CSE 565 Computer Security
Spring 2019

Lecture 2: Symmetric Encryption I

Department of Computer Science and Engineering
University at Buffalo
Cryptographic Tools

- Cryptographic tools are essential in designing secure solutions and their understanding is crucial to correct usage.

- We’ll look at these types of cryptographic tools:
 - symmetric encryption
 - hash functions and message authentication codes
 - public-key encryption
 - digital signatures and certificates
 - pseudo-random number generators

- The most basic problem of cryptography:
 - ensure security of communication over insecure media
Goals of Cryptography

- **Security goals**
 - confidentiality
 - data integrity

- **Basic encryption terminology**
 - plaintext
 - ciphertext
 - cryptographic key
 - encryption
 - decryption
 - cryptanalysis
Symmetric Encryption

- **Symmetric (or secret-key) encryption** means that the same key is used both for encryption and decryption.

- The key must remain secret at both ends.

- Such algorithms are:
 - normally very fast
 - can be used as primitives in more complex cryptographic protocols
 - the key often has a short lifetime
Symmetric Encryption Formally

• More formally, a \textbf{computationally secure symmetric key encryption scheme} is defined as:

 – a \textbf{private-key encryption scheme} consists of polynomial-time algorithms (Gen, Enc, Dec) such that

 1. Gen: on input the security parameter n, outputs key k
 2. Enc: on input a key k and a message $m \in \{0, 1\}^*$, outputs ciphertext c
 3. Dec: on input a key k and ciphertext c, outputs plaintext m

 – we write $k \leftarrow \text{Gen}(1^n)$, $c \leftarrow \text{Enc}_k(m)$, and $m \leftarrow \text{Dec}_k(c)$

 • this notation means that Gen and Enc are probabilistic and Dec is deterministic
Symmetric Encryption

- The above definition allows us to encrypt messages of any length

- In practice, there are Two types of symmetric key algorithms:
 - block ciphers
 - the key has a fixed size
 - prior to encryption, the message is partitioned into blocks
 - each block is encrypted and decrypted separately
 - stream ciphers
 - the message is processed as a stream
 - pseudo-random generator is used to produce a long key stream from a short key
Attacks Against Symmetric Encryption

- Encryption and decryption algorithms are assumed to be known to the adversary

- **Types of attacks**
 - **ciphertext only attack**: adversary knows a number of ciphertexts
 - **known plaintext attack**: adversary knows some pairs of ciphertexts and corresponding plaintexts
 - **chosen plaintext attack**: adversary knows ciphertexts for messages of its choice
 - **chosen ciphertext attack**: adversary knows plaintexts for ciphertexts of its choice

- We want a general-purpose algorithm to sustain all types of attacks
Security Against Chosen-Plaintext Attacks

- In chosen-plaintext attack (CPA), adversary A is allowed to ask for encryptions of messages of its choice
 - it is active and adaptive
- A is given black-box access to encryption oracle and can query it on different messages
 - notation $A^O(\cdot)$ means A has oracle access to algorithm O
- A is asked to distinguish between encryptions of messages of its choice
CPA Security

- CPA indistinguishability experiment $\text{PrivK}_{\mathcal{A},\mathcal{E}}^{\text{cpa}}(n)$
 1. Random key k is generated by $\text{Gen}(1^n)$
 2. \mathcal{A} is given 1^n and ability to query $\text{Enc}_k(\cdot)$, and chooses two messages m_0, m_1 of the same length
 3. Random bit $b \leftarrow \{0, 1\}$ is chosen, challenge ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A}
 4. \mathcal{A} can use $\text{Enc}_k(\cdot)$ and eventually outputs bit b'
 5. Experiment outputs 1 if $b' = b$ (\mathcal{A} wins) and 0 otherwise

- $\mathcal{E} = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under the chosen-plaintext attack (CPA-secure) if for all PPT \mathcal{A}

\[
\Pr[\text{PrivK}_{\mathcal{A},\mathcal{E}}^{\text{cpa}}(n) = 1] \leq \frac{1}{2} + \text{negl}(n)
\]
Block Ciphers

