CSE 410/565 Computer Security
Spring 2021

Lecture 18: Network Attacks

Department of Computer Science and Engineering
University at Buffalo
Lecture Overview

• Network attacks
 – denial-of-service (DoS) attacks
 • SYN floods, ICMP floods
 • source address spoofing
 • distributed DoS
 – DNS attacks
 – other types of spoofing
 – session hijacking
DoS Attacks

- **Denial of service attacks** target at denying availability of some service or resource, including
 - network bandwidth
 - system resources
 - application resources

- **Types of DoS attacks**

<table>
<thead>
<tr>
<th></th>
<th>stopping services</th>
<th>exhausting resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>process crashing</td>
<td>spawning processes to fill process table</td>
</tr>
<tr>
<td></td>
<td>process killing</td>
<td>filling up file system</td>
</tr>
<tr>
<td></td>
<td>system reconfiguration</td>
<td>saturating bandwidth</td>
</tr>
<tr>
<td>remote</td>
<td>malformed packets to crash</td>
<td>packet floods</td>
</tr>
<tr>
<td></td>
<td>buggy services</td>
<td></td>
</tr>
</tbody>
</table>

©Marina Blanton
Overview of Network Protocols

- **IP: Internet Protocol**
 - the main protocol used for routing
 - each IP packet includes the source and destination addresses
 - the protocol is connectionless and unreliable (best effort)
 - TCP and UDP run on top of IP
 - IP is used for routing, data fragmentation and reassembly and error reporting (via ICMP)

- **ICMP: Internet Control Message Protocol**
 - it is used for network reachability testing and to report errors
 - examples: echo request/reply, destination unreachable and time-to-live exceeded messages
Overview of Network Protocols

- **UDP: User Datagram Protocol**
 - transport protocol with minimal guarantees
 - no acknowledgment, no flow control, no message continuation
 - traffic is separated by port number

- **TCP: Transmission Control Protocol**
 - connection-oriented transport protocol
 - partitions data into packets and reassembles them in correct order at the destination
 - transmission is reliable
 - packets are acknowledged and retransmitted if necessary
 - port numbers are used for different services as well
DoS Attacks

• Basic form of DoS
 – attacker sends a large number of packets through a link or to a particular service
 – the goal is to saturate the network or overload the server
 – most requests from legitimate users will be dropped
 – example
 • attacker sends many ICMP echo request packets to a server
 • the server replies with ICMP echo reply packet

• From attacker’s point of view this is unsatisfactory
 – attacker can be easily traced
 – packets sent in response use attacker’s resources
DoS Attacks

- **Solution: source address spoofing**
 - with sufficient privileges to a machine, the source address in IP packets can be set to anything
 - the source address is set to a randomly chosen address
 - replies from the victim machine are scattered across the internet

```
111.11.111.11

attacker
IP 123.45.67.89

echo request from 111.11.111.11

echo request from 22.222.22.222

victim
IP 98.76.54.3

22.222.22.222
```
• Another way to mount a DoS attack is by **TCP SYN flooding**
 – uses the fact that a machine has a limit on the number of open connections
 – allows attacker to deny availability with much less traffic

• **TCP handshake**

```
Client C
SYN_C
SYN_S, ACK_C
ACK_S
```

```
Server S
listening
storing data
waiting
connected
```
DoS Attacks

- TCP SYN flooding attack exploits the fact that server waits for ACKs
 - attacker sends many SYN requests with spoofed source addresses
 - victim allocates resources for each request
 - connection requests exist until timeout
 - there is a fixed bound on half-open connections

```
Client C

SYN_{C_1}
SYN_{C_2}
SYN_{C_3}
SYN_{C_4}
SYN_{C_5}

Server S
listening

storing data and waiting
```
DoS Attacks

