Lecture Outline

- Introduction to digital signatures
 - definitions
 - security goals

- Digital signature algorithms
 - RSA signatures
 - Digital Signature Algorithm (DSA)
Digital Signatures

- A digital signature scheme is a method of signing messages stored in electronic form.

- Digital signatures can be used in very similar ways conventional signatures are used:
 - paying by a credit card and signing the bill
 - signing a contract
 - signing a letter

- Unlike conventional signatures, we have that:
 - digital signatures are not physically attached to messages
 - we cannot compare a digital signature to the original signature
Digital Signatures

- A digital signature scheme consists of the following algorithms

 - **key generation**
 - produces a private signing key sk and a public verification key pk

 - **message signing**
 - given a message m and a private key sk, produces a signature $\sigma(m)$ on m

 - **signature verification**
 - given a message m, a public key pk, and a signature $\sigma(m)$ on m
 under the corresponding secret key sk
 - the algorithm uses pk to verify whether $\sigma(m)$ is a valid signature on m
Digital Signatures

- Digital signatures allows us to achieve the following security objectives:
 - authentication
 - integrity
 - non-repudiation
 - note that this is the main difference between signatures and MACs
 - a MAC cannot be associated with a unique sender since a symmetric shared key is used

- Are there other conceptual differences from MACs?
 -
 -
• **Attack models:**

 – **key-only attack:** adversary knows only the verification key

 – **known message attack:** adversary has a list of messages and corresponding signatures

 $$(m_1, \sigma(m_1)), (m_2, \sigma(m_2)), \ldots$$

 – **chosen message attack:** adversary can request signatures on messages of its choice m_1, m_2, \ldots
Digital Signatures

• **Adversarial goals:**

 – **total break:** adversary is able to obtain the private key and can forge a signature on any message

 – **selective forgery:** adversary is able to create a valid signature on a message chosen by someone else with a significant probability

 – **existential forgery:** adversary is able to create a valid signature on at least one message

• **Signature schemes are only computationally secure**

 – this holds for all public-key cryptosystems

 – remember why?
A signature scheme is defined by three PPT algorithms \((\text{Gen}, \text{Sign}, \text{Vrfy})\) such that:

1. **key generation algorithm** \(\text{Gen}\), on input a security parameter \(1^k\), outputs a key pair \((pk, sk)\), where \(pk\) is the public key and \(sk\) is the private key.

2. **signing algorithm** \(\text{Sign}\), on input a private key \(sk\) and message \(m \in \{0, 1\}^*\), outputs a signature \(\sigma\), i.e., \(\sigma \leftarrow \text{Sign}_{sk}(m)\)

3. **verification algorithm** \(\text{Vrfy}\), on input a public key \(pk\), a message \(m\), and a signature \(\sigma\), outputs a bit \(b\), where \(b = 1\) means the signature is valid and \(b = 0\) means it is invalid, i.e., \(b \equiv \text{Vrfy}_{pk}(m, \sigma)\)
• We’ll want to achieve the same level of security as in case of MACs: existential unforgeability under an adaptive chosen-message attack

• Let $\Pi = (\text{Gen}, \text{Sign}, \text{Vrfy})$ be a signature scheme

• The signature experiment $\text{Sig-forg}_{A,\Pi}(k)$:
 1. generate $(pk, sk) \leftarrow \text{Gen}(1^k)$
 2. adversary A is given pk and oracle access to $\text{Sign}_{sk}(\cdot)$; let Q denote the set of queries A makes to the oracle
 3. A eventually outputs a pair (m, σ)
 4. output 1 (A wins) iff (a) $\text{Vrfy}_{sk}(m, \sigma) = 1$ and (b) $m \not\in Q$
• **Definition:** A signature scheme \(\Pi = (Gen, Sign, Vrfy) \) is existentially unforgeable under an adaptive chosen-message attack if any PPT adversary \(A \) cannot win the experiment with more than negligible probability

\[
Pr[\text{Sig-forg}_A,\Pi(k) = 1] \leq \text{negl}(k)
\]

• Another essential part of signature schemes is **reliable key distribution**
 - what can happen?
 - what are consequences?
 - is this unique to signature schemes?
Plain RSA Signature Scheme

• **Key generation:**

 – choose large prime p and q, set $n = pq$

 – compute $ed \equiv 1 \pmod{\phi(n)}$

 – set the public key to (n, e) and the private key to d

• **Signing:**

 – given message m and the key pair $pk = (n, e)$ and $sk = d$, produce the signature $\sigma(m)$ as $\sigma(m) = m^d \mod n$

