Applied Cryptography and Computer Security
CSE 664 Spring 2017

Lecture 1: Basic Definitions and Concepts

Department of Computer Science and Engineering
University at Buffalo
What Background is Expected?

- **Mathematical maturity**, including:
 - **basic complexity theory**
 - ability to evaluate complexity of algorithms using big-O notation
 - **elementary discrete math**
 - ability to work with sets, modular arithmetics
 - **elementary probability theory**
 - ability to compute probability of conjunction or disjunction of independent events, conditional probability
 - **familiarity with mathematical proofs**
 - proofs by construction, contradiction

- **Programming abilities**
What is Cryptography?

- Historically, the use of cryptography was to ensure secrecy of transmitting messages.
- Primarily uses were by military and was perceived as an art of designing codes.
- Today it evolved into a rigorous study of mathematical techniques.
- Its uses significantly exceed secret communication alone.
Where Do We Find Cryptography Today?
Where Do We Find Cryptography Today?

Widely used applications of cryptography include:

- secure communication on the web
 - secure credit card purchases, online banking, etc.
- secure remote login and authentication
- digital signatures and certificates
- access control enforcement in multi-user operating systems
- disk encryption
- software protection
- system, transaction, or communication integrity checking
- trusted computing and data modification
- secure electronic voting and elections
Cryptography also allows us to realize:

- secure bidding and auctions
- e-cash
- contract negotiation and fair contract signing
- anonymous authentication (e.g., using hidden credentials and/or hidden policies)
- usage of untrusted storage (e.g., searches on encrypted data) or untrusted computational power (e.g., uncheatable grid computing)
- privacy-preserving computation and outsourcing
- many other capabilities
What is Modern Cryptography?

- **Cryptography** is the scientific study of techniques for achieving security objectives
 - securing digital information, transactions, distributed communications
 - any distributed computation or interaction that may come under attack

- **Cryptanalysis** is the study of mathematical techniques for attempting to defeat security objectives

- Modern cryptography is formal and rigorous
Why is Rigorous Treatment Important?

- Too many proposals fail to achieve their security objectives
 - if any of them is deployed on a wide scale, consequences can be disastrous

- In modern cryptography, we
 - clearly state all assumptions
 - define the power an adversary has
 - show security of the system in the presence of such adversary under the stated assumptions

- Such design is likely to withstand the time if the underlying assumptions prove to hold
• Good design is only half of the game
 – correct implementation is no less important
 – history shows numerous examples of spectacular security failures
due to improper implementation or configuration

• Common causes of implementation failure
 – improper choice of parameters
 – improperly chosen randomness

• Clear understanding of security guarantees of a cryptographic solution
 is important for correct use
What Security Objectives Can We Have?

• Examples of **security objectives:**
 – **confidentiality:** information is available to authorized parties only
 – **integrity:** any unauthorized change to the data is detected
 – **availability:** resources are available to authorized parties

• Cryptography is only one tool for realizing security objectives
 – others include software, hardware, physical security, etc.

• Many other security objectives can be formulated
Attacker Models

- We often refer to participants in a cryptosystem as Alice and Bob

- An adversary Eve/Carl/Mallory eavesdrops on the communication or tries to disrupt the protocol
 - passive attacker
 - active attacker
 - outsider
 - insider
Attacker’s Power

- A cryptographic system often
 - precisely defines the power of an attacker
 - formally shows resilience to such adversarial behavior

- How powerful should we expect the adversary to be?
 - option 1: can assume adversary has unlimited resources
 - option 2: can assume adversary is limited by our computational abilities
What Does it Mean for a Cryptosystem to be Secure?

- **Unconditional or information-theoretic security**
 - the system is secure even in presence of adversary with unlimited computational resources
 - security analysis uses probability theory
 - for example, perfect secrecy in encryption schemes

- **Computational security**
 - relies on a hard computational problem that cannot be solved on a today’s computer
 - can be broken in principle using enough computing resources
 - system stays secure as long as the underlying hard problem is believed to remain hard
Kerckhoffs’ principle

- it states that algorithms comprising a cryptosystem should not be kept secret
- why?

Unfortunately, security by obscurity is still very common

- always use a standardized construction with public design
Modern Cryptographic Design

- **Principles of modern cryptography**
 - formulation of *rigorous and precise definition of security*
 - important for design
 - important for usage
 - important for studying
 - unproven assumptions must be clearly stated
 - security cannot be proven otherwise
 - can be used for comparison of schemes (weaker assumptions are preferred)
 - facilitates studying of the assumptions
• **Principles of modern cryptography** (cont.)

 – *proofs of security* with respect to the definition and relative to the assumption

 • without proofs, security is left to intuition and is often broken shortly after

 • *reductions* are most common types of security proofs

 “given that assumption A holds, construction B is secure according to the given definition”

 • reduction means that breaking security of B is at least as hard as breaking A

 • proof by reduction proceeds by showing that if B is insecure, A does not hold
• In cryptography these terms are used as:

 – given a security parameter \(k \), easy (efficient) means it is possible to compute a function in time polynomial in \(k \)

 – hard (infeasible) means that computation cannot be performed in polynomial time (e.g., requires exponential computation)

 – impossible means that the function cannot be computed using unlimited resources

 – negligible means that the function drops faster than any polynomial (i.e., at a super-polynomial rate)