
Applied Cryptography and Computer
Security

CSE 664 Spring 2020

Lecture 4: Symmetric Encryption

Department of Computer Science and Engineering
University at Buffalo

1

High-Level ViewHigh-Level View

• Previously we talked about:

– unconstrained adversary

– achieving perfect secrecy by means of one-time pad

– using entropy to measure information leakage

• In this lecture we:

– take a computational approach

– break the bounds of information-theoretic analysis

– learn about modern design of encryption algorithms

CSE 664 Spring 2020

2Marina Blanton

Symmetric EncryptionSymmetric Encryption

• Information-theoretic or perfect security builds on the fact that an attacker
doesn’t have enough information to recover the message

– all messages can still happen with original probabilities

• Computational security provides security only in the presence of “practical”
adversaries

– given unlimited resources, such algorithms can be broken

• There are two differences from our previous definition of security:

– security only holds against adversaries that run in a feasible amount of
time

– adversaries can potentially succeed with a very small probability

CSE 664 Spring 2020

3Marina Blanton

Computational SecurityComputational Security

• Security of a cipher can often be defined in one of the following ways:

– exact numbers

• a scheme is (t, ε)-secure if an adversary running for time at most t
has probability of most ε in breaking the security of the scheme

– what values of t and ε are reasonable today?

• (t, ε)-security does not imply security in general

CSE 664 Spring 2020

4Marina Blanton

Computational SecurityComputational Security

• Security of a cipher can be defined in one of the following ways:

– asymptotic approach

• cipher is described using a security parameter n

• a scheme is secure if an efficient adversary has only negligible
probability in breaking its security

– adversary runs in probabilistic polynomial time (PPT)

– honest parties must be polynomial time as well

• security guarantees hold only for sufficiently large values of n

– an adversary running for 225 · n3 cycles can break security with
probability 220 · 2−n/4

• Which approach is more common or better?

CSE 664 Spring 2020

5Marina Blanton

More on poly(n) and negl(n)More on poly(n) and negl(n)

• We distinguish between polynomial and super-polynomial functions and
normally are not very concerned with the exact complexity

– any super-polynomial function can be made sufficiently large by
appropriately setting the security parameter n

– a negligible function is then the inverse of any super-polynomial function

• such function can diminish with drastically different rates and should
only be used with sufficiently large values of n

• we assume that events occurring with negligible probability are so
unlikely that they can be ignored

CSE 664 Spring 2020

6Marina Blanton

More on poly(n) and negl(n)More on poly(n) and negl(n)

• We will use the following closure properties:

– let f1 and f2 be two arbitrary functions of the same type (polynomial,
super-polynomial, or negligible)

– function f3(n) = f1(n) + f2(n) has the same type as f1 and f2

– also, function f4(n) = f1(n) · p(n) has the same type as f1 for any
polynomial p(n)

CSE 664 Spring 2020

7Marina Blanton

String Length and Running TimeString Length and Running Time

• By polynomial-time algorithms we mean functions running in polynomial
time in the length of their inputs

– i.e., on input x, f(|x|) = f(n) must be poly-time

– since n = |x| = logx, if f(n) takes time x, it is exponential in n

– if we want poly(n) and there are no other inputs, we write f(1n)

– example:

– the same applies to the complexity of all other algorithms

CSE 664 Spring 2020

8Marina Blanton

String Length and Running TimeString Length and Running Time

• By probabilistic algorithms we mean functions that can make unbiased coin
tosses

– choose a bit to be 0 with probability 1/2 and 1 with probability 1/2

– flip as many coins as necessary

• How do we generate randomness in practice, without a coin?

• Is output of C function rand() random? function random()?