• **Signature verification:**

 – given message m, a signature on it $\sigma(m)$ and the public key $pk = (n, e)$, verify the signature as $m \equiv \sigma(m)^e \mod n$
Plain or “textbook” RSA signature scheme is easily insecure

- it is easy to forge a signature
 - first choose $\sigma(m)$
 - then compute m as $\sigma^e \mod n$
 - this is an existential forgery through a key-only attack
- producing a signature on a meaningful message using this attack is difficult
- forgery of meaningful messages is still easy using adversary’s ability to request signatures
• Insecurity of plain RSA signatures
 – forging a signature on an arbitrary message
 • say, adversary has \((m_1, \sigma(m_1))\) and \((m_2, \sigma(m_2))\)
 • it forges a signature on \(m_3 = m_1 \cdot m_2 \mod n\) as
 \[
 \sigma(m_3) = \sigma(m_1) \cdot \sigma(m_2) \mod n
 \]
 • this is an existential forgery using a known message attack
 • to obtain a signature on a message \(m\) of adversary’s choice:
 – \(A\) requests a signature on some \(m_1\) and \(m_2 = m/m_1 \mod n\)
 – \(\sigma(m) = \sigma(m_1) \cdot \sigma(m_2) \mod n\)
• Many modifications to plain RSA exist, but often without security proofs

• One general idea is to hash messages prior to signing
 – signing a short digest is faster than long messages
 – usage of proper cryptographic hash functions prevents forgeries
 – now a signature on m is produced as $\sigma(h(m))$
 – for RSA:
 • let $h : \{0, 1\}^* \rightarrow \mathbb{Z}_n^*$ be a cryptographic hash function
 • given message $m \in \{0, 1\}^*$, sign as $\sigma = (h(m))^d \mod n$
 • verification checks whether $h(m) = \sigma^e \mod n$
• It is crucial to use strong cryptographic hash functions
 – all security properties of hash functions are required to hold to prevent different types of attacks
 • preimage resistance
 • second preimage resistance
 • collision resistance

• Let’s go back to public-key only attack
 – choose arbitrary σ and compute $\hat{m} = \sigma^e \mod n$
 – then $\hat{m} = h(m)$ and σ is a signature on m
 – what property do we need to make this forgery hard?
• **Other attacks against hashed RSA**

 – the need for second **preimage resistance**

 • assume an attacker has a valid signature \(\sigma(h(m)) \) on message \(m \)

 • if the second preimage property of \(h \) doesn’t hold, the attacker can find \(m' \neq m \) with \(h(m) = h(m') \)

 • now \(\sigma(h(m)) \) is a valid signature on \(m' \)

 – **collision resistance** property is similarly needed

 • recall the contract signing example

 • we construct many versions of a legitimate contract \(m \) and a bogus contract \(m' \) until a collision \(h(m) = h(m') \) is found
Security of RSA Signatures

- **Security of hashed RSA** is proven in an idealized model where h is modeled as a truly random function
 - a hash function is used in practice
 - hashed RSA is widely used

- Both RSA encryption and signatures look similar, but a signature scheme cannot be built from the “reverse” of an encryption scheme
 - why?
 - it is true that RSA is both?
• How about combining encryption with signing?

• To encrypt a message m and produce a signature on it, we can:
 1. sign and encrypt separately: send $E(m), \sigma(m)$
 2. sign and then encrypt: transmit $E(m||\sigma(m))$
 3. encrypt and then sign: transmit $E(m), \sigma(E(m))$

• Which one is the best?
 – what do you think about the first type?
The third type is prone to tampering

- suppose Alice sends a message to Bob using the third type $E_B(m), \sigma_A(E_B(m))$ is used
- Mallory can capture this transmission, substitute her own signature, and resend $E_B(m), \sigma_M(E_B(m))$
- Bob will think that the message came from Mallory even though the message might contain information Mallory did not possess
Signature Algorithms

- Other signature algorithms
 - **ElGamal signature scheme**
 - was published in 1985 and works in groups where the discrete logarithm problem is hard
 - **Schnorr signature scheme**
 - modifies ElGamal signature scheme to sign a digest of a message in a subgroup of \mathbb{Z}_p^*
 - **Digital Signature Algorithm (DSA)**
 - a signature standard adopted by NIST
 - incorporates ideas from ElGamal and Schnorr signature schemes

- All of the above schemes are probabilistic
• Long-term security for an encryption key might not be required

• Signatures, however, can be used to sign legal documents and may need to be verified many years later after signing
 – security of a signature scheme must be evaluated more carefully

