Public-Key Cryptography

• What we already know
 – symmetric key cryptography enables confidentiality
 • achieved through secret key encryption
 – symmetric key cryptography enables authentication and integrity
 • achieved through MACs

• In all of the above the sender and received must share a secret key
 – need a secure channel for key distribution
 – not possible for parties with no prior relationship
 – more powerful public-key cryptography can aid with this
Public-Key Cryptography

- **Public-key encryption**
 - a party creates a **public-private key pair**
 - the public key is \(pk \)
 - the private or secret key is \(sk \)
 - the public key is used for encryption and is publicly available
 - the private key is used for decryption only
 \[
 D_{sk}(E_{pk}(M)) = M
 \]
 - knowing the public key and the encryption algorithm only, it is computationally infeasible to find the secret key
 - public-key crypto systems are also called **asymmetric**
• **Digital signatures**

 – a party generated a public-private signing key pair

 – private key is used to sign a message

 – public key is used to verify a signature on a message

 – can be viewed as one-way message authentication

• (Public-key) **Key agreement or key distribution**

 – prior to the protocols the parties do not share a common secret

 – after the protocol execution, they hold a key not known to any eavesdropper
How Public-Key Cryptography Works

• Public-key constructions often use number theory and are based on a special function f with the following properties

 – given f and x, it is easy to compute $f(x)$

 – given $f(x)$, it is hard to compute x

 – given $f(x)$ and an additional secret t, it is easy to find x

 – function f is called a one-way trapdoor function and t is called the trapdoor of f

• Given such a function f, we construct encryption as follows:

 – f is equivalent to encryption E_{pk}

 – the private key serves the purpose of the trapdoor

 – given $f(x) = E_{pk}(x)$ and the trapdoor sk, decryption of x is easy
• Similar to symmetric encryption, we can formulate a number of attacks on public-key encryption
 – ciphertext only attack
 – known plaintext attack
 – chosen plaintext attack
 – chosen ciphertext attack

• Which types are not meaningful and which adequately model adversarial capabilities?
Almost all public-key encryption algorithms use **number theory and modular arithmetic**

- **RSA** is based on the hardness of factoring large numbers
- **ElGamal** is based on the hardness of solving discrete logarithm problem

RSA is the most commonly used public-key encryption algorithm

invented by Rivest, Shamir, and Adleman in 1978

- sustained many years of attacks on it
- relies on the fact that **factoring large numbers is hard**
 - let $n = pq$, where p and q are large primes
 - given only n, it is hard to find p or q, which are used as a trapdoor
RSA Cryptosystem

- **RSA key generation**
 - generate two large prime numbers p and q of the same length
 - compute $n = pq$
 - choose a small prime number e
 - compute the smallest d such that $ed \mod (p - 1)(q - 1) = 1$
 - here $\phi(n) = (p - 1)(q - 1)$ is Euler’s totient function

- **Public key** is (e, n)

- **Private key** is d
• **Encryption**

 – given a message m such that $0 < m < n$

 – given a public key $pk = (e, n)$

 – encrypt as $c = E_{pk}(m) = m^e \mod n$

• **Decryption**

 – given a ciphertext c ($0 < c < n$)

 – given a public key $pk = (e, n)$ and the corresponding private key $sk = d$

 – decrypt as $m = D_{sk}(c) = c^d \mod n$
RSA Cryptosystem

• **RSA Example**

 – key generation
 - \(p = 11, q = 7, n = pq = 77, \phi(n) = 60 \)
 - \(e = 37 \Rightarrow d = 13 \) (i.e., \(ed = 481; \) \(ed \mod 60 = 1 \))
 - **public key is** \(pk = (37, 77) \) **and private key is** \(sk = 13 \)

 – encryption
 - **let** \(m = 15 \)
 - \(c = E(m) = m^e \mod n = 15^{37} \mod 77 = 71 \)

 – decryption
 - \(m = D(c) = c^d \mod n = 71^{13} \mod 77 = 15 \)
Security of RSA

- Existing attacks on RSA
 - brute force search (try all possible keys)
 - number theoretic attacks (factor n)
 - complicated factoring algorithms that run in sub-exponential (but super-polynomial) time in the length of n exist
 - a 768-bit modulus was factored in 2009
 - 1024-bit moduli could be factored very soon
 - moduli of length 2048 are expected to be secure until 2030
 - special use cases
 - e.g., encrypting small messages with small e
- Plain (or textbook) RSA is not close to secure
Towards Safe Use of RSA

