
CSE 410/565 Computer Security

Spring 2022

Lecture 6: Public Key Certificates, Random Numbers

Department of Computer Science and Engineering

University at Buffalo

✬

✫

✩

✪
1

Cryptographic Topics CoveredCryptographic Topics Covered

• What we’ve discussed so far:

– symmetric encryption

– message authentication codes

– hash functions

– public-key encryption

– digital signatures

• We finish with:

– public key certificates for secure channel establishment

– (pseudo)random numbers and generators

✬

✫

✩

✪CSE 410/565 Fall 2022

2©Marina Blanton

Secure CommunicationSecure Communication

• As previously discussed, we want to use fast symmetric key cryptography

for secure communication

• When there is no pre-established relationship and shared key, public-key

cryptography is used to agree on the key

– the idea is for one party A to choose a key k and send it encrypted to

another party B using B’s public key

• A sends EncpkB(k) to B

– this logic forms the basis of different protocols used in practice (e.g.,

TLS)

• The question of (public) key authenticity arises

✬

✫

✩

✪CSE 410/565 Fall 2022

3©Marina Blanton

Public Keys and TrustPublic Keys and Trust

?

Alice Bob

public key pkA public key pkB
secret key skA secret key skB

• If we want to use public-key cryptography, we are facing the key distribution

problem

– how/where are public keys stored?

– how do I obtain someone’s public key?

– how can Bob know or “trust” that pkA is indeed Alice’s public key?

✬

✫

✩

✪CSE 410/565 Fall 2022

4©Marina Blanton

Public-Key CertificatesPublic-Key Certificates

• Distribution of public keys can be done

– by public announcement

• a user distributes her key to recipients or broadcasts to community

– through a publicly available directory

• can obtain greater security by registering keys with a public directory

• Both approaches don’t protect against forgeries

• Digital certificates are used to address this problem

– a certificate binds identity (and/or other information) to a public key

✬

✫

✩

✪CSE 410/565 Fall 2022

5©Marina Blanton

Public-Key CertificatesPublic-Key Certificates

• Assume there is a central authority CA with a known public key pkCA

• CA produces certificate for Bob as certB = sigCA(pkB||Bob)

• Bob distributes (pkB, certB)

• Alice can verify that her copy of Bob’s key is genuine

• This technique is used in many applications

– TLS/SSL, ssh, email, IPsec, etc.

✬

✫

✩

✪CSE 410/565 Fall 2022

6©Marina Blanton

Random NumbersRandom Numbers

• All cryptographic constructions that are non-deterministic or produce key

material require randomness

– choosing symmetric key as a random string

– choosing large prime and other numbers for public-key constructions

– choosing padding or other means of randomizing encryption

• What do we expect from a random bit sequence?

– uniform distribution: all possible values are equally likely

– independence: no part of the sequence depends on its other parts

• Where do we find randomness?

✬

✫

✩

✪CSE 410/565 Fall 2022

7©Marina Blanton

Random NumbersRandom Numbers

• Randomness can be gathered from physical, unpredictable processes

• Example sources of true randomness

– least significant bits of time between key strokes

– noise from a mouse, video camera, and microphone

– variation in response times of raw read requests from a disk

• Amount of required randomness may not be small

– example: choosing a 1024-bit prime

• Instead of a true random number generator (TRNG) we can use a

pseudo-random number generator (PRNG)

✬

✫

✩

✪CSE 410/565 Fall 2022

8©Marina Blanton

Pseudo-Random NumbersPseudo-Random Numbers

• A pseudo-random generator is an algorithm that

– takes a short value, called a seed, as its input

– produces a long string that is statistically close to a uniformly chosen

random string

– for a k-bit long seed, a PRG has period of at most 2k bits

– formally, PRG : {0,1}k → {0,1}ℓ(k) for some ℓ(k) > k

• The security requirement is that a computationally bounded adversary cannot

tell the output of a PRG apart from a truly random string of the same size

– in practice, a number of statistical tests are used to test the strength of a

PRG

✬

✫

✩

✪CSE 410/565 Fall 2022

9©Marina Blanton

Pseudo-Random NumbersPseudo-Random Numbers

• PRGs are deterministic

– the output is always the same on the same seed

– for cryptographic purposes, it is crucial that the seed is hard to guess

• i.e., use strong true randomness to generate a seed

• One of uses of a PRG is for symmetric key stream ciphers

– two parties share a short key, which is used as a seed to a PRG

– the resulting pseudo-random key string is used to encipher the data

– portions of the pseudo-random string cannot be reused!

✬

✫

✩

✪CSE 410/565 Fall 2022

10©Marina Blanton

Pseudo-Random NumbersPseudo-Random Numbers

• Example of a PRG

– symmetric block ciphers, such as AES, can be used as PRGs

– given a key k, produce a stream as Enck(0), Enck(1), . . ., where Enc is

block cipher encryption

• There are various tests that can be run on PRGs to determine how close the

output to a uniformly chosen string

• Of particular importance to cryptographically secure PRG is the next-bit test

– given m bits of a PRG’s output, it is infeasible for any

computationally-bounded adversary to predict the m+1th bit with

probability non-negligibly greater than 1/2

✬

✫

✩

✪CSE 410/565 Fall 2022

11©Marina Blanton

Random and Pseudo-Random NumbersRandom and Pseudo-Random Numbers

• Regardless of how randomness was produced, it is absolutely crucial that

you use good randomness

– insufficient amount of randomness leads to predictable keys

– this is especially dangerous for long-term signing keys

• Examples of poor randomness in cryptographic applications

– CVE-2006-1833: Intel RNG Driver in NetBSD may always generate the

same random number, Apr. 2006

– CVE-2007-2453: Random number feature in Linux kernel does not

properly seed pools when there is no entropy, Jun. 2007

– CVE-2008-0166: OpenSSL on Debian-based operating systems uses a

random number generator that generates predictable numbers, Jan. 2008

✬

✫

✩

✪CSE 410/565 Fall 2022

12©Marina Blanton

ConclusionsConclusions

• It is important to understand what security guarantees are expected from a

cryptographic tool

• It is important to use constructions that have been proven secure or are

widely believed to be secure

• The use of strong randomness is critical

• Implementing cryptographic constructions is hard!

– bugs exist even in well-known and widely used cryptographic libraries

– e.g., the Heartbleed Bug

✬

✫

✩

✪CSE 410/565 Fall 2022

13©Marina Blanton

