
CSE 410/565 Computer Security

Spring 2022

Lecture 14: Software Security

Department of Computer Science and Engineering

University at Buffalo

1



Software SecuritySoftware Security

• Exploiting software vulnerabilities is paramount to computer break-ins

• Common software vulnerabilities

– input validation

– buffer overflow

– integer overflow

– format string problems

– interaction with environment variables

– failure to handle errors

CSE 410/565 Spring 2022

2©Marina Blanton



Buffer OverflowBuffer Overflow

• Buffer overflow is a very common software vulnerability

– the first major exploit was Morris Internet Worm in 1988 that exploited

buffer overflow in fingerd

– many others followed, such as Code Red worm in 2001

– large percentage of all exploits in CERT vulnerability advisories describe

buffer overflow or heap overflow problems

• check US-CERT (United States Computer Emergency Readiness

Team) alerts and ICS-CERT (Industrial Control Systems Cyber

Emergency Response Team) advisories

• Buffer overflows often lead to total compromise of the host

CSE 410/565 Spring 2022

3©Marina Blanton



Buffer OverflowBuffer Overflow

• A buffer overflow or buffer overrun is a condition under which more input

can be placed in a buffer than the allocated capacity

– the extra input for which there is no allocated memory overwrites other

information

– the locations being overwritten could hold other variables, parameters,

and control flow data such as return addresses

• Developing buffer overflow attacks includes

– locating buffer overflow within an application

– designing an exploit

• Attacker needs to know which CPU and OS are running on the target

machine

CSE 410/565 Spring 2022

4©Marina Blanton



Buffer OverflowBuffer Overflow

• Simple example of buffer overflow in C

void func(char *str1) {
char str2[8];

strcpy(str2, str1);

printf("%s, %s\n", str1, str2);

}

– what happens if we call func("abc")?

– how about func("reallylongstring")?

• The problem occurs because strcpy doesn’t check the amount of data

being copied

CSE 410/565 Spring 2022

5©Marina Blanton



Buffer OverflowBuffer Overflow

• Not all languages are vulnerable

– some languages (Java, Python) provide strong type checking and have

predefined operations on types

– they don’t permit storing more data than allocated space

– but safety comes at resource usage cost

• Writing an exploit involves understanding process memory and stack layout

– in what direction the stack grows

– what data and in what order are placed on the stack

– how information is represented

CSE 410/565 Spring 2022

6©Marina Blanton



Process Memory LayoutProcess Memory Layout

• Generic process memory layout

global data

stack

run time heap

text (machine code)
low addresses

high addresses

CSE 410/565 Spring 2022

7©Marina Blanton



Stack Buffer OverflowStack Buffer Overflow

• Stack buffer overflow or stack smashing occurs when the buffer is located on

the stack

• When a function is called, its data are placed on the stack

– this includes arguments, local variables, and return address

• The calling function first

– pushes the parameters for the called function onto the stack

• normally in the reverse order

– executes the call instruction which pushes the return address onto the

stack

CSE 410/565 Spring 2022

8©Marina Blanton



Stack Buffer OverflowStack Buffer Overflow

• The called function

– pushes the current frame pointer onto the stack

• the frame pointer points to the calling routine’s stack

– sets the frame pointer to be the current stack pointer value

– allocates space for local variables

– runs the called function

– sets the stack pointer back to the value of the frame pointer

– pops the old frame pointer

– executes the return instruction which pops the return address off the

stack giving control to the calling function

• The calling function pops parameters off the stack and continues

CSE 410/565 Spring 2022

9©Marina Blanton



Stack Buffer OverflowStack Buffer Overflow

• Suppose function f1 calls f2(param1, param2)

frame pointer

return address

old frame pointer

param2

param1

return address in f1

old frame pointer

var1

var2

f1:

f2:

stack pointer

CSE 410/565 Spring 2022

10©Marina Blanton



Stack Buffer OverflowStack Buffer Overflow

• Let’s go back to our code example

void func(char *str1) {
char str2[8];

strcpy(str2, str1);

printf("%s, %s\n", str1, str2);

}

• The stack will look like

top of stackfptrstr2 ret addr str1

• What if str1 is 16 bytes long? After copying we get

top of stackstr1new addrstr1

CSE 410/565 Spring 2022

11©Marina Blanton



Stack Buffer OverflowStack Buffer Overflow

• Now suppose that str1 looks like this

top of stackret addrstr1 code for f

– where program f: exec("/bin/sh")

• Now when function func exits, the user will be given a shell

• What happens

– attack code runs on the stack

– to determine the return address, attacker needs to guess position of the

stack when func is called

CSE 410/565 Spring 2022

12©Marina Blanton



Stack Buffer OverflowStack Buffer Overflow

• The main problem with the above program was that there is no range

checking in strcpy()

• Some unsafe C library functions

– strcpy(char *dest, char *src)

– strcat(char *dest, char *src)

– gets(char *str)

– scanf(const char *format, ...)