- **Padded RSA**
 - plain RSA is deterministic
 - this is even worse than in case of symmetric encryption
 - anyone can search for \(m \) encrypting various messages
 - we can **randomize ciphertext by padding** each \(m \) with random bits
 - now a message can be at most \(k - t \) bits long
 - random \(t \) bits are added to it such that \(2^t \) work is infeasible

- **PKCS #1 v1.5** is a widely used standard for padded RSA
 - PKCS = RSA Laboratories Public-Key Cryptography Standard
 - it is believed to be CPA-secure
Towards Safe Use of RSA

- **PKCS #1 v2.0** utilizes OAEP (Optimal Asymmetric Encryption Padding)
 - the newer version mitigates some attacks on v1.5 and is known to be CCA-secure

- **Making factoring infeasible**
 - choose \(n \) to be long enough (we can choose any \(n! \))
 - for a security parameter \(k \), compute \(n \) with \(|n| = k \)

- **A good implementation will also have countermeasures against implementation-level attacks**
 - timing attacks, special cases of \(e \) and \(d \), etc.
Many popular public-key algorithms rely on the difficulty of **discrete logarithm problem**

- ElGamal encryption and ElGamal signature
- Digital Signature Algorithm (DSA)
- Diffie-Hellman key exchange
- ...

Given an appropriate setup with \(g, p, \) and \(h = g^x \mod p \), it is difficult for someone to compute \(x \)

- \(x \) is called the discrete logarithm of \(h \) to the base \(g \)
- groups in which the discrete logarithm problem is hard use prime modulus \(p \) (conventional and elliptic curve settings)
• Public-key operations are orders of magnitude slower than symmetric encryption
 – an exponentiation modulo n requires close to $O(|n|^3)$ work
 – public-key encryption is not used to communicate large volumes of data
 – it is rather used to communicate (or agree on) a symmetric key
 – the data itself is sent encrypted with the symmetric key
A digital signature scheme is a method of signing messages stored in electronic form and verifying signatures.

Digital signatures can be used in very similar ways conventional signatures are used:
- paying by a credit card and signing the bill
- signing a contract
- signing a letter

Unlike conventional signatures, we have that:
- digital signatures are not physically attached to messages
- we cannot compare a digital signature to the original signature
Digital Signatures

- **Digital signatures** allows us to achieve the following **security objectives**:
 - authentication
 - integrity
 - non-repudiation

 - note that this is the main difference between signatures and MACs
 - a MAC cannot be associated with a unique sender since a symmetric shared key is used

- **What security property** do we want from a digital signature scheme?

- A digital signature scheme consists of **key generation**, **message signing**, and **signature verification** algorithms
Digital Signatures

- **Key generation** creates a public-private key pair \((pk, sk)\)

- **Signing algorithm** takes a message and uses private signing key to output a signature

- **Signature verification algorithm** takes a message, a signature on it, and the signer’s public key and outputs a yes/no answer

- **RSA can be used for signing messages**
 - create a key pair as before
 - **signing** is done by decrypting a message with the private key
 \[\text{sig}(m) = D_{sk}(m) \]
 - **verification** is performed by encrypting the signature with the public key and comparing to the message
 \[E_{pk}(\text{sig}(m)) \overset{?}{=} m \]
• **Plain RSA is not a secure signature scheme**

 – both existential and selective forgeries are easy

 – the **“hash-and-sign” paradigm** is used in many constructions to achieve adequate security

 – e.g., in RSA $\text{sig}(m) = D_{sk}(h(m))$ and verify $E_{pk}(\text{sig}(h(m))) \overset{?}{=} h(m)$

 – this additionally improves efficiency

 – the hash function must satisfy all three security properties

 • preimage resistance

 • weak collision resistance

 • strong collision resistance
Digital Signatures

- **RSA signatures**
 - **key generation**
 - choose prime p and q, compute $n = pq$
 - choose prime e and compute d s.t. $ed \mod (p-1)(q-1) = 1$
 - signing key is d, verification key is (e, n)
 - **message signing**
 - given m, compute $h(m)$
 - output $\text{sig}(m) = h(m)^d \mod n$
 - **signature verification**
 - given m and $\text{sig}(m)$, first compute $h(m)$
 - check whether $\text{sig}(m)^e \mod n = h(m)$
Digital Signature Standard (DSS) or Digital Signature Algorithm (DSA) was adopted as a standard in 1994

