• Definition of entity authentication

• Solutions
 – password-based authentication
 – token-based authentication
 – biometric-based authentication

• Stronger forms of secure authentication
• **Authentication** is a broad term and is normally referred to mechanisms of ensuring that
 – entities are who they claim to be
 – data has not been manipulated by unauthorized parties

• **Entity authentication** or **identification** refers to the means of verifying user identity
 – if such verification is successful, the user is granted appropriate privileges

• The need for user authentication in early computer systems arose once it became possible to support multi-user environments
Entity Authentication

- During an authentication protocol:
 - one party, the **verifier**, gathers evidence that the identity of another party, the **claimant**, is as claimed

- **Goals of authentication protocols:**
 - honest parties should be able to successfully finish the protocol with their identity accepted as authentic
 - it should be difficult for dishonest parties to impersonate an identity of another user
 - impersonation must remain difficult even after observing a large number of successful authentications by other parties

- **User registration** is required prior to an authentication protocol
• Identification mechanisms are often divided into 3 types based on how the identity evidence is gathered

 – user knows a secret
 • examples include passwords, personal identification numbers (PINs), secret keys, mother’s maiden name, etc.

 – user possesses a token
 • these are normally hardware tokens such as magnetic-striped cards or custom-designed devices for time-variant passwords

 – user has a physical attribute
 • characteristics inherent to the user such as biometrics, handwritten signatures, keystroke dynamics, facial and hand geometries, voice, etc.
Entity Authentication

- Often, different types can be combined together
 - e.g., PIN-based authentication is often used with a physical device (user ID, credit card)
 - biometric-based authentication is often used in combination with a password or a physical token

- Many identification mechanisms used in practice are not secure
 - calling cards
 - credit card purchases
 - passwords

- Ideally we want solutions against which replay attacks don’t work
Password-Based Authentication

- A **password** is a string of (normally 8 or more) characters associated with a certain user
 - it serves the purpose of a shared secret between the user and the system

- **During the identification protocol:**
 - a user sends \((\text{userid}, \text{password})\) pair
 - **userid** identifies the user
 - **password** provides the necessary evidence that the user possesses the secret
 - the system compares that information with its has stored
 - if the check succeeds, access is granted
Password-Based Authentication

• Storage of passwords
 – the most straightforward way of storing passwords is in clear text
 • there is a problem with such approach
 – to mitigate it, most systems apply a one-way hash function to a password and store the hash
 • the password itself cannot be recovered, but there are other concerns

• Attacks on passwords
 – replay of passwords: an attacker reuses a captured password
 • an attacker can capture a password by seeing a user type it, using a keylogger program or obtaining it in transit
Attacks on passwords (cont.)

- **exhaustive search**: an attacker attempts to guess a user password by trying all possible strings
 - this can be done on the verifier itself or by obtaining a copy of the password file and performing the attack off-line
 - often the attack is infeasible if the password space is large enough
 - but it is still possible to exhaust all short passwords
- **dictionary attack**: an attacker tries to guess a password using words from a dictionary and variations thereof
 - can have a high probability of success
 - dictionary attacks become increasingly sophisticated
• Is there a way to decrease the vulnerability of the system to such attacks?

• Additional measures are normally employed, some of which are:

 – salting passwords
 • this technique makes guessing attacks less effective
 • a password is augmented with a random string, called salt, prior to hashing
 • the salt is stored in cleartext in the password file

\[
uid_1, \ salt_1, h(salt_1 || pwd_1) \\
uid_2, \ salt_2, h(salt_2 || pwd_2)
\]

• how does it improve security?
• **Measures for improving security** of passwords (cont.)

 – **slowing down password verification**

 • the hash function for password verification is made more computationally extensive

 • this can be done, e.g., by iterating the computation n times

 • what is its drawback?

