CSE 565 Computer Security
Spring 2019

Lecture 5: Public Key Cryptography

Department of Computer Science and Engineering
University at Buffalo
Public-Key Cryptography

• What we already know
 – symmetric key cryptography enables confidentiality
 • achieved through secret key encryption
 – symmetric key cryptography enables authentication and integrity
 • achieved through MACs

• In all of the above the sender and received must share a secret key
 – need a secure channel for key distribution
 – not possible for parties with no prior relationship
 – more powerful public-key cryptography can aid with this

- **Public-key encryption**
 - a party creates a public-private key pair
 - the public key is pk
 - the private or secret key is sk
 - the public key is used for encryption and is publicly available
 - the private key is used for decryption only
 \[D_{sk}(E_{pk}(M)) = M \]
 - knowing the public key and the encryption algorithm only, it is computationally infeasible to find the secret key
 - public-key crypto systems are also called *asymmetric*
• Digital signatures
 – a party generated a public-private signing key pair
 – private key is used to sign a message
 – public key is used to verify a signature on a message
 – can be viewed as one-way message authentication

• (Public-key) Key agreement or key distribution
 – prior to the protocols the parties do not share a common secret
 – after the protocol execution, they hold a key not known to any eavesdropper
How Public-Key Cryptography Works

- Public-key constructions often use number theory and are based on a special function \(f \) with the following properties:
 - given \(f \) and \(x \), it is easy to compute \(f(x) \)
 - given \(f(x) \), it is hard to compute \(x \)
 - given \(f(x) \) and an additional secret \(t \), it is easy to find \(x \)
 - function \(f \) is called a one-way trapdoor function and \(t \) is called the trapdoor of \(f \)

- Given such a function \(f \), we construct encryption as follows:
 - \(f \) is equivalent to encryption \(E_{pk} \)
 - the private key serves the purpose of the trapdoor
 - given \(f(x) = E_{pk}(x) \) and the trapdoor \(sk \), decryption of \(x \) is easy
• Similar to symmetric encryption, we can formulate a number of attacks on public-key encryption
 – ciphertext only attack
 – known plaintext attack
 – chosen plaintext attack
 – chosen ciphertext attack

• Which types are not meaningful and which adequately model adversarial capabilities?
Public-Key Encryption

- Almost all public-key encryption algorithms use number theory and modular arithmetic
 - RSA is based on the hardness of factoring large numbers
 - ElGamal is based on the hardness of solving discrete logarithm problem

- RSA is the most commonly used public-key encryption algorithm invented by Rivest, Shamir, and Adleman in 1978
 - sustained many years of attacks on it
 - relies on the fact that factoring large numbers is hard
 - let $n = pq$, where p and q are large primes
 - given only n, it is hard to find p or q, which are used as a trapdoor
RSA Cryptosystem

• RSA key generation
 – generate two large prime numbers \(p \) and \(q \) of the same length
 – compute \(n = pq \)
 – choose a small prime number \(e \)
 – compute the smallest \(d \) such that \(ed \mod (p - 1)(q - 1) = 1 \)
 – here \(\phi(n) = (p - 1)(q - 1) \) is Euler’s totient function

• Public key is \((e, n) \)

• Private key is \(d \)
Plain RSA Encryption

- **Encryption**
 - given a message m such that $0 < m < n$
 - given a public key $pk = (e, n)$
 - encrypt as $c = E_{pk}(m) = m^e \mod n$

- **Decryption**
 - given a ciphertext c ($0 < c < n$)
 - given a public key $pk = (e, n)$ and the corresponding private key $sk = d$
 - decrypt as $m = D_{sk}(c) = c^d \mod n$
Plain RSA Encryption

- Example of Plain RSA
 - key generation
 - \(p = 11, \ q = 7, \ n = pq = 77, \ \phi(n) = 60 \)
 - \(e = 37 \Rightarrow d = 13 \) (i.e., \(ed = 481; \ ed \mod 60 = 1 \))
 - public key is \(pk = (37, 77) \) and private key is \(sk = 13 \)
 - encryption
 - let \(m = 15 \)
 - \(c = E(m) = m^e \mod n = 15^{37} \mod 77 = 71 \)
 - decryption
 - \(m = D(c) = c^d \mod n = 71^{13} \mod 77 = 15 \)
Security of RSA

- Existing attacks on RSA
 - brute force search (try all possible keys)
 - number theoretic attacks (factor n)
 - complicated factoring algorithms that run in sub-exponential (but super-polynomial) time in the length of n exist
 - a 768-bit modulus was factored in 2009
 - 1024-bit moduli could be factored very soon
 - moduli of length 2048 are expected to be secure until 2030
 - special use cases
 - e.g., encrypting small messages with small e