- TCP SYN flooding attack (cont.)
 - resources exhausted ⇒ legitimate requests rejected
 - the attack relies on the fact that many SYN-ACK packets will be unanswered
 - an existing host replies to a SYN-ACK packet with RST
 - many IP addresses are not in use
 - the attacker needs to keep sending new SYN packets to keep the table full

- Flooding attacks in general can use any type of packets
 - e.g., ICMP flood, UDP flood, TCP SYN flood

- In any attack with spoofed addresses it is hard to find attacker
DDoS Attacks

- In all of the above attacks, attacker needs to have substantial resources
 - thus attacks are more effective if carried out from many sources
 - they are called distributed DoS (DDoS) attacks

- DDoS attacks often use compromised computers (zombies)
 - attacker compromised machines and builds a botnet
 - attacker instructs the bots to attack the target machine
 - all communication is often encrypted, can be authenticated
 - zombie machines flood the victim
 - spoofing IP addresses is not necessary since it is hard to trace the attacker from the zombie machines
DDoS Attacks

- DDoS attack illustrated

```
Attacker
  |    |
  V    V
Handler Handler
  |    |
  V    V
Zombie Zombie Zombie Zombie Zombie Zombie
  |    |
  V    V
Victim
```
DoS Attacks

- **Other variants of DoS attacks** that use additional machines
 - **reflection**
 - find sites with lots of resources
 - send packets to them with (spoofed) source address of the victim
 - responses flood the victim
 - e.g., echo request \Rightarrow echo response, SYN \Rightarrow SYN–ACK
 - no spurious packets can be observed by other sites
 - attack is harder to detected and defend against
 - **amplification**
 - also sends packets with spoofed addresses to intermediaries
 - now one original packet generates many response packets
• Variants of DoS attacks (cont.)

 – amplification
 • amplification is accomplished by sending a request packet to a broadcast address
 • examples are ICMP echo request packets (smurf program) and UDP packets
 • only connectionless protocols can be used (i.e., not TCP)

 – pulsing zombie floods
 • each zombie is active briefly and then goes dormant
 • zombies take turns in attacking
 • this makes tracing difficult
Defenses Against DoS Attacks

- A significant challenge in defending against DoS attacks is that spoofed addresses are used

- What can be done
 - ingress filtering
 - basic recommendation to check that packets coming from a network have source address within the network’s range
 - ISPs are best suited to perform such filtering
 - despite its simplicity and effectiveness, this recommendation is not implemented by many ISPs
Defenses Against DoS Attacks

- **DoS defenses** (cont.)
 - **SYN cookies**
 - this technique is used to defend against TCP SYN floods
 - after receiving a SYN, information about it is not stored on the server
 - instead it is encoded in the SYN-ACK packet
 - upon receiving ACK, server can reconstruct all information
 - disadvantages: increased server computation
 - **blocking certain packets**
 - many systems block ICMP echo requests from outside of network
 - often IP broadcasts are also blocked from outside
Defenses Against DoS Attacks

- **DoS defenses (cont.)**
 - **limiting packet rates**
 - certain types of packets such as ICMP are rather rare in normal network operation
 - limiting their rate can help mitigate attacks
 - **packet marking**
 - a router marks a small number of packets with its ID
 - for high volume traffic, packets will be marked by most servers on their path to the victim
 - path to the attacker can be reconstructed
 - effectiveness of this technique depends on its wide usage
 - **general good security practices**
• Domain Name System (DNS) allows to map symbolic names to IP addresses
 – the name space is hierarchical
• Hierarchical service

 – root name servers are for top-level domains
 – authoritative name servers are for sub-domains
 – local name resolvers contact authoritative servers when they don’t know a name
• **DNS resource records**
 - “A” record supplies host IP address
 - “NS” record supplies name server for domain

• **DNS caching**
 - DNS responses are cached
 • quick response for repeated translations
 • useful for finding servers as well as addresses
 - negative results are cached
 • save time for nonexistent sites, e.g., misspelling
 - cashed data periodically time out
• DNS lookup using cache
DNS

