Applied Cryptography and Computer Security
CSE 664 Spring 2017

Lecture 11: Introduction to Number Theory

Department of Computer Science and Engineering
University at Buffalo
• What we’ve covered so far:
 – symmetric encryption
 – hash functions

• Where we are heading:
 – number theory
 – public-key encryption
 – digital signatures
• **Introduction to number theory**

 – divisibility

 – GCD and Euclidean algorithm

 – prime and composite numbers

 – Chinese remainder theorem

 – Euler ϕ function

 – Fermat’s theorem
• **Divisibility**
 - given integers a and b, we say that a divides b (denoted by $a|b$) if $b = ac$ for integer c
 - a is called a divisor of b

• **Transitivity theorem**
 - we are given integers a, b, and c, all of which > 1
 - if $a|b$ and $b|c$, then $a|c$

• **Linear combination theorem**
 - let a, b, c, x, and y be integers > 1
 - if $a|b$ and $a|c$, then $a|(bx + cy)$
Divisibility

- **Division algorithm (theorem)**
 - let $a > 0$ and b be two integers
 - then there exist two unique integers q and r such that $0 \leq r < a$ and $b = aq + r$

- **Notation**
 - the integer q is called the **quotient**
 - the integer r is called the **remainder**
 - $\lfloor x \rfloor$ is the **floor** of x (largest integer $\leq x$)
 - $\lceil x \rceil$ is the **ceiling** of x (smallest integer $\geq x$)
 - then $q = \lfloor b/a \rfloor$ and $r = b \mod a$
Greatest Common Divisor

- **Greatest common divisor (GCD)**
 - suppose we are given integers a and b which are not both 0
 - their greatest common divisor $\text{gcd}(a, b) = c$ is the greatest number that divides both a and b
 - example: $\text{gcd}(128, 100) = 4$
 - it is clear that $\text{gcd}(a, b) = \text{gcd}(b, a)$

- **GCD and multiplication**
 - we are given integers a, b, and $m > 1$
 - if $\text{gcd}(a, m) = \text{gcd}(b, m) = 1$, then $\text{gcd}(ab, m) = 1$
 - example: $\text{gcd}(25, 7) = \text{gcd}(3, 7) = 1 \Rightarrow \text{gcd}(75, 7) = 1$
• **GCD and division**

 – **Theorem 1**

 • *we are given integers* \(a \) *and* \(b \)

 • *if* \(g = \gcd(a, b) \), *then* \(\gcd\left(\frac{a}{g}, \frac{b}{g}\right) = 1 \)

 • *example:* \(\gcd(25, 45) = 5 \) \(\Rightarrow \) \(\gcd(\frac{25}{5}, \frac{45}{5}) = \gcd(5, 9) = 1 \)

 – **Theorem 2**

 • *if* \(a \) *is a positive integer and* \(b, q, \) *and* \(r \) *are integers with* \(b = aq + r \), *then* \(\gcd(b, a) = \gcd(a, r) \)

 • *we can use this theorem to find GCD*
Euclidean Algorithm

- **Fact:** given integers \(a > 0, b, q, \) and \(r \) such that \(b = aq + r, \)
 \[\text{gcd}(a, b) = \text{gcd}(a, r) \]

- **Euclidean algorithm for finding** \(\text{gcd}(a, b) \)
 - apply the division algorithm iteratively to compute the remainder
 - the last non-zero remainder is the answer
 - while \(a \neq 0 \) do
 \[r \leftarrow b \mod a \]
 \[b \leftarrow a \]
 \[a \leftarrow r \]
 return \(b \)
Euclidean Algorithm

- **Example:**
 - compute GCD of 165 and 285
 - steps of Euclidean algorithm:

 - the answer is $\gcd(165, 285) =$
Theorem:

- if integers \(a\) and \(b\) are not both 0, then there are integers \(x\) and \(y\) so that \(ax + by = gcd(a, b)\)
- we can find \(x\) and \(y\) using the extended Euclidean algorithm

Example:

- find \(x\) and \(y\) such that \(285x + 165y = gcd(285, 165) = 15\)
- we start with the next to last equation in our example and work backwards
Extended Euclidean Algorithm

- **Example** (cont.)
 - algorithm steps:

 - thus, we get

- **Also**, if \(\gcd(a, b) = 1 \), then \(ax + by = 1 \), i.e., \(ax \mod b = 1 \)
Extended Euclidean Algorithm

- **Input**: integers \(a \geq b > 0 \)

- **Output**: \(g = \gcd(a, b) \) and \(x \) and \(y \) with \(ax + by = \gcd(a, b) \)

