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Lecture Outline

e [.ast lecture:

— classical ciphers

e This lecture:
— elements of probability theory
— perfect secrecy
— one-time pad (Vernam’s cipher)
— entropy

— language redundancy
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Lecture Outline

e Recall how the security of a cryptosystem is shown:
— computational security

— unconditional security

e Today we study unconditionally secure systems using probability theory

— given a ciphertext, no information can be learned about the message it
encrypts

— ciphers we already learned about can be made unconditionally secure
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One-Time Pad

e An example of crypto system that achieves unconditional and perfect
secrecy 1s one-time pad (Vernam’s cipher)

— given a binary message m of length n
— algorithm Gen produces a random binary key k of length at least n
— to encrypt m with k, compute Enc,(m) = m @ k

— to decrypt ¢ with k, compute Deci.(c) = c P k

e What properties does this cipher have and why is it so good?
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Elementary Probability Theory

e A discrete random variable X consists of:
— a finite set X of values

— a probability distribution defined on X
e The probability that X takes on the value x is denoted by Pr[X = x]

e We must have that

— Pr[X =] > Oforallx € X
- YaexPr[X =2]=1

e Example: dice from homework

— probability distributionis Pr[ X = 1] = ... =Pr[X = 6] = 1/6
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Elementary Probability Theory

e Let X and Y be random variables (defined on sets X and Y, resp.)

e Joint probability Pr[X = x,Y = y]| is the probability that X takes value x
and Y takes value y

e Conditional probability Pr[X = x| Y = y] is the probability that X takes
value x given that Y takes value y

e X and Y are independent random variables if
Pr( X =2,Y =y] =Pr[X = 2]Pr[Y = y] forallx € X andy € )V
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Elementary Probability Theory

e Example with two perfect dice:

— Let D4 denote the result of throwing first dice, D5 the result of throwing
the second dice, and S their sum

— What is the joint probability Pr[D1 = 2, D> = 5]?

— What is the conditional probability Pr[Dy = 3 | D1 = 3]?
— Are D4 and D> independent?

— What is the joint probability Pr[D = 3, S = 5]?

— Are D1 and S independent?

— What is the conditional probability Pr[S = 8 | D1 = 4]?
Pr[S=8| D1 =1]?Pr[D1 =3|S =4]?
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Probability Theory

e Conditional and joint probabilities are related:
PriX =z,Y =y] =Pr[ X =2 |Y = y] - Pr[Y = v] (1)
and

PriX =z,Y =y] =Pr[Y =y | X = z] - Pr[X = z] (2)

e From these two expressions we obtain Bayes” Theorem:
— if Pr[Y = y] > 0, then

PriIX =xz] - PrlY =y | X = «]

PriX =z |Y =y] = PrY = 1]

(3)

e How is it useful to us?
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Probability Theory

e Corollary: X and Y are independent random variables if and only 1f

PriIX =z |Y = y] = Pr[X = 1]
forallx € Xandy € Y

— follows from definition of independent random variables and equation

()

e This is what we need for perfect secrecy
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What Does This Do for Us?

e Recall that a cipher is associated with M, I, and C
e Let Pr[K = k] denote the probability of key k € K being output by Gen

e Let Pr[M = m] define the a priori probability that message m is chosen for
encryption

e M and K are independent and define ciphertext distribution C'
e Given M, K and Enc, we can compute Pr[M = m | C = ¢]

e This takes us to the notion of perfect secrecy. ..
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Perfect Secrecy

e Definition: An encryption scheme (Gen, Enc, Dec) has perfect secrecy if for
every distribution over M, every m € M and ¢ € C s.t. Pr[C' = ¢] > O:

PriM = m | C = ¢] = Pr[M = m]

e [nterpretation: after observing ciphertext c the a posteriori probability that
the message i1s m 1is identical to the a priori probability that the message 1s m
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Perfect Secrecy

e Alternative definition of perfect secrecy

— An encryption scheme (Gen, Enc, Dec) is perfectly secret if and only if
for every distribution over M and every m € M and c € C:

Pri[C = c| M = m] = Pr[C = (]

— This means that the probability distribution of the ciphertext does not
depend on the plaintext

— In other words, an encryption scheme (Gen, Enc, Dec) is perfectly secret
if and only if for every distribution over M and every mq1,mo € M
and c € C:

PriC =c| M =mq] =Pr[C =c| M = ms5]
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Perfect Indistinguishability

e Indistinguishability of encrypted messages allows us to formulate security
requirement as an experiment or game

— interactive game with adversary A, who tries to break a cryptographic
scheme
e QOur first experiment
— for eavesdropping adversaries
— using private-key encryption
— asks them to distinguish between encryptions of different messages

— let £ = (Gen, Enc, Dec), and we name the experiment PrivaEVg
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Perfect Indistinguishability

e Experiment PrivK{"

1. A chooses two messages mg, mi1 € M
random key k is generated by Gen, and random bit b < {0, 1} is chosen
ciphertext ¢ «+— Enci(my) is computed and given to A