- Plain (or textbook) RSA is not close to secure
• Padded RSA
 – plain RSA is deterministic
 – this is even worse than in case of symmetric encryption
 • anyone can search for m encrypting various messages
 – we can randomize ciphertext by padding each m with random bits
 • now a message can be at most $k - t$ bits long
 • random t bits are added to it such that 2^t work is infeasible
PKCS #1 v1.5 was a widely used standard for padded RSA
- PKCS = RSA Laboratories Public-Key Cryptography Standard
- it is believed to be CPA-secure

PKCS #1 v2.0 utilizes OAEP (Optimal Asymmetric Encryption Padding)
- the newer version mitigates some attacks on v1.5 and is known to be CCA-secure
- in OAEP, we use plain RSA encryption on
 \[m \oplus g(r) || r \oplus h(m \oplus g(r)) \], where \(h \) and \(g \) are hash functions and \(r \) is randomness
Towards Safe Use of RSA

- Making factoring infeasible
 - choose n to be long enough (we can choose any n!)
 - for a security parameter k, compute n with $|n| = k$

- A good implementation will also have countermeasures against implementation-level attacks
 - timing attacks, special cases of e and d, etc.
Other Public-Key Algorithms

- Many popular public-key algorithms rely on the difficulty of discrete logarithm problem
 - ElGamal encryption and ElGamal signature
 - Digital Signature Algorithm (DSA)
 - Diffie-Hellman key exchange
 - ...

- Given an appropriate setup with g, p, and $h = g^x \mod p$, it is difficult for someone to compute x
 - x is called the discrete logarithm of h to the base g
 - groups in which the discrete logarithm problem is hard use prime modulus p (conventional and elliptic curve settings)
Symmetric vs Public-Key Encryption

- Public-key operations are orders of magnitude slower than symmetric encryption
 - a multiplication modulo n requires close to $O(|n|^2)$ work
 - an exponentiation modulo n requires close to $O(|n|^3)$ work
 - public-key encryption is not used to communicate large volumes of data
 - it is rather used to communicate (or agree on) a symmetric key
 - the data itself is sent encrypted with the symmetric key

- In RSA, decryption is significantly slower than encryption, with key generation being the slowest
Digital Signatures

• A digital signature scheme is a method of signing messages stored in electronic form and verifying signatures

• Digital signatures can be used in very similar ways conventional signatures are used
 – paying by a credit card and signing the bill
 – signing a contract
 – signing a letter

• Unlike conventional signatures, we have that
 – digital signatures are not physically attached to messages
 – we cannot compare a digital signature to the original signature
Digital Signatures

- Digital signatures allows us to achieve the following security objectives:
 - authentication
 - integrity
 - non-repudiation
 - note that this is the main difference between signatures and MACs
 - a MAC cannot be associated with a unique sender since a symmetric shared key is used

- What security property do we want from a digital signature scheme? How does it relate to that of MACs?
A digital signature scheme consists of key generation, message signing, and signature verification algorithms

- key generation creates a public-private key pair \((pk, sk)\)
- signing algorithm takes a message and uses private signing key to output a signature
- signature verification algorithm takes a message, a signature on it, and the signer’s public key and outputs a yes/no answer
Plain RSA Signatures

- Plain RSA signature is similar to plain RSA encryption
 - create a key pair as before: public $pk = (e, n)$ and private $sk = d$
 - signing of message m using sk is done as $\sigma \equiv m^d \mod n$
 - verification of signature sigma on message m using pk is performed as $\sigma^e \mod n \equiv m$
Digital Signatures

• Plain RSA is not a secure signature scheme
 – both existential and selective forgeries are easy
 – the “hash-and-sign” paradigm is used in many constructions to achieve adequate security
 • e.g., compute $h(m)$ and then sign $h(m)$ using plain RSA signature
 – this additionally improves efficiency
 – the hash function must satisfy all three security properties
 • preimage resistance
 • weak collision resistance
 • strong collision resistance
Digital Signatures