CSE 664 Spring 2020

9Marina Blanton

Computationally-Secure EncryptionComputationally-Secure Encryption

• We now define a computationally secure symmetric key encryption scheme

– a private-key encryption scheme consists of polynomial-time algorithms
(Gen, Enc, Dec) such that

1. Gen: on input the security parameter 1n, outputs key k

2. Enc: on input a key k and a message m ∈ {0,1}∗, outputs ciphertext
c

3. Dec: on input a key k and ciphertext c, outputs plaintext m

– we write k ← Gen(1n), c← Enck(m), and m := Deck(c)

• this notation means that Gen and Enc are probabilistic and Dec is
deterministic

CSE 664 Spring 2020

10Marina Blanton

Symmetric EncryptionSymmetric Encryption

• The above definition allows us to encrypt message of any length

• In practice, there are two types of symmetric key algorithms:

– block ciphers

• the key has a fixed size

• prior to encryption, the message is partitioned into blocks of certain
size

• each block is encrypted and decrypted on its own

– stream ciphers

• the message is processed as a stream

• pseudo-random generator is used to produce a long key stream from a
short fixed-length key

CSE 664 Spring 2020

11Marina Blanton

Computationally-Secure EncryptionComputationally-Secure Encryption

• Correctness requirement is the same as before

• Definition of security now differs

– we first model a very weak adversary that observes only one ciphertext

– recall that we model security using eavesdropping indistinguishability
experiment PrivKeav

A,E

– there are three differences in the computational setting:

1.

2.

3.

CSE 664 Spring 2020

12Marina Blanton

Computationally-Secure EncryptionComputationally-Secure Encryption

• Experiment PrivKeav
A,E(n)

1. A is given 1n and chooses two messages m0,m1 of the same length

2. random key k is generated by Gen(1n), and random bit b← {0,1} is
chosen

3. ciphertext c← Enck(mb) is computed and given toA

4. A outputs bit b′ as its guess for b

5. experiment outputs 1 if b′ = b (A wins) and 0 otherwise

CSE 664 Spring 2020

13Marina Blanton

Computationally-Secure EncryptionComputationally-Secure Encryption

• A private-key encryption scheme E = (Gen, Enc, Dec) has
indistinguishable encryptions in the presence of an eavesdropper if for every
PPT adversaryA there exists a negligible function negl such that

Pr[PrivKeav
A,E(n) = 1] ≤

1

2
+ negl(n)

• The default notion of secure encryption does not hide information about the
plaintext length

– in some cases, we want the length to be protected

CSE 664 Spring 2020

14Marina Blanton

Towards Computationally-Secure EncryptionTowards Computationally-Secure Encryption

• How do we meet this definition?

– idea: substitute randomness with pseudorandomness

• What is pseudorandomness?

– it refers to a distribution of strings rather than a single string

– given a string, a polynomial-time adversary shouldn’t be able to tell
whether it was sampled using a distribution of pseudorandom strings or
uniformly at random

• Pseudorandom strings are produced using a pseudorandom generators (PRG)

– a PRG takes a fixed-length key, or seed, and produces a longer string

CSE 664 Spring 2020

15Marina Blanton

Pseudorandom GeneratorPseudorandom Generator

• Let G be a (deterministic) algorithm that on input n-bit string s outputs a
string of length `(n)

• G is a pseudorandom generator if the following is true:

1. (expansion) for any n, output is longer than input: `(n) > n

2. (pseudorandomness) any PPT distinguisher D can’t tell the difference
with non-negligible probability:

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ negl(n)

where r and s are random strings of size `(n) and n

– this property completely fails if D is computationally unbounded

• The seed s must be treated similar to a key

CSE 664 Spring 2020

16Marina Blanton

Pseudorandom Generator ExercisesPseudorandom Generator Exercises

• Examples on the board

CSE 664 Spring 2020

17Marina Blanton

Secure Encryption SchemeSecure Encryption Scheme

• Private-key encryption scheme for messages fromM = {0,1}`

– let PRG G have expansion factor `

– Gen: on input 1n, randomly choose key k ← {0,1}n

– Enc: on input key k ∈ {0,1}n and message m ∈ {0,1}`(n), output
ciphertext c := G(k)⊕m

– Dec: on input key k ∈ {0,1}n and ciphertext c ∈ {0,1}`(n), output
message m = G(k)⊕ c

• Theorem: The above scheme has indistinguishable encryptions in the
presence of an eavesdropper, assuming that G is a PRG