- **The algorithm itself**:

 \[
 x = 1; \ y = 0; \ g = a; \ r = 0; \ s = 1; \ t = b
 \]

 while \(t > 0 \) {
 \[
 q = \lfloor g/t \rfloor
 \]
 \[
 u = x - qr; \ v = y - qs; \ w = g - qt
 \]
 \[
 x = r; \ y = s; \ g = t
 \]
 \[
 r = u; \ s = v; \ t = w
 \]
 }

- **Algorithm invariants**: \(ax + by = g \) and \(ar + bs = t \)
• **Complexity** of the algorithm (theorem)

 – this result is due to Lamé, 1845

 – the number of steps (division operations) needed by the Euclidean algorithm is no more than five times of decimal digits in the smaller of the two numbers

• **Corollary**

 – the number of bit operations needed by the Euclidean algorithm is \(O((\log_2 a)^3) \), where \(a \) is the larger of the two numbers
Prime and Composite Numbers

- **Prime numbers**
 - a prime number is an integer greater than 1 which is divisible by 1 and itself
 - the first prime numbers are 2, 3, 5, 7, 11, 13, 17, etc.

- **Composite numbers**
 - a composite number is an integer greater than 1 which is not prime
 - the composite numbers are 4, 6, 8, 9, 10, 12, 14, etc.

- **Relatively prime numbers**
 - integers a and b are relatively prime is $gcd(a, b) = 1$
 - relatively prime numbers don’t have common divisors other than 1
Decomposition of Numbers

- **Fundamental Theorem of Arithmetics:**

 - every integer $n > 1$ can be written as a product of prime numbers

 - and this product is unique if the primes are written in non-decreasing order

 $$ n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} = \prod_{i=1}^{k} p_i^{e_i} $$

 - here p_1, \ldots, p_k are the primes that divide n and $e_i \geq 1$ is the number of factors of p_i dividing n

 - this decomposition is called the **standard representation**

- **Example:** $84 = 2 \cdot 2 \cdot 3 \cdot 7 = 2^2 \cdot 3^1 \cdot 7^1$
Using Standard Representation

- **GCD and LCM**

 - We are given \(n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \) and \(m = p_1^{f_1} p_2^{f_2} \cdots p_k^{f_k} \), where \(p_i \) are prime numbers and \(e_i, f_i \geq 0 \)

 - \(\gcd(n, m) = p_1^{\min(e_1, f_1)} p_2^{\min(e_2, f_2)} \cdots p_k^{\min(e_k, f_k)} \)

 - The least common multiple of integers \(a \) and \(b \) is the smaller positive integer divisible by both \(a \) and \(b \)

 - \(\text{lcm}(n, m) = p_1^{\max(e_1, f_1)} p_2^{\max(e_2, f_2)} \cdots p_k^{\max(e_k, f_k)} \)

 - Also, \(\gcd(a, b) \cdot \text{lcm}(a, b) = ab \)
• **Examples:**

- \(n = 84 = 2^2 \cdot 3 \cdot 7 \)
- \(m = 63 = 3^2 \cdot 7 \)
- \(\gcd(84, 63) = \)
- \(\text{lcm}(84, 63) = \)
- \(\gcd(84, 63) \cdot \text{lcm}(84, 63) = \)
• In cryptography, we’ll need to use large primes and would like to know how prime numbers are distributed

• (Theorem) The number of prime numbers is infinite

• (Theorem) Gaps between primes
 – for every positive integer n, there are n or more consecutive composite numbers

• For a positive real number x, let $\pi(x)$ be the number of prime numbers $\leq x$
Distribution of Prime Numbers

- **The Prime Number Theorem**
 - $\pi(x)$ tends to $x/\ln x$ as x goes to infinity. In symbols,
 \[
 \lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1.
 \]
 - this tells us that there are plenty of large primes

- **The question now is how we find prime numbers**

- **Theorem**
 - if integer $n > 1$ is composite, it has a prime divisor $p \leq \sqrt{n}$
 - in other words, if $n > 1$ has no prime divisor $p \leq \sqrt{n}$, then it is prime
Finding Primes

- This suggests a simple algorithm for testing a small number for primality (and factoring if it is composite)

 - Input: a positive integer n

 - Output: whether n is prime, or one or more factors of n

 $m = n; p = 2$

 while ($p \leq \sqrt{m}$) {

 if ($m \mod p = 0$) {

 print “n is composite with factor p”; $m = m/p$

 } else {
 $p = p + 1$

 }

 } if ($m = n$) { print “n is prime” }

 else if ($m > 1$) { print “the last factor of n is m”}
• **Today we’ve learned:**
 – divisibility theorems
 – how to use Euclidean algorithm to compute GCD and more
 – the number of prime numbers is large and they are well distributed

• **More on number theory is still ahead**