• DNS is susceptible to cache poisoning attacks
 – change IP address in cache to redirect URLs to fraudulent sites
 • this attack is called pharming
 – example
 • www.yahoo.com NS ns.evil.org (delegate to evil.org)
 • ns.evil.org A 1.2.3.4 (address for evil.org)
 – if resolver looks up www.yahoo.com, the address 1.2.3.4 will be returned
 – the attack is more dangerous than phishing attacks
 • in phishing, users receive email with link to fraudulent website
 • pharming requires no email solicitation, all users go to a wrong address
• DNS cache poisoning
 – the problem is DNS messages are not authenticated
 – some DNS poisoning attacks in the past
 • in January 2005, the address of a large ISP Panix was redirected to a site in Australia
 • in November 2004, Google and Amazon users were sent to Med Network Inc., an online pharmacy

• There are also attacks on DNS reverse address lookup and DNS implementations
 – example: reverse query buffer overrun in BIND releases 4.9 and 8
 • could gain root access, abort DNS service
Domain Name System Security Extensions (DNSSEC) was developed to protect integrity of DNS records

- all DNS responses are authenticated
 - a server signs all answers it provides
 - this prevents forgery such as DNS cache poisoning
- DNSSEC is specified in IETF RFCs 4033, 4034, 4035, and others
- DNSSEC is being deployed slowly due to its perceived overhead
- see dnssec.net and other resources for more information
Other Attacks

- **Address resolution protocol (ARP)**
 - primarily used to translate IP addresses to Ethernet MAC addresses
 - each host maintains a table of IP to MAC addresses

- **ARP spoofing** (or **ARP poisoning**)
 - send fake ARP messages to an Ethernet LAN (no authentication)
 - this causes other machines to associate IP addresses with attacker’s MAC
 - defenses
 - static ARP table
 - DHCP snooping (access control based on IP, MAC, and port)
 - detection: Arpwatch, reverse ARP
Other Attacks

• Session hijacking attacks
 – host-based session hijacking
 • with root privileges can read and write to local terminal devices
 – network-based session hijacking
 • often performed against TCP

• What harm can be done
 – data injection into unencrypted server-to-server traffic such as email exchange, DNS zone transfers, etc.
 – data injection into unencrypted client-to-server traffic such as ftp file downloads and http responses
 – denial of service attacks such as resetting a connection
Other Attacks

- TCP session hijacking
 - each TCP connection has an associated state
 - client and server IP and port numbers, sequence numbers
 - the problem is that it is not difficult to guess state
 - port numbers can be standard
 - sequence numbers are often chosen in a predictable way

- TCP sequence numbers
 - need high degree of unpredictability
 - attacker who knows initial sequence numbers and amount of traffic sent can estimate likely current values
 - send a flood of packets with likely sequence numbers
Other Attacks

- **TCP sequence numbers** (cont.)
 - packets can be injected into existing connection
 - some implementations are vulnerable

- **DoS vulnerability**
 - if attacker can guess sequence numbers for an existing connection, it can send a RST packet to close connection (DoS)
 - naively, success probability is $1/2^{32}$ (32-bit numbers)
 - most systems allow for a large window of acceptable sequence numbers resulting in much higher success probability
 - attack is most effective against long lived connections such as BGP
Defenses

• Cryptographic network protection
 – protocol level solutions
 • adding authentication to protocols would solve many problems
 (various types of spoofing and poisoning)
 • perceived as too expensive for current internet speeds/volumes
 – solutions at network layer
 • use cryptographically random initial sequence numbers, IPsec
 • can protect against session hijacking/data injection and DoS using
 session resets
 – solutions above transport layer
 • tools such as TLS and SSH
 • protect against session hijacking, but not against RST-based DoS
Conclusions

- DoS attacks are common and result in substantial losses
 - a number of defenses are effective, but no perfect solution exists
- DNS attacks can also have a large impact
- Manipulating other protocols and information transmitted on the network can result in various types of other attacks