 – **limiting the number of unsuccessful password guesses**

 • a user account is locked after the number of successive unsuccessful authentication attempts exceeds the threshold

 – **employing password rules**

 • additional rules on password choices are imposed

 • this often strengthens password choices but limits the search space
Password-Based Authentication

- Measures for improving security of passwords (cont.)
 - preventing direct access to password file
 - the file/database with hashed passwords is kept inaccessible by ordinary users

- Another technique that aims at improving security of passwords is called password aging

- It is always a challenge to find a balance between memorability of passwords and their resistance to dictionary attacks
 - do users make acceptable password choices?
 - can we help them with choosing strong passwords?
Password-Based Authentication

- **Password strength** has been studied since 1990s
 - a significant portion of used passwords is guessable
 - passwords of short length can be cracked using brute force search
 - account-related or dictionary-derived passwords are common
 - password crackers today are increasingly complex

- How can we help users to select stronger passwords?
 - systems are much better at helping users than before
 - a variety of tools exist
Password-Based Authentication

- Tools for choosing stronger passwords
 - computer-generated passwords
 - selecting less predictable passwords which users can remember can be done by using computer-generated pronounceable passwords
 - for example: heloberi, hoparmah, ulensoev, atonitim
 - password checking
 - a proactive password checker rates password strength at the time of password selection
 - other types of passwords
 - techniques for using images and graphical interfaces for authentication have been developed
· Tools for choosing stronger passwords (cont.)
 – image-based passwords and graphical interfaces
 • displaying a sequence of images
 • drawing patterns on a grid
 • choosing points using an image
 • their unpredictability is often not as great as desired

· Unpredictability and usability of passwords is hard to achieve simultaneously
 – passwords can provide only a weak form of security
Best Password Practices

- NIST’s Special Publication 800-63 provides authentication guidelines for organizations including password-based authentication
 - the latest version is dated by June 2017

- In general, you want to
 - use strong passwords
 - not reuse passwords across different services
 - not share your passwords with anyone else

- Password managers are of great help in dealing with password explosion
Remote Authentication

• Now assume we want to use passwords for remote authentication
 – will it work?

• Passwords observed on the network are trivially susceptible to replay
 – initially remote login and file transfer programs, such as telnet, communicated passwords in the clear
 – now encryption is used (ssh, scp, etc.)

• Authentication based on time-invariant passwords is therefore a weak form of authentication
 – this form of authentication is nevertheless the most common

• A natural way to improve security is to use one-time passwords
• In authentication based on one-time passwords each password is used only once

• Such authentication can be realized in the following ways:
 – the user and the system initially agree on a sequence of passwords
 • simple solution but requires maintenance of the shared list
 – the user updates her password with each instance of the authentication protocol
 • e.g., the user might send the new password encrypted under a key derived from the current password
 • this method crucially relies on the correct communication of the new password to the system
One-Time Passwords

- **One-time password** authentication mechanisms (cont.)
 - the **new password is derived** with each instance of the authentication protocol using a one-way hash function
 - the system based on hash chains is called **S/Key** and is due to Lamport
 - a user begins with secret k and produces a sequence of values $k, h(k), h(h(k)), \ldots, h^t(k)$
 - password for ith identification session is $k_i = h^{t-i}(k)$
 - when user authenticates $(i + 1)$st time with k_{i+1}, the server checks whether $h(k_{i+1}) = k_i$
 - if h is infeasible to invert, this convinces the server that the user is legitimate
• Example of S/Key
 – suppose \(t = 5 \)
 – at setup stage
 • user chooses \(k \) and computes \(h(k), h(h(k)), h^3(k), h^4(k), h^5(k) \)
 • uses gives \(h^5(k) \) to the verifier
 – during authentication
 • at session 1:
 • at session 2:
 • at session 5:
An even **stronger form of authentication** is one where the user doesn’t have to send the secret to the verifier

- ideally you want to convince the verifier without leaking information about your secret
- such solutions exist and often involve the verifier sending a random **challenge** to the claimant
- the claimant uses the challenge and the secret to compute the **response**
- anyone who monitors the channel, cannot deduce information about the secret
Challenge-Response Techniques

- The goal of challenge-response techniques is to
 - use a single secret for authentication
 - provide evidence of the secret without leaking information about it
 - proving possession of a secret without leaking information about it is called a zero-knowledge proof of knowledge

