Public-Key Cryptography

- **What we already know**
 - symmetric key cryptography enables **confidentiality**
 - achieved through secret key encryption
 - symmetric key cryptography enables **authentication** and **integrity**
 - achieved through MACs

- **In all of the above the sender and received must share a secret key**
 - need a secure channel for key distribution
 - not possible for parties with no prior relationship
 - more powerful public-key cryptography can aid with this
Public-Key Cryptography

- Public-key encryption
 - a party creates a public-private key pair
 - the public key is pk
 - the private or secret key is sk
 - the public key is used for encryption and is publicly available
 - the private key is used for decryption only

\[
\text{Dec}_{sk}(\text{Enc}_{pk}(m)) = m
\]

- knowing the public key and the encryption algorithm only, it is computationally infeasible to find the secret key
- public-key crypto systems are also called asymmetric
• Digital signatures
 – a party generated a public-private signing key pair
 – private key is used to sign a message
 – public key is used to verify a signature on a message
 – can be viewed as one-way message authentication

• (Public-key) Key agreement or key distribution
 – prior to the protocols the parties do not share a common secret
 – after the protocol execution, they hold a key not known to any eavesdropper
• Public-key constructions often use number theory and are based on a special function \(f \) with the following properties

 – given \(f \) and \(x \), it is easy to compute \(f(x) \)
 – given \(f(x) \), it is hard to compute \(x \)
 – given \(f(x) \) and an additional secret \(t \), it is easy to find \(x \)
 – function \(f \) is called a one-way trapdoor function and \(t \) is called the trapdoor of \(f \)

• Given such a function \(f \), we construct encryption as follows:

 – \(f \) is equivalent to encryption \(\text{Enc}_{pk} \)
 – the private key serves the purpose of the trapdoor
 – given \(f(x) = \text{Enc}_{pk}(x) \) and the trapdoor \(sk \), decryption of \(x \) is easy
Similar to symmetric encryption, we can formulate a number of attacks on public-key encryption:

- ciphertext only attack
- known plaintext attack
- chosen plaintext attack
- chosen ciphertext attack

Which types are not meaningful and which adequately model adversarial capabilities?
Almost all public-key encryption algorithms use number theory and modular arithmetic

- RSA is based on the hardness of factoring large numbers
- ElGamal is based on the hardness of solving discrete logarithm problem

RSA is the most commonly used public-key encryption algorithm invented by Rivest, Shamir, and Adleman in 1978

- sustained many years of attacks on it
- relies on the fact that factoring large numbers is hard
 - let $n = pq$, where p and q are large primes
 - given only n, it is hard to find p or q, which are used as a trapdoor
RSA Cryptosystem

• RSA key generation
 – generate two large prime numbers p and q of the same length
 – compute $n = pq$
 – choose a small prime number e
 – compute the smallest d such that $ed \mod (p - 1)(q - 1) = 1$
 – here $\phi(n) = (p - 1)(q - 1)$ is Euler’s totient function

• Public key is (e, n)

• Private key is d
Plain RSA Encryption

- **Encryption**
 - given a message m such that $0 < m < n$
 - given a public key $pk = (e, n)$
 - encrypt as $c = \text{Enc}_{pk}(m) = m^e \mod n$

- **Decryption**
 - given a ciphertext c ($0 < c < n$)
 - given a public key $pk = (e, n)$ and the corresponding private key $sk = d$
 - decrypt as $m = \text{Dec}_{sk}(c) = c^d \mod n$
Plain RSA Encryption

• Example of Plain RSA
 – key generation
 • \(p = 11, q = 7, n = pq = 77, \phi(n) = 60 \)
 • \(e = 37 \Rightarrow d = 13 \) (i.e., \(\text{ed} = 481; \text{ed mod 60} = 1 \))
 • public key is \(pk = (37, 77) \) and private key is \(sk = 13 \)
 – encryption
 • let \(m = 15 \)
 • \(c = \text{Enc}(m) = m^e \mod n = 15^{37} \mod 77 = 71 \)
 – decryption
 • \(m = \text{Dec}(c) = c^d \mod n = 71^{13} \mod 77 = 15 \)
Security of RSA