- The algorithm maps an n-bit plaintext block to an n-bit ciphertext block

- Most modern block ciphers are product ciphers
 - we sequentially apply more than one operation to the message

- Often a sequence of permutations and substitutions is used

- A common design for an algorithm is to proceed in iterations
 - one iteration is called a round
 - each round consists of similar operations
 - ith round key k_i is derived from the secret key k using a fixed, public algorithm
Design Principles of Block Ciphers

- Confusion-diffusion paradigm
 - split a block into small chunks
 - define a permutation on each chunk separately (confusion)
 - mix outputs from different chunks by rearranging bits (diffusion)
 - repeat to strengthen the result
• **Substitution-permutation networks**

 – since a permutation on a block can be specified as a lookup table, this is called **substitution**

 – instead of having substitutions defined by the key, such functions are fixed and applied to messages and keys

 – mixing algorithm is called **mixing permutation**
For this type of algorithm to be reversible, each operation needs to be invertible.
Design Principles of Block Ciphers

- Let’s denote one iteration or round by function g
- The initial state s_0 is the message m itself
- In round i:
 - g’s input is round key k_i and state s_{i-1}
 - g’s output is state s_i
- The ciphertext c is the final state s_{N_r}, where N_r is the number of rounds
- **Decryption** algorithm applies g^{-1} iteratively
 - the order of round keys is reversed
 - set $s_{N_r} = c$, compute $s_{i-1} = g^{-1}(k_i, s_i)$
Another way to realize confusion-diffusion paradigm is through Feistel network:

- In Feistel network each state is divided into halves of the same length: L_i and R_i.
- In one round:
 - $L_i = R_{i-1}$
 - $R_i = L_{i-1} \oplus f(k_i, R_{i-1})$
• Are there any advantages over the previous design?

 – operations no longer need to be reversible, as the inverse of the algorithm is not used!

 – reverse one round’s computation as $R_{i-1} = L_i$ and

 $L_{i-1} = R_i \oplus f(k_i, R_{i-1})$
In both types of networks, the substitution and permutation algorithms must be carefully designed

- choosing random substitution/permutation strategies leads to significantly weaker ciphers
- each bit difference in S-box input creates at least 2-bit difference in its output
- mixing permutation ensures that difference in one S-box propagates to at least 2 S-boxes in next round
• Larger key size means greater security
 – for n-bit keys, brute force search takes $2^n/2$ time on average

• More rounds often provide better protection
 – the number of rounds must be large enough for proper mixing

• Larger block size offers increased security
 – security of a cipher also depends on the block length
Data Encryption Standard (DES)

- In 1973 National Institute of Standards and Technology (NIST) published a solicitation for cryptosystems
- DES was developed by IBM and adopted as a standard in 1977
- It was expected to be used as a standard for 10–15 years
- Was replaced only in 2001 with AES (Advanced Encryption Standard)

- **DES characteristics:**
 - key size is 56 bits
 - block size is 64 bits
 - number of rounds is 16
DES uses Feistel network

- Feistel network is used in many block ciphers such as DES, RC5, etc.
- not used in AES
- in DES, each L_i and R_i is 32 bits long; k_i is 48 bits long
• DES has a fixed initial permutation IP prior to 16 rounds of encryption

• The inverse permutation IP^{-1} is applied at the end
The f function $f(k_i, R_{i-1})$

1. first expands R_{i-1} from 32 to 48 bits (k_i is 48 bits long)
2. XORs expanded R_{i-1} with k_i
3. applies substitution to the result using S-boxes
4. and finally permutes the value
DES f Function

32 bits R_{i-1}

E

48 bits k_i

48 bits

S_1 \ldots S_8

6 bits

4 bits

32 bits

P

32 bits
• There are 8 S-boxes
 – S-boxes are the only non-linear elements in DES design
 – they are crucial for the security of the cipher

• Example: S_1

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7														
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8														
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0														
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13														

 – input to each S-box is 6 bits $b_1 b_2 b_3 b_4 b_5 b_6$
 – row = $b_1 b_6$, column = $b_2 b_3 b_4 b_5$
 – output is 4 bits
• More about S-boxes..