– printf(const char *format, ...)

CSE 410/565 Spring 2022

13©Marina Blanton



Buffer Overflow ExecutionBuffer Overflow Execution

• As an example, consider attacking a web server

– web server has a function with buffer overflow vulnerability which takes

a URL

– attacker can craft a long URL to obtain shell on web server

• Difficulties in constructing buffer overflow exploit

– exploit code cannot contain the ‘\0’ character

– overflow should not crash the program before the vulnerable function

exits

CSE 410/565 Spring 2022

14©Marina Blanton



Buffer OverflowBuffer Overflow

• How does one find buffer overflow vulnerabilities?

– do it yourself

• run the program (such as a web server) on your local machine

• use long inputs with a specific pattern

• if the program crashes, search core dump for the pattern to determine

overflow location

– use an existing automated tool

• e.g., eEye Retina scanner, ISIC (IP Stack Integrity & Stability

Checker)

• Once a vulnerability is found, use disassemblers and debuggers to construct

an exploit

CSE 410/565 Spring 2022

15©Marina Blanton



Buffer OverflowBuffer Overflow

• What can be done to defend against buffer overflow attacks?

• Various mechanisms exist

– compile-time defenses

• type safe language choice

• static code analysis

• safe libraries

• stack protection

– run-time defenses

• stack protection

• address space randomization

CSE 410/565 Spring 2022

16©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• Choice of programming language

– some languages (Java, ML) have a strong notion of variable type and

define a set of permitted operations on them

– they are not vulnerable to buffer overflow attacks

• if they use external libraries written in an unsafe language, they can

still be vulnerable

– such languages are becoming increasingly popular

– disadvantages

• there is resource consumption cost at both compile time and run time

• some functionality might be lost due to the distance from the

architecture and machine language

CSE 410/565 Spring 2022

17©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• Static source code analysis

– statically check source code to detect buffer overflows

– this allows to automate code review process

– there are several consulting companies and several existing tools

• Coverity, Microsoft PREfix and PREfast, etc.

– find many bugs, but not all

• Safe coding practices

– buffer overflows can be prevented by handling errors gracefully

– first check buffer size to ensure that sufficient space has been allocated

– more complex data structure require additional care

CSE 410/565 Spring 2022

18©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• Example problems that can be detected through static source code analysis

null pointer dereference uninitialized variables

use after freeing invalid use of negative values

double freeing underallocations of dynamic data

array indexing errors memory leaks

mismatched array on create/delete file handle leaks

potential stack overrun network resource leaks

potential heap overrun unused values

returning pointer to local variables unhandled return values

logically inconsistent code use of invalid iterators

CSE 410/565 Spring 2022

19©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• Use of safe libraries

– replace standard unsafe library routines with a safer version

– libsafe is a well-known example

• dynamically loaded library

• ensures that copy operations don’t extend beyond the current stack

frame

• e.g., in strcpy(dest,src), if loc(fp)− loc(dest)> strlen(src),

permit copy; otherwise, terminate the application

main

ret addrfptr top of stacklocal bufret addrfptr srcdest

libsafe

• Language extensions for adding range checking also exist

CSE 410/565 Spring 2022

20©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• Stack protection mechanisms

– mark stack segment as non-executable

• this will prevent several types of buffer overflow attacks

• this is now supported in many operating systems

• there are disadvantages

– it does not prevent all types of overflow exploits

– some applications need executable stack (e.g., LISP interpreters)

– disallow changes to the stack frame during function execution

• instruct the function entry and exist code to check the stack for

corruption

• if any modification is found, abort the program

CSE 410/565 Spring 2022

21©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• StackGuard is one of the best known stack protection mechanisms

– insert a canary value between the old frame pointer address and local

variables

– the entry code places a canary, and the exit code checks it for corruption

top of stackfptr ret addrcanarylocal vars params

– random canary

• the canary value is chosen at random during program startup

• it is known to all functions, but unpredictable to attacker

CSE 410/565 Spring 2022

22©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• StackGuard (cont.)

– terminator canary

• set canary value to ‘\0’ (or an equivalent terminator value)

• string functions will not copy beyond the terminator

• attacker cannot use string functions to corrupt stack

– StackGuard is available as a gcc extension

• performance overhead is minimal: 8% for Apache web server

• similar functionality exists for Windows

• other versions such as PointGuard might provide protection against

more types of overflow exploits

CSE 410/565 Spring 2022

23©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• StackGuard (cont.)