- Challenge-response protocols can be built
 - from simple cryptographic primitives (e.g., MACs and signature schemes)
 - from scratch (Schnorr, Okamoto, and Guillou-Quisquater schemes)
The basic form of such protocols is normally as follows:

- suppose Alice is authenticating to Bob
- Alice has a secret s and Bob has a verification value v
- Bob sends to Alice a challenge c (chosen or computed anew)
- Alice computes a response $r = f(s, c)$ and sends it to Bob
- Bob verifies r using c and v

Building a secure challenge-response protocol is non-trivial

- must be secure against active adversaries
 - parallel session attack
 - man-in-the-middle attack
• If passwords are such a poor way of authenticating, why are they so popular?
• Authentication based on what you possess can be done using different types of tokens

 – memory cards

 • data is passively stored on a medium
 • a card reader can retrieve information stored on the card
 • e.g., magnetic stripe credit cards, ATM cards, hotel keys
 • memory cards provide a limited level of security (i.e., card contents can be read by any reader and copied to another card)
 • memory cards are often combined with a password or PIN
 • using memory cards with computers requires special readers
• Types of authentication tokens (cont.)
 – smart cards
 • such cards have a built-in microprocessor, programmable read-only memory and random-access memory (RAM)
 • they can engage in different types of authentication protocols including challenge-response
 • such tokens can also be used to generate dynamic passwords
 – each minute the device generates a new password
 – the device and the verifier must be synchronized
 • tamper-resistance of such tokens must be addressed
 – it’s been shown in the past that key material can be recovered with relatively inexpensive equipment
• **Types of authentication tokens** (cont.)

 – **USB dongle**

 • USB tokens can also be used for authentication

 • they can store static data as well as code

 – recent dongles also include non-volatile memory

 • no additional hardware such a special-purpose reader is necessary

 • USB dongles are commonly used for copy protection of copyrighted material

 • dongle products often don’t provide enough security to be used in rigid security requirement environments
Biometric authentication systems authenticate an individual based on her physical characteristic.

Types of biometric used in authentication:
- face
- palm geometry
- fingerprint
- iris
- signature
- voice

Most common uses of biometric authentication is for specific applications rather than computer authentication.
Biometric Authentication

• Like other authentication mechanisms, biometric authentication includes an enrollment phase during which a biometric is captured
 – the initial reading is often called a template
 – at authentication time, a new biometric reading is performed and is compared to the stored template

• Unlike other authentication mechanisms, biometric matching is approximate
 – each reading can be influenced by a variety of factors
 • e.g., light conditions, facial expressions, hair style, glasses, etc. for face recognition
 – some types of biometrics can match more accurately than others
 • e.g., iris vs. face or palm
Biometric Authentication

• Biometric matching can be used to perform
 – verification
 • user’s biometric scan is used to match her own template only
 – identification
 • user’s biometric scan is used to match a database of templates

• Identification might not always be possible

• Biometric systems attempt to minimize
 – false reject rate: authentic biometric is rejected
 – false accept rate: imposter biometric is accepted

• Depending on the environment, minimizing one of them might be more important than minimizing both
Biometric Authentication

- New types of biometrics are being explored
 - brain waves, heart beats, etc.
- Many forms of traditional biometrics can be stolen
- Static biometrics can be replayed
Current research direction: **biometric key generation**

- the idea: a biometric can be used to generate a cryptographic key
- the key can be reproduced using another biometric close enough to the original
 - no need to remember any information such as a password
- the key can be used for authentication or encryption
- key generation algorithm produces a helper data that can later aid in recovering the same key from a noisy version of the biometric
- security requirements are strict
 - the helper data must leak minimal information about the biometric
 - compromise of the key must not lead to recovery of the biometric
Summary

- **Entity authentication** is an important topic with the main application in access control.

- **Various techniques exist** ranging from time-invariant passwords to provably secure identification schemes.

- Despite the weak security password-base authentication provides, it is the most widely used authentication mechanism:
 - ease of use, user familiarity, no infrastructure requirements.

- **Next time**
 - access control mechanisms.