A outputs bit b’ as its guess for b

A

experiment outputs 1 if ¥’ = b (A wins) and 0 otherwise

e Given this experiment, how should we define indistinguishability? perfect
secrecy?
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Perfect Indistinguishability

e Definition: An encryption scheme (Gen, Enc, Dec) over message space M is
perfectly secret if for every adversary A it holds that

1
PrPrivK{’e = 1] = 5

— notice that is must work for every A

e This definition is equivalent to our original definition of perfect secrecy

CSE 664 Spring 2020
Marina Blanton 15




One-Time Pad

e One-time pad (Vernam’s cipher)
— for fixed integer n, let M = K =C = {0, 1}"
— Gen chooses a key k uniformly at random from /C

 each key is chosen with probability 27"

— Enc: given key k € {0, 1}" and message m € {0, 1}", compute
Enc,(m) =m @k

— Dec: given key k € {0, 1}™ and ciphertext ¢ € {0, 1}", compute
Deci.(c) = cP k

e Why is it perfectly secret?
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One-Time Pad

e Theorem: One-time pad encryption scheme achieves perfect secrecy

e Proof

— fix distribution over M and message m € M

PriC =c|M =m] =

— this works for all distributions and all m, so for all distributions over M,
all mq,mo € M,and all c € C:

1
Pr[C’=c|M=m1]=Pr[C’=c|M:m2]:E

— by definition of perfect secrecy, this encryption is perfectly secret
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More on One-Time Pad

e One-time pad can be defined on units larger than bits (e.g., letters)

e One-time pad questions:
— Since the key must be long, what if we use text from a book as our key?
— What if we reuse the key on different messages?

— Can we securely encrypt using a short/reusable key?

* no encryption scheme with smaller key space than message space can
be perfectly secret
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Perfect Secrecy

e [t can be shown that

— Shift cipher has perfect secrecy if

e the key is chosen randomly
e itis used to encrypt a single letter

— Similarly, Vigenere cipher has perfect secrecy if

 cach letter in the key 1s chosen randomly

* the message has the same length as the key
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Perfect Secrecy

e (Shannon’s theorem) In general, an encryption scheme with
|IM| = |C| = |K] is perfectly secret if and only if:

— every key must be chosen with equal probability (from £C)

— for every message m € M and every ciphertext ¢ € C, there is a unique
key k such that Enc,.(m) = ¢
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CSE 664

Entropy H measures the amount of information (or amount of uncertainty)

The larger H of a message distribution is, the harder it is to predict that

message

H is measured in bits as the minimum number of bits required to encode all

possible messages

H(X)=— > Pr[X =z]logsPr[X = z]

reX

Examples
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e If there are n messages and they are all equally probable, then
"1 1 1
H(X)=-) =—logp— = —logy— =logon
=n n n
e Entropy is commonly used in security to measure information leakage

— compute entropy before and after transmitting a ciphertext

— if entropy associated with messages changes, leakage of information
about transmitted message takes place

— similarly, if uncertainty associated with the keys changes after
transmission, leakage of key information takes place
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e Entropy after transmission is captured using conditional entropy H (X |Y")
— H(M) — H(M|C) defines information leakage about messages
— H(K) — (K|C) defines information leakage about keys

e Perfect secrecy is achieved if (and only if) H(M) = H(M|C)

— that is, it is required that M and C' are independent variables
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e Conditional entropy H(X|Y") is defined as follows:

— for each value y of Y, we get a conditional probability distribution on
X, denoted by X |y

H(X|y) = — Z PriX = z|Y = y] - 1095 Pr[X = z|Y = y]
reX
— conditional entropy H (X |Y") is defined as the weighted average (w.r.t.
probabilities Pr[Y" = y]) of entropies H (X |y) over all possible y

HX|Y)=—-> > (Pr[Y =y] -Pr[X =2z|Y =y]
yeY xeX

logs Pr[X = z|Y = y])
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Language Redundancy

e Absolute rate of a language
— 1s the maximum number of bits that can be encoded in each character

— assuming that each character sequence is equally likely

e In an alphabet of / letters:
— there are £" possible strings of size n
— if all of them are equiprobable, the entropy of a string is l0go £"

— then the absolute language rate

log» /™ log» ¢
ro = 92t _nlo92¢t logs ¢
n n

e For English with £ = 26, ro, = 4.7 bits
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Language Redundancy

e Now compare that rate with the amount of information each English letter
actually encodes

e Entropy of a language L 1s defined as

H(M™
HLZ lim ( )

— it measures the amount of entropy per letter and represents the average
number of bits of information per character

e For English, 1 < Hj < 1.5 bits per character

e Redundancy of English

2] 1.25
Rp=1-"Lt=1-_"""%x075
Ta 4.7
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CSE 664

Probabilities are used to evaluate security of a cipher

Perfect secrecy achieves unconditional security

One-time pad is a provably unbreakable cipher but is hard to use in practice

Entropy is used to measure the amount of uncertainty of the encryption key

given a ciphertext

Next time:
— private-key encryption

— computational security
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