– disadvantages

• all programs that require protection need to be recompiled

• can cause problems with other programs such as debuggers

• some stack smashing attacks can leave canaries untouched

• StackShield

– stack frame is protected without altering the stack with canaries

– on function entry, added code writes a copy of the return address to a

safe memory region

– the exit code compares the return address with the stored value and

aborts the program in case of corruption

– StackShield is also available as a gcc extension

CSE 410/565 Spring 2022

24©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• Randomization

– buffer overflow exploits need to know (virtual) address to which to pass

control

• address of attack code in the buffer

• address of library routines for return-to-libc attack

– the same address is used on many machines

• Slammer worm infected 75,000 MS SQL servers using the same code

on every machine

– the idea is to introduce artificial diversity

• make stack and other addresses unpredictable and different from one

execution to another

CSE 410/565 Spring 2022

25©Marina Blanton



Buffer Overflow DefensesBuffer Overflow Defenses

• Address space randomization

– arrange key data areas randomly in address space of a process

• e.g., positions of heap, stack, libraries

– correct address guessing is significantly more difficult

– support for this defense exists in many operating systems

• Instruction set randomization

– each program has a different and secret instruction set

– uses translator to randomize instructions at load time

– attacker no longer can execute her own code

– what constitutes the instruction set depends on the environment

CSE 410/565 Spring 2022

26©Marina Blanton



Other Types of Overflow AttacksOther Types of Overflow Attacks

• Frame pointer replacement

– the attack overwrites the buffer and stored frame pointer

top of stackstr1ret addrstr1 new fpt

– the buffer contains a dummy stack frame with a return address pointing

to the shellcode in the same buffer

– this can be used when only a limited buffer overflow is possible

• Off-by-one attack

– as a variant of the above attack, a programming error might permit

copying just one byte more than the available space

– this happens when the size of the buffer is checked incorrectly

CSE 410/565 Spring 2022

27©Marina Blanton



Other Types of Overflow AttacksOther Types of Overflow Attacks

• Off-by-one attack (cont.)

– example code:

void f(char *str) {
char buf[16];

if (strlen(str) <= sizeof(buf)) {
strcpy(buf, str);

}
}

– only one byte of the frame pointer can be overwritten

top of stackstr1ret addrstr1 new fpt

• it corresponds to the least significant byte on x86 architectures

• a one byte change might be enough!

CSE 410/565 Spring 2022

28©Marina Blanton



Other Types of Overflow AttacksOther Types of Overflow Attacks

• Return to system call attack

– also known as return-to-libc attack

– assume that the stack is made non-executable as a protection mechanism

– a new type of attack overwrites the return address to jump to existing

code

• system() call in libc is most commonly used

– what needs to be done

• overwrite frame pointer with a suitable value

• replace return address with address of the library function

• write a value that the library function will believe is return address

CSE 410/565 Spring 2022

29©Marina Blanton



Other Types of Overflow AttacksOther Types of Overflow Attacks

• Return to system call attack (cont.)

– finally, specify parameters to the library function

• i.e., call the shell

"/bin/sh"

ret addrstr1 top of stack

system() in libc

fake ret addr

– what happens?

• when the attacked function returns, it transfers control to the return

address, which calls the library function

• the library function treats the value on top of the stack as a return

address and the values before as its parameters

CSE 410/565 Spring 2022

30©Marina Blanton



Other Types of Overflow AttacksOther Types of Overflow Attacks

• Heap overflow

– with stack protection techniques, attackers started exploiting overflows

in non-stack buffers

– the heap that stores dynamically allocated data structures is such a target

– if heap contains a buffer vulnerable to overflow, other data on the heap

may be overwritten

– heap doesn’t contain return addresses to transfer controls, but can

contain pointers to functions

• attacker can overwrite the pointer to reference code in the same buffer

that calls shellcode

• if the function is called, the attack can succeed

CSE 410/565 Spring 2022

31©Marina Blanton



Other Types of Overflow AttacksOther Types of Overflow Attacks

• Heap overflow (cont.)

– defenses include making heap non-executable and heap address

randomization

• Other types of overflow

– similar vulnerabilities exist for static (global) data

– such data is allocated in different space, but the threats remain similar to

heap overflow

– finally, there are also integer overflow and format string overflow attacks

CSE 410/565 Spring 2022

32©Marina Blanton



Buffer Overflow ResourcesBuffer Overflow Resources

• Additional articles

– “Smashing the stack for fun and profit” by Aleph One, 1996

– “Buffer overflows: attacks and defenses for the vulnerability of the

decade” by Cowan at el., 2000

– “Bypassing non-executable-stack during exploitation using

return-to-libc” by c0ntex, 2005

• What is next

– other types of software vulnerabilities

– input validation, environment variables, race conditions, etc.

CSE 410/565 Spring 2022

33©Marina Blanton


