Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 4: Symmetric Encryption

Department of Computer Science and Engineering University at Buffalo

High-Level View

- Previously we talked about:
 - unconstrained adversary
 - achieving perfect secrecy by means of one-time pad
 - using entropy to measure information leakage
- In this lecture we:
 - take a computational approach
 - break the bounds of information-theoretic analysis
 - learn about modern design of encryption algorithms

Symmetric Encryption

- Information-theoretic or perfect security builds on the fact that an attacker doesn't have enough information to recover the message
 - all messages can still happen with original probabilities
- Computational security provides security only in the presence of "practical" adversaries
 - given unlimited resources, such algorithms can be broken
- There are two differences from our previous definition of security:
 - security only holds against adversaries that run in a feasible amount of time
 - adversaries can potentially succeed with a very small probability

Computational Security

- Security of a cipher can often be defined in one of the following ways:
 - exact numbers
 - a scheme is (t, ε)-secure if an adversary running for time at most t has probability of most ε in breaking the security of the scheme
 - what values of t and ε are reasonable today?
 - (t, ε) -security does not imply security in general

Computational Security

- Security of a cipher can be defined in one of the following ways:
 - asymptotic approach
 - cipher is described using a security parameter n
 - a scheme is secure if an efficient adversary has only negligible probability in breaking its security
 - adversary runs in probabilistic polynomial time (PPT)
 - honest parties must be polynomial time as well
 - security guarantees hold only for sufficiently large values of n
 - an adversary running for $2^{25} \cdot n^3$ cycles can break security with probability $2^{20} \cdot 2^{-n/4}$
- Which approach is more common or better?

More on poly(n) and negl(n)

- We distinguish between polynomial and super-polynomial functions and normally are not very concerned with the exact complexity
 - any super-polynomial function can be made sufficiently large by appropriately setting the security parameter n
 - a negligible function is then the inverse of any super-polynomial function
 - such function can diminish with drastically different rates and should only be used with sufficiently large values of *n*
 - we assume that events occurring with negligible probability are so unlikely that they can be ignored

Marina Blanton

More on poly(n) and negl(n)

- We will use the following closure properties:
 - let f_1 and f_2 be two arbitrary functions of the same type (polynomial, super-polynomial, or negligible)
 - function $f_3(n) = f_1(n) + f_2(n)$ has the same type as f_1 and f_2
 - also, function $f_4(n) = f_1(n) \cdot p(n)$ has the same type as f_1 for any polynomial p(n)

String Length and Running Time

- By polynomial-time algorithms we mean functions running in polynomial time in the length of their inputs
 - i.e., on input x, f(|x|) = f(n) must be poly-time
 - since $n = |x| = \log x$, if f(n) takes time x, it is exponential in n
 - if we want poly(n) and there are no other inputs, we write $f(1^n)$
 - example:
 - the same applies to the complexity of all other algorithms

Marina Blanton

String Length and Running Time

- By probabilistic algorithms we mean functions that can make unbiased coin tosses
 - choose a bit to be 0 with probability 1/2 and 1 with probability 1/2
 - flip as many coins as necessary
- How do we generate randomness in practice, without a coin?
- Is output of C function rand() random? function random()?

- We now define a computationally secure symmetric key encryption scheme
 - a private-key encryption scheme consists of polynomial-time algorithms (Gen, Enc, Dec) such that
 - 1. Gen: on input the security parameter 1^n , outputs key k
 - 2. Enc: on input a key k and a message $m \in \{0, 1\}^*$, outputs ciphertext c
 - 3. Dec: on input a key k and ciphertext c, outputs plaintext m
 - we write $k \leftarrow \text{Gen}(1^n), c \leftarrow \text{Enc}_k(m)$, and $m := \text{Dec}_k(c)$
 - this notation means that Gen and Enc are probabilistic and Dec is deterministic

Spring 2020

Symmetric Encryption

- The above definition allows us to encrypt message of any length
- In practice, there are two types of symmetric key algorithms:
 - block ciphers
 - the key has a fixed size
 - prior to encryption, the message is partitioned into blocks of certain size
 - each block is encrypted and decrypted on its own
 - stream ciphers
 - the message is processed as a stream
 - pseudo-random generator is used to produce a long key stream from a short fixed-length key

- Correctness requirement is the same as before
- Definition of security now differs
 - we first model a very weak adversary that observes only one ciphertext
 - recall that we model security using eavesdropping indistinguishability experiment $\mathsf{PrivK}_{\mathcal{A},\mathcal{E}}^{\mathsf{eav}}$
 - there are three differences in the computational setting:
 - 1.
 - 2.
 - 3.

- Experiment $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathcal{E}}(n)$
 - 1. \mathcal{A} is given 1^n and chooses two messages m_0, m_1 of the same length
 - 2. random key k is generated by $Gen(1^n)$, and random bit $b \leftarrow \{0, 1\}$ is chosen
 - 3. ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A}
 - 4. \mathcal{A} outputs bit b' as its guess for b
 - 5. experiment outputs 1 if b' = b (A wins) and 0 otherwise

 A private-key encryption scheme E = (Gen, Enc, Dec) has indistinguishable encryptions in the presence of an eavesdropper if for every PPT adversary A there exists a negligible function negl such that

$$\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\mathcal{E}}(n) = 1] \leq \frac{1}{2} + \operatorname{negl}(n)$$

- The default notion of secure encryption does not hide information about the plaintext length
 - in some cases, we want the length to be protected