 – a modified version of IBM’s proposal was accepted as the standard

 – some of the design choices of S-boxes weren’t public, which triggered criticism

 – in late 1980s – early 1990s differential cryptanalysis techniques were discovered

 – it was then revealed that DES S-boxes were designed to prevent such attacks

 – such cryptanalysis techniques were known almost 20 years before they were discovered by others
- **Key computation** consists of:
 - circular shift
 - permutation
 - contraction
• Why does decryption work?
 – round function g is invertible
 • compute $L_{i-1} = R_i \oplus f(k_i, L_i)$
 • compute $R_{i-1} = L_i$
 – in the beginning apply IP and at the end apply IP^{-1}
 – round keys k_{16}, \ldots, k_1 and the f function are computed as before
DES Weak Keys

- The master key k is used to generate 16 round keys

- Some keys result in the same round key to be generated in more than one round
 - this reduces complexity of the cipher

- Solution: check for weak keys at key generation

- DES has 4 weak keys:
 - 0000000 0000000
 - 0000000 FFFFFFFF
 - FFFFFFF 0000000
 - FFFFFFF FFFFFFFF
Attacks on DES

- **Brute force attack**: try all possible 2^{56} keys
 - time-consuming, but no storage requirements

- **Differential cryptanalysis**: traces the difference of two messages through each round of the algorithm
 - was discovered in early 90s
 - not effective against DES

- **Linear cryptanalysis**: tries to find linear approximations to describe DES transformations
 - was discovered in 1993
 - has no practical implication
Brute Force Search Attacks on DES

- It was conjectured in 1970s that a cracker machine could be built for $20 million

- In 1990s RSA Laboratories called several DES challenges
 - Challenge II-2 was solved in 1998 by Electronic Frontier Foundation
 - a DES Cracker machine was built for less than $250,000 and found the key was in 56 hours
 - Challenge III was solved in 1999 by the DES Cracker in cooperation with a worldwide network of 100,000 computers
 - the key was found in 22 hours 15 minutes
 - http://www.distributed.net/des
Increasing Security of DES

- DES uses a 56-bit key and this raised concerns

- One proposed solution is **double DES**
 - apply DES twice by using two different keys k_1 and k_2
 - encryption $c = E_{k_2}(E_{k_1}(m))$
 - decryption $m = D_{k_1}(D_{k_2}(c))$

- The resulting key is $2 \cdot 56 = 112$ bits, so it should be more secure, right?
 - an attack called **meet-in-the-middle** discovers keys k_1 and k_2 with 2^{56} computation and storage
 - better, but not substantially than regular DES
Triple DES

- **Triple DES with two keys** k_1 and k_2:
 - encryption $c = E_{k_1}(D_{k_2}(E_{k_1}(m)))$
 - decryption $m = D_{k_1}(E_{k_2}(D_{k_1}(c)))$
 - key space is $2 \cdot 56 = 112$ bits

- **Triple DES with three keys** k_1, k_2, and k_3:
 - encryption $c = E_{k_3}(D_{k_2}(E_{k_1}(m)))$
 - decryption $m = D_{k_1}(E_{k_2}(D_{k_3}(c)))$
 - key space is $3 \cdot 56 = 168$ bits

- There is **no known practical attack** against either version

- Can be made backward compatible by setting $k_1 = k_2$ or $k_3 = k_2$
Summary of Attacks on DES

- **DES**
 - best attack: brute force search
 - 2^{55} work on average
 - no other requirements

- **Double DES**
 - best attack: meet-in-the-middle
 - requires 2 plaintext-ciphertext pairs
 - requires 2^{56} space and about 2^{56} work

- **Triple DES**
 - best practical attack: brute force search