- its design was influenced by prior ElGamal and Schnorr signature schemes
- it assumes the difficulty of the discrete logarithm problem
- no formal security proof exists
• DSS was published in 1994 as **FIPS PUB 186**
 – it was specified to hash the message using SHA-1 before signing
 – it was specified to produce a 320-bit signature on a 160-bit hash

• The current version is **FIPS PUB 186-4 (2013)**
 – DSA can now be used with a 1024-, 2048-, or 3072-bit modulus
 – the message size is 320, 448, or 512 bits
Thorough evaluation of security of a signature scheme is crucial

- often a message can be encrypted and decrypted once and long-term security for the key is not required
- signatures can be used on legal documents and may need to be verified many years after signing
- choose the key length to be secure against future computing speeds
How we address **security goals** using different tools

<table>
<thead>
<tr>
<th>Security goal</th>
<th>Symmetric key setting</th>
<th>Public key setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secrecy / confidentiality</td>
<td>block ciphers with encryption modes (AES); stream ciphers</td>
<td>public key encryption (RSA, ElGamal, etc.)</td>
</tr>
<tr>
<td>Authenticity / integrity</td>
<td>message authentication codes (CBC-MAC, HMAC)</td>
<td>digital signatures (RSA, DSA, etc.)</td>
</tr>
</tbody>
</table>
• **Diffie-Hellman key exchange protocol**

 – Alice and Bob want to compute a shared key, which must be unknown to eavesdroppers

 – Alice and Bob share public parameters: modulus p, element $1 < g < p$, and modulus q for computation in the exponent

 – Alice randomly chooses $x \in \mathbb{Z}_q$ and sends $g^x \mod p$ to Bob:

 $A \xrightarrow{g^x \mod p} B$

 – Bob randomly chooses $y \in \mathbb{Z}_q$ and sends $g^y \mod p$ to Alice:

 $A \xleftarrow{g^y \mod p} B$
• Diffie-Hellman key exchange protocol
 – the shared secret is set to $g^{xy} \mod p$
 • Alice computes it as $(g^y)^x \mod p = g^{xy} \mod p$
 • Bob computes it as $(g^x)^y \mod p = g^{xy} \mod p$
 – it is believed to be infeasible for an eavesdropper to compute g^{xy} given g^x and g^y
• **Diffie-Hellman key exchange**

 – the security property holds only against a passive attacker

 – the protocol has a serious weakness in the presence of an active adversary

 • this is called a **man-in-the-middle attack**

 • Mallory will intercept messages between Alice and Bob and substitute her own

 • Alice establishes a shared key with Mallory and Bob also establishes a shared key with Mallory
• Man-in-the-middle attack on Diffie-Hellman key exchange

Alice → Mallory → Bob

\[g^a \rightarrow g^{a'} \rightarrow g^{a'b'} \rightarrow g^b \]

– Alice shares the key \(g^{a'b'} \) with Mallory
– Bob shares the key \(g^{a'b} \) with Mallory
– Alice and Bob do not share any key
– what is Mallory capable of doing?
• Alice and Bob need to make sure they are exchanging messages with each other
 – there is a need for authentication
 – preceding this protocol with an authentication scheme is not guaranteed to solve the problem
 • authentication needs to be a part of the key exchange
 • this is called authenticated key exchange

• A solution that addresses the problem relies on certificates and digital signatures
All constructions studied so far rely on the fact that an adversary is limited in computational power. If it has more resources than we anticipate, cryptographic algorithms can be broken.

Today, 112–128-bit security is considered sufficient. This means approximately that for 128-bit security, 2^{128} operations are needed to violate security with high probability.

This translates into the following parameters:

- **Symmetric key encryption**: the key size is at least 112 bits.
- **Hash functions**: the hash size is at least 224 bits.
- **Public key encryption**: the modulus is at least 2048 bits long.
Conclusions

- Proper use of cryptographic tools requires great care

- Safe use of such algorithms involves
 - familiarity with known attacks
 - adequate choice of parameters
 - including countermeasures against known attacks on implementations
 - using a cryptographically strong source of randomness

- No security by obscurity!