Towards Computationally-Secure Encryption

- How do we meet this definition?
 - idea: substitute randomness with pseudorandomness
- What is pseudorandomness?
 - it refers to a distribution of strings rather than a single string
 - given a string, a polynomial-time adversary shouldn't be able to tell whether it was sampled using a distribution of pseudorandom strings or uniformly at random
- Pseudorandom strings are produced using a pseudorandom generators (PRG)
 - a PRG takes a fixed-length key, or seed, and produces a longer string

Spring 2020

Marina Blanton

Pseudorandom Generator

- Let G be a (deterministic) algorithm that on input n-bit string s outputs a string of length l(n)
- G is a pseudorandom generator if the following is true:
 - 1. (expansion) for any n, output is longer than input: $\ell(n) > n$
 - 2. (pseudorandomness) any PPT distinguisher *D* can't tell the difference with non-negligible probability:

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le \operatorname{negl}(n)$$

where r and s are random strings of size $\ell(n)$ and n

- this property completely fails if D is computationally unbounded
- The seed s must be treated similar to a key

Pseudorandom Generator Exercises

• Examples on the board

Secure Encryption Scheme

- Private-key encryption scheme for messages from $\mathcal{M} = \{0, 1\}^{\ell}$
 - let PRG G have expansion factor ℓ
 - Gen: on input 1^n , randomly choose key $k \leftarrow \{0, 1\}^n$
 - Enc: on input key $k \in \{0, 1\}^n$ and message $m \in \{0, 1\}^{\ell(n)}$, output ciphertext $c := G(k) \oplus m$
 - Dec: on input key $k \in \{0, 1\}^n$ and ciphertext $c \in \{0, 1\}^{\ell(n)}$, output message $m = G(k) \oplus c$
- Theorem: The above scheme has indistinguishable encryptions in the presence of an eavesdropper, assuming that *G* is a PRG

Proof Technique: Reduction

- Reductions are commonly used to prove that a problem is hard
 - suppose problem X is known or believed to belong to a class of "hard" problems
 - we want to prove that Y is also "hard" to solve
 - we construct an "efficient" algorithm to use a solution to problem Y to solve problem X
 - this algorithm is called reduction
 - this implies that Y is "at least as hard" as X and must be within the same class of hard problems
 - example:

Proofs by Reduction

- The actual proof can proceed as proof by contradiction:
 - assume to the contrary that Y can be solved efficiently
 - we use reduction from X to Y to solve X efficiently
 - this is impossible because X is hard \Rightarrow contradiction
 - the assumption that Y can be solved efficiently must be wrong
- In our computational setting
 - hard means "cannot be solved by a polynomial-time adversary with more than negligible probability"
 - efficient means polynomial time

Proofs by Reduction

- Claim: Assuming that no PPT adversary can break construction X with non-negligible probability, our construction Y is secure (cannot be broken by any PPT adversary except with negligible probability)
- Security proof by reduction:
 - 1. suppose some PPT adversary \mathcal{A} has advantage $\varepsilon(n)$ at breaking our scheme Y
 - 2. we construct efficient adversary \mathcal{A}' that tries to solve X using \mathcal{A} as a sub-routine
 - \mathcal{A}' simulates environment for \mathcal{A} on an instance of problem X
 - if \mathcal{A} successfully breaks Y, we want \mathcal{A}' to break X at least with probability 1/p(n)

Proof by Reduction

- Security proof by reduction (cont.)
 - 3. if $\varepsilon(n)$ is not negligible, X is broken by \mathcal{A}' with non-negligible probability $\varepsilon(n)/p(n) \Rightarrow$ contradiction
 - 4. it must be that $\varepsilon(n)$ is negligible for any \mathcal{A}
- In our private-key encryption scheme
 - security of *X*:
 - security of *Y*:

Proving Security of Our Encryption Scheme

- To build a proof, we need to construct a distinguisher designed to break the PRG
 - the distinguisher must draw its "security breaking abilities" from an adversary \mathcal{A} attacking our encryption scheme
- Once this is done, we analyze its success and relate it to that of A's success in breaking encryption experiment

Beyond Simplified Model

- How do we encrypt
 - variable-length messages
 - multiple messages
- Variable-length messages
 - generate pseudorandom string of desired length
 - use variable output-length PRG
- Handling multiple messages is trickier
 - straightforward usage of one-message encryption schemes fails to achieve security
 - what is the definition "security" now?

Multiple Encryptions Security

- Multiple message eavesdropping experiment $\mathsf{PrivK}_{\mathcal{A},\mathcal{E}}^{\mathsf{mult}}(n)$
 - 1. \mathcal{A} is given 1^n and chooses two vectors of t messages M_0 and M_1
 - 2. random key k is generated by $Gen(1^n)$, and random bit $b \leftarrow \{0, 1\}$ is chosen
 - 3. ciphertext vector C is computed from M_b and is given to A
 - 4. \mathcal{A} outputs bit b' as its guess for b
 - 5. experiment outputs 1 if b' = b (A wins) and 0 otherwise
- Similar to before, we want

$$\Pr[\operatorname{Priv}\mathsf{K}^{\operatorname{mult}}_{\mathcal{A},\mathcal{E}}(n) = 1] \leq \frac{1}{2} + \operatorname{negl}(n)$$

CSE 664

Spring 2020

Marina Blanton

Multiple Encryptions Security

- Any deterministic encryption algorithm fails this definition of security
- There are two common ways to achieve multiple encryption security
 - use different portions of the stream for different messages
 - drawback: requires synchronization
 - make PRG take another randomizing parameter as G(k, IV)
 - drawback: requires stronger security properties from the PRG

Stream Ciphers

- Stream cipher algorithms
 - Linear Feedback Shift Registers (LFSR)
 - **–** RC4
- Security of practical stream cipher algorithms is less understood than security of block ciphers
- Some implementations also incorrectly use them