- Existing attacks on RSA
 - brute force search (try all possible keys)
 - number theoretic attacks (factor n)
 - complicated factoring algorithms that run in sub-exponential (but super-polynomial) time in the length of n exist
 - a 768-bit modulus was factored in 2009
 - 1024-bit moduli could be factored very soon
 - moduli of length 2048 are expected to be secure until 2030
 - special use cases
 - e.g., encrypting small messages with small e
- Plain (or textbook) RSA is not close to secure
Towards Safe Use of RSA

- **Padded RSA**
 - plain RSA is deterministic
 - this is even worse than in case of symmetric encryption
 - anyone can search for \(m \) encrypting various messages
 - we can randomize ciphertext by padding each \(m \) with random bits
 - now a message can be at most \(k - t \) bits long
 - random \(t \) bits are added to it such that \(2^t \) work is infeasible
Towards Safe Use of RSA

- **PKCS #1 v1.5** was a widely used standard for padded RSA
 - PKCS = RSA Laboratories Public-Key Cryptography Standard
 - it is believed to be CPA-secure

- **PKCS #1 v2.0** utilizes OAEP (Optimal Asymmetric Encryption Padding)
 - the newer version mitigates some attacks on v1.5 and is known to be CCA-secure
 - in OAEP, we use plain RSA encryption on
 \[m \oplus g(r) \parallel r \oplus h(m \oplus g(r)) \], where \(h \) and \(g \) are hash functions and \(r \) is randomness
Towards Safe Use of RSA

• Making factoring infeasible
 – choose n to be long enough (we can choose any n!)
 – for a security parameter k, compute n with $|n| = k$

• A good implementation will also have countermeasures against implementation-level attacks
 – timing attacks, special cases of e and d, etc.
• Many popular public-key algorithms rely on the difficulty of discrete logarithm problem
 – ElGamal encryption and ElGamal signature
 – Digital Signature Algorithm (DSA)
 – Diffie-Hellman key exchange
 – ...

• Given an appropriate setup with g, p, and $h = g^x \mod p$, it is difficult for someone to compute x
 – x is called the discrete logarithm of h to the base g
 – groups in which the discrete logarithm problem is hard use prime modulus p (conventional and elliptic curve settings)
Symmetric vs Public-Key Encryption

- Public-key operations are orders of magnitude slower than symmetric encryption
 - a multiplication modulo n requires close to $O(|n|^2)$ work
 - a full-size exponentiation modulo n requires close to $O(|n|^3)$ work
 - it is the cost of multiplication times the exponent size
 - public-key encryption is typically not used to communicate large volumes of data
 - it is rather used to communicate (or agree on) a symmetric key
 - the data itself is sent encrypted with the symmetric key
- In RSA, decryption is significantly slower than encryption, with key generation being the slowest
• A digital signature scheme is a method of signing messages stored in electronic form and verifying signatures

• Digital signatures can be used in very similar ways conventional signatures are used
 – paying by a credit card and signing the bill
 – signing a contract
 – signing a letter

• Unlike conventional signatures, we have that
 – digital signatures are not physically attached to messages
 – we cannot compare a digital signature to the original signature
Digital Signatures

- Digital signatures allows us to achieve the following security objectives:
 - authentication
 - integrity
 - non-repudiation
 - note that this is the main difference between signatures and MACs
 - a MAC cannot be associated with a unique sender since a symmetric shared key is used

- What security property do we want from a digital signature scheme? How does it relate to that of MACs?
Digital Signatures

• It is meaningful to consider the following attack models
 – key-only attack
 – known message attack
 – chosen message attack

• Adversarial goals might be
 – total break
 – selective forgery
 – existential forgery
Digital Signatures