• For adequate security ElGamal and RSA signature schemes leads to signatures of a thousand or more bits
 – it is possible to construct a scheme that produces shorter signatures
 – Schnorr signature scheme has significantly shorter signatures
 – this influenced development of the signature standard
• ElGamal and Schnorr signature schemes then led to another scheme called **Digital Signature Algorithm (DSA)**
 – the DSA was adopted as a standard in 1994
 – published as FIPS PUB 186
 – current revision is FIPS PUB 186-4 (released July 2013)

• Both Schnorr signature scheme and DSA
 – use a subgroup of \mathbb{Z}_p^* of prime order q
 – have a key of the same form

• The DSA is specified to hash the message before signing
Digital Signature Algorithm

• The original DSA
 – the modulus \(p \) is required to have length \(512 \leq |p| \leq 1024 \) such that \(|p| \) is a multiple of 64
 – the size of \(q \) is 160 bits
 – SHA-1 is used as the hash function
 – signature on a 160-bit message digest is 320 bits (2 elements in \(\mathbb{Z}_q \))

• DSA today
 – modulus \(p \) is 1024, 2048, or 3072 bits long
 – \(q \) is 160, 224, or 256 bits long
 – any hash function from FIPS 180 can be used
Digital Signature Algorithm

- Recall a common setup for groups where discrete logarithm problem is hard
 - choose prime p, such that $|p| \geq 1024$
 - there is a sufficiently large prime q such that $q|(p - 1)$
 - g is a generator of subgroup of \mathbb{Z}_p^* having order q
 - we obtain setup for the group (p, q, g)
• Key generation
 – let \((p, q, g)\) be a group setup for the discrete log problem to be hard
 • we also want \(|p|\) and \(|q|\) from one of the predefined size pairs
 – let \(H : \{0, 1\}^* \rightarrow \mathbb{Z}_q\) be a hash function
 – choose secret \(x \in \mathbb{Z}_q\)
 – compute \(h \equiv g^x \pmod{p}\)
 – the public key is \(pk = (H, p, q, g, h)\)
 – the private key is \(sk = x\)
Digital Signature Algorithm

- **Signing**
 - given a message $m \in \{0, 1\}^*$, public key $pk = (H, p, q, g)$, and secret key $sk = x$
 - choose $y \in \mathbb{Z}_q^*$ uniformly at random
 - compute the signature $\sigma(m) = (\sigma_1, \sigma_2)$, where
 \[
 \sigma_1 = (g^y \mod p) \mod q \quad \text{and} \\
 \sigma_2 = (H(m) + x\sigma_1)y^{-1} \mod q
 \]
 - if $\sigma_1 = 0$ or $\sigma_2 = 0$, a new value of y should be chosen
Digital Signature Algorithm

- **Signature verification**
 - given a message \(m \in \{0, 1\}^* \), signature \(\sigma(m) = (\sigma_1, \sigma_2) \) and \(pk = (H, p, q, g, h) \)
 - verification involves computing
 - \(e_1 = H(m)\sigma_2^{-1} \mod q \)
 - \(e_2 = \sigma_1\sigma_2^{-1} \mod q \)
 - then test \((g^{e_1}h^{e_2} \mod p) \mod q \overset{?}{=} \sigma_1 \)
 - output 1 (valid) iff verification succeeds
Digital Signature Algorithm

- **Correctness property**
 - the signature $\sigma(m) = (\sigma_1, \sigma_2)$ is

 $$\sigma_1 = (g^y \mod p) \mod q \text{ and } \sigma_2 = (H(m) + x\sigma_1)y^{-1} \mod q$$
 - verification involves

 $$e_1 = H(m)\sigma_2^{-1} \mod q \text{ and } e_2 = \sigma_1\sigma_2^{-1} \mod q$$
 - the test computes

 $$(g^{e_1}h^{e_2} \mod p) \mod q =$$
Digital Signature Algorithm

- **Security of DSA**
 - no proof of security under the discrete logarithm problem exists
 - no proof of security even in the idealized model when H is completely random

- No serious attacks have been found
 - the use of a good hash function is important

- DSS is rather popular in practice

- The standard also specifies elliptic curve version ECDSA
Beyond the Traditional Signatures

- Besides the traditional signature schemes, many other types of signature schemes with special properties exist.

- Based on their goals, we divide them into the following categories:

 - stronger security properties

 - fail-stop signatures
 - undeniable signatures
 - forward secure signatures
 - key-insulated signatures
• Signature types (cont.)
 – achieving anonymity or repudiation
 • blind signatures
 • ring signatures
 • group signatures
 • designated verifier signatures
 – constrained environments
 • aggregate signatures
 – delegation of signing rights
 • proxy signatures