CSE 664 Spring 2020

18Marina Blanton

Proof Technique: ReductionProof Technique: Reduction

• Reductions are commonly used to prove that a problem is hard

– suppose problem X is known or believed to belong to a class of “hard”
problems

– we want to prove that Y is also “hard” to solve

– we construct an “efficient” algorithm to use a solution to problem Y to
solve problem X

• this algorithm is called reduction

– this implies that Y is “at least as hard” as X and must be within the
same class of hard problems

– example:

CSE 664 Spring 2020

19Marina Blanton

Proofs by ReductionProofs by Reduction

• The actual proof can proceed as proof by contradiction:

– assume to the contrary that Y can be solved efficiently

– we use reduction from X to Y to solve X efficiently

– this is impossible because X is hard⇒ contradiction

– the assumption that Y can be solved efficiently must be wrong

• In our computational setting

– hard means “cannot be solved by a polynomial-time adversary with more
than negligible probability”

– efficient means polynomial time

CSE 664 Spring 2020

20Marina Blanton

Proofs by ReductionProofs by Reduction

• Claim: Assuming that no PPT adversary can break construction X with
non-negligible probability, our construction Y is secure (cannot be broken
by any PPT adversary except with negligible probability)

• Security proof by reduction:

1. suppose some PPT adversaryA has advantage ε(n) at breaking our
scheme Y

2. we construct efficient adversaryA′ that tries to solve X usingA as a
sub-routine

– A′ simulates environment forA on an instance of problem X

– ifA successfully breaks Y , we wantA′ to break X at least with
probability 1/p(n)

CSE 664 Spring 2020

21Marina Blanton

Proof by ReductionProof by Reduction

• Security proof by reduction (cont.)

3. if ε(n) is not negligible, X is broken byA′ with non-negligible
probability ε(n)/p(n)⇒ contradiction

4. it must be that ε(n) is negligible for any A

• In our private-key encryption scheme

– security of X:

– security of Y :

CSE 664 Spring 2020

22Marina Blanton

Proving Security of Our Encryption SchemeProving Security of Our Encryption Scheme

• To build a proof, we need to construct a distinguisher designed to break the
PRG

– the distinguisher must draw its “security breaking abilities” from an
adversaryA attacking our encryption scheme

• Once this is done, we analyze its success and relate it to that ofA’s success
in breaking encryption experiment

CSE 664 Spring 2020

23Marina Blanton

Beyond Simplified ModelBeyond Simplified Model

• How do we encrypt

– variable-length messages

– multiple messages

• Variable-length messages

– generate pseudorandom string of desired length

– use variable output-length PRG

• Handling multiple messages is trickier

– straightforward usage of one-message encryption schemes fails to
achieve security

– what is the definition “security” now?

CSE 664 Spring 2020

24Marina Blanton

Multiple Encryptions SecurityMultiple Encryptions Security

• Multiple message eavesdropping experiment PrivKmult
A,E (n)

1. A is given 1n and chooses two vectors of t messages M0 and M1

2. random key k is generated by Gen(1n), and random bit b← {0,1} is
chosen

3. ciphertext vector C is computed from Mb and is given toA

4. A outputs bit b′ as its guess for b

5. experiment outputs 1 if b′ = b (A wins) and 0 otherwise

• Similar to before, we want

Pr[PrivKmult
A,E (n) = 1] ≤

1

2
+ negl(n)

CSE 664 Spring 2020

25Marina Blanton

Multiple Encryptions SecurityMultiple Encryptions Security

• Any deterministic encryption algorithm fails this definition of security

• There are two common ways to achieve multiple encryption security

– use different portions of the stream for different messages

• drawback: requires synchronization

– make PRG take another randomizing parameter as G(k, IV)

• drawback: requires stronger security properties from the PRG

CSE 664 Spring 2020

26Marina Blanton

Stream CiphersStream Ciphers

• Stream cipher algorithms

– Linear Feedback Shift Registers (LFSR)

– RC4

• Security of practical stream cipher algorithms is less understood than
security of block ciphers

• Some implementations also incorrectly use them

CSE 664 Spring 2020

27Marina Blanton