- A digital signature scheme consists of **key generation**, **message signing**, and **signature verification** algorithms
 - **key generation** creates a public-private key pair \((pk, sk)\)
 - **signing algorithm** takes a message and uses private signing key to output a signature
 - **signature verification algorithm** takes a message, a signature on it, and the signer’s public key and outputs a yes/no answer
• Plain RSA signature is similar to plain RSA encryption
 – create a key pair as before: public $pk = (e, n)$ and private $sk = d$
 – signing of message m using sk is done as $\sigma = m^d \mod n$
 – verification of signature σ on message m using pk is performed as $\sigma^e \mod n \equiv m$
Digital Signatures

- Plain RSA is not a secure signature scheme
 - both existential and selective forgeries are easy
 - the “hash-and-sign” paradigm is used in many constructions to achieve adequate security
 - e.g., compute $h(m)$ and then continue with plain RSA signing of $h(m)$
 - this additionally improves efficiency
 - the hash function must satisfy all three security properties
 - preimage resistance
 - weak collision resistance
 - strong collision resistance
Digital Signatures

- **RSA signatures**
 - **key generation**
 - choose prime p and q, compute $n = pq$
 - choose prime e and compute d s.t. $ed \mod (p - 1)(q - 1) = 1$
 - signing key is d, verification key is (e, n)
 - **message signing**
 - given m, compute $h(m)$
 - output $\sigma = h(m)^d \mod n$
 - **signature verification**
 - given m and σ, first compute $h(m)$
 - check whether $\sigma^e \mod n \overset{?}{=} h(m)$
Digital Signature Standard (DSS) or Digital Signature Algorithm (DSA) was adopted as a standard in 1994

- its design was influenced by prior ElGamal and Schnorr signature schemes
- it assumes the difficulty of the discrete logarithm problem
- no formal security proof exists
Digital Signature Standard (DSS)

- DSS was published in 1994 as FIPS PUB 186
 - it was specified to hash the message using SHA-1 before signing
 - it was specified to produce a 320-bit signature on a 160-bit hash

- The current version is FIPS PUB 186-4 (2013)
 - DSA can now be used with a 1024-, 2048-, or 3072-bit modulus
 - the message size is 320, 448, or 512 bits

- Signing and signature verification involve:
 - hashing the message
 - computing a couple of modulo exponentiations on both longer and shorter sizes
• Thorough evaluation of security of a signature scheme is crucial
 – often a message can be encrypted and decrypted once and long-term security for the key is not required
 – signatures can be used on legal documents and may need to be verified many years after signing
 – choose the key length to be secure against future computing speeds
All constructions studied so far rely on the fact that an adversary is limited in computational power

- if it has more resources than we anticipate, cryptographic algorithms can be broken

Today, 112–128-bit security is considered sufficient

- this means approximately that for 128-bit security, 2^{128} operations are needed to violate security with high probability

This translates into the following parameters

- symmetric key encryption: the key size is at least 112 bits
- hash functions: the hash size is at least 224 bits
- public key encryption: the modulus is at least 2048 bits long
The Big Picture

- How we address **security goals** using different tools

<table>
<thead>
<tr>
<th>Security goal</th>
<th>Symmetric key setting</th>
<th>Public key setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secrecy / confidentiality</td>
<td>block ciphers with encryption modes (AES); stream ciphers</td>
<td>public key encryption (RSA, ElGamal, etc.)</td>
</tr>
<tr>
<td>Authenticity / integrity</td>
<td>message authentication codes (CBC-MAC, HMAC)</td>
<td>digital signatures (RSA, DSA, etc.)</td>
</tr>
</tbody>
</table>
Conclusions

- Proper use of cryptographic tools requires great care

- Safe use of such algorithms involves
 - familiarity with known attacks
 - adequate choice of parameters
 - including countermeasures against known attacks on implementations
 - using a cryptographically strong source of randomness

- No security by obscurity!