- **RSA signatures**
 - **key generation**
 - choose prime p and q, compute $n = pq$
 - choose prime e and compute d s.t. $ed \mod (p - 1)(q - 1) = 1$
 - signing key is d, verification key is (e, n)
 - **message signing**
 - given m, compute $h(m)$
 - output $\sigma = h(m)^d \mod n$
 - **signature verification**
 - given m and σ, first compute $h(m)$
 - check whether $\sigma^e \mod n \overset{?}= h(m)$
• Digital Signature Standard (DSS) or Digital Signature Algorithm (DSA) was adopted as a standard in 1994
 – its design was influenced by prior ElGamal and Schnorr signature schemes
 – it assumes the difficulty of the discrete logarithm problem
 – no formal security proof exists
Digital Signature Standard (DSS)

- DSS was published in 1994 as FIPS PUB 186
 - it was specified to hash the message using SHA-1 before signing
 - it was specified to produce a 320-bit signature on a 160-bit hash

- The current version is FIPS PUB 186-4 (2013)
 - DSA can now be used with a 1024-, 2048-, or 3072-bit modulus
 - the message size is 320, 448, or 512 bits

- **Signing** and **signature verification** involve:
 - hashing the message
 - computing a couple of modulo exponentiations on both longer and shorter sizes
Thorough evaluation of security of a signature scheme is crucial

- often a message can be encrypted and decrypted once and long-term security for the key is not required
- signatures can be used on legal documents and may need to be verified many years after signing
- choose the key length to be secure against future computing speeds
How we address security goals using different tools

<table>
<thead>
<tr>
<th>Security goal</th>
<th>Symmetric key setting</th>
<th>Public key setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secrecy / confidentiality</td>
<td>block ciphers with encryption modes (AES); stream ciphers</td>
<td>public key encryption (RSA, ElGamal, etc.)</td>
</tr>
<tr>
<td>Authenticity / integrity</td>
<td>message authentication codes (CBC-MAC, HMAC)</td>
<td>digital signatures (RSA, DSA, etc.)</td>
</tr>
</tbody>
</table>
Diffie-Hellman Key Exchange

- Diffie-Hellman key exchange protocol
 - Alice and Bob want to compute a shared key, which must be unknown to eavesdroppers
 - Alice and Bob share public parameters: modulus \(p \), element \(1 < g < p \), and modulus \(q \) for computation in the exponent
 - Alice randomly chooses \(x \in \mathbb{Z}_q \) and sends \(g^x \mod p \) to Bob:
 \[A \xrightarrow{g^x \mod p} B \]
 - Bob randomly chooses \(y \in \mathbb{Z}_q \) and sends \(g^y \mod p \) to Alice:
 \[A \xleftarrow{g^y \mod p} B \]
• Diffie-Hellman key exchange protocol
 – the shared secret is set to $g^{xy} \mod p$
 • Alice computes it as $(g^y)^x \mod p = g^{xy} \mod p$
 • Bob computes it as $(g^x)^y \mod p = g^{xy} \mod p$
 – it is believed to be infeasible for an eavesdropper to compute g^{xy} given g^x and g^y
• **Diffie-Hellman key exchange**

 – the security property holds only against a passive attacker

 – the protocol has a serious weakness in the presence of an active adversary

 • this is called a *man-in-the-middle attack*

 • Mallory will intercept messages between Alice and Bob and substitute her own

 • Alice establishes a shared key with Mallory and Bob also establishes a shared key with Mallory
Man-in-the-middle attack on Diffie-Hellman key exchange

Alice Mallory Bob

\[g^a \rightarrow g^{a'} \rightarrow g^{a'b} \]

\[g^{b'} \leftarrow g^b \]

- Alice shares the key \(g^{ab'} \) with Mallory
- Bob shares the key \(g^{a'b} \) with Mallory
- Alice and Bob do not share any key
- what is Mallory capable of doing?
- Alice and Bob need to make sure they are exchanging messages with each other
 - there is a need for authentication
 - preceding this protocol with an authentication scheme is not guaranteed to solve the problem
 - authentication needs to be a part of the key exchange
 - this is called authenticated key exchange

- A solution that addresses the problem relies on certificates and digital signatures
• All constructions studied so far rely on the fact that an adversary is limited in computational power
 – if it has more resources than we anticipate, cryptographic algorithms can be broken

• Today, 112–128-bit security is considered sufficient
 – this means approximately that for 128-bit security, 2^{128} operations are needed to violate security with high probability

• This translates into the following parameters
 – symmetric key encryption: the key size is at least 112 bits
 – hash functions: the hash size is at least 224 bits
 – public key encryption: the modulus is at least 2048 bits long
Conclusions

- Proper use of cryptographic tools requires great care

- Safe use of such algorithms involves
 - familiarity with known attacks
 - adequate choice of parameters
 - including countermeasures against known attacks on implementations
 - using a cryptographically strong source of randomness

- No security by obscurity!