||(t1 ⊕ z ⊕ t2); it is also t3

• The fix: do MAC strengthening

CSE 664 Spring 2020

18Marina Blanton

CBC-MACCBC-MAC

• One possibility of CBC-MAC strengthening:

. . .0

new

k1k1 k1 k2 k1m1 m2 mt

FFFF F−1

– this prevents the forgery without impacting the intermediate stages

– (it also reduces the threat of exhaustive key search)

– we can derive k1 and k2 from k as k1 = Fk(1) and k2 = Fk(2)

CSE 664 Spring 2020

19Marina Blanton

CBC-MACCBC-MAC

• Other solutions are possible as well:

1. prepend the input with a length block before the MAC computation

– it is important that this block is not at the end

2. create a length-dependent key from k

– if ℓ is the number of blocks, first compute a new key as kℓ = Fk(ℓ)

– use kℓ to produce the authentication tag

3. . . .

CSE 664 Spring 2020

20Marina Blanton

MAC AlgorithmsMAC Algorithms

• The next construction is HMAC

– requires knowledge of hash functions

– we’ll look at cryptographic hash functions next

• To summarize what we’ve learned so far:

– integrity is a separate security goal that requires tools designed for it

– integrity or message authentication can be achieved using

pseudo-random functions

– CBC-MAC and HMAC are used in practice

• The key used for integrity protection must differ from the key used for

confidentiality protection

CSE 664 Spring 2020

21Marina Blanton

