1a. Lastname = Mauner
1b. Firstname = Gail
1c. Department = Psychology
1d. UB Card Barcode = 29072006506469
1e. Campus Address = 368B Park Hall
1f. Campus Phone = 645-3650 x 368
1g. Home Phone = 838-6948
1h. E-mail = mauner@acsu.buffalo.edu
1i. Fax = 645-3801
2a. Title = Brain and Language
2b. Call Number = no call #, shelved by title
2c. Volume = 59
2d. Issue = 3
2e. Date = 1997
2f. Pages = 475-472
2g. Author = Prather, P., Zurif, E., Love, T., Brownell, H.
2h. Article Title = Speed of lexical activation in nonfluent Broca's aphasia and Fluent Wernicke's aphasia
Deliver = Email
LibraryOwn = HSL
status = Faculty

Sending Host: hamachi.psy.buffalo.edu
Sender's Client: Mozilla/4.75C-CCK-MCD (C-UDP; EBM-APPLE) (Macintosh; U; PPC)
Original URL:
The introduction of the proposed agenda and the establishment of the structure are key components in the development of the document. The introduction should provide an overview of the main topics and objectives of the document. It should also set the stage for the subsequent sections by outlining the purpose and significance of the research or discussion that follows. The introduction should be clear and concise, avoiding overly technical language or detailed explanations that may be more appropriate for the main sections of the document. The introduction should also serve as a roadmap, guiding the reader through the document and highlighting the main points that will be covered.
Phonological, thematic, and conceptual knowledge are used to enhance reading comprehension, particularly in the context of the linguistic and cultural context of the text. The ability to recognize and comprehend these elements is crucial for effective reading.

Phonological Knowledge

- **Vocabulary:** Understanding the meaning of words, especially in the context of the text.
- **Syntax:** Understanding the structure of sentences, including the rules of grammar.
- **Orthography:** Understanding the spelling of words, which is essential for accurate reading.

Thematic Knowledge

- **Cultural Context:** Understanding the cultural background of the text, which can influence the interpretation of the content.
- **Historical Knowledge:** Understanding the historical context, which can provide additional insights into the text.

Conceptual Knowledge

- **Logical Reasoning:** Understanding the logical relationships between ideas in the text.
- **Critical Thinking:** Evaluating the arguments presented in the text and forming conclusions based on evidence.

These elements work together to enhance reading comprehension, allowing readers to engage more deeply with the text and understand its meaning more fully.
CSE STUDY 1: FC (CONFLUENT BGCS, APPASIA)

APASA

METHODS

(Benson, 1985; Vignolo, 1988)

Cerebral lesion is pivotal in the support temporal expression (Winkler's Syndrome), as it is one of the factors that contribute to the temporal expression of the disease. We analyzed the effect of lesion location, lesion size, and lesion duration on the temporal expression of the disease. Our findings suggest that a lesion in the temporal lobe, particularly in the anterior temporal lobe, is associated with a higher risk of temporal expression of the disease. We also observed that the duration of lesion was negatively correlated with the temporal expression of the disease. These findings are consistent with previous studies that have shown a relationship between lesion location and lesion duration on the temporal expression of the disease.
TABLE 2

An ANOVA, in which higher word was included, was also performed. The means of words across each condition were calculated. The conditions were: from least to greatest, frequent words, irregular words, and frequent words. The means of words across each condition were calculated. In order to compare the conditions, the conditions were: from least to greatest, frequent words, irregular words, and frequent words. The means of words across each condition were calculated. In order to compare the conditions, the conditions were: from least to greatest, frequent words, irregular words, and frequent words. The means of words across each condition were calculated. In order to compare the conditions, the conditions were: from least to greatest, frequent words, irregular words, and frequent words. The means of words across each condition were calculated. In order to compare the conditions, the conditions were: from least to greatest, frequent words, irregular words, and frequent words. The means of words across each condition were calculated. In order to compare the conditions, the conditions were: from least to greatest, frequent words, irregular words, and frequent words.
CASE STUDY 2: WN (FLEUR WEINICKES APHASYA)

Speed of Lexical Activation in Aphasia

The speed of lexical activation in aphasia is influenced by various factors, including the age of the patient, the severity of the aphasia, and the type of task used to measure lexical activation. However, the literature on this topic is limited and further research is needed to better understand the mechanisms underlying lexical activation in aphasia.

DISCUSSION

The findings of this study suggest that lexical activation in aphasia is influenced by a variety of factors, including the age of the patient, the severity of the aphasia, and the type of task used to measure lexical activation. Further research is needed to better understand the mechanisms underlying lexical activation in aphasia and how these factors may interact to influence lexical performance.
RESULTS

TABLE 2

<table>
<thead>
<tr>
<th>Session</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+t</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>+5</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>+20</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+23</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Priming Effect</th>
<th>Reaction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+5</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+20</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+23</td>
<td>+1</td>
<td>+1</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>Session</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+5</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+20</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+23</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
GENERAL DISCUSSION

Brock's aspiration strategies are well-integrated with those of normal control subjects and provide a model for future research in this area. The use of Brock's model for the study of normal control subjects is particularly important because it allows for a more nuanced understanding of the interaction between aspiration strategies and cognitive processes. The findings support the idea that aspiration strategies are not just a function of motivation but also a product of cognitive and neural processes. This highlights the importance of considering the brain's role in the development and execution of aspiration strategies.

DISCUSSION

The primary goal of our investigation was to understand the neural mechanisms underlying aspiration strategies. Our findings support the hypothesis that the anterior cingulate cortex (ACC) plays a critical role in the execution of aspiration strategies. The ACC has been implicated in various cognitive and emotional processes, including decision-making, conflict monitoring, and emotional regulation. Our results suggest that the ACC is particularly involved in the monitoring and resolution of conflicts arising from the interaction between aspiration strategies and cognitive processes. This aligns with previous findings that the ACC is involved in the processing of information that is both relevant and irrelevant to the task at hand.

In conclusion, our study provides new insights into the neural correlates of aspiration strategies. The findings have implications for understanding the mechanisms underlying decision-making and conflict resolution, which are crucial for both normal and abnormal cognitive functions. Further research is needed to explore the role of the ACC and other brain regions in the regulation of aspiration strategies and to elucidate the underlying neural mechanisms.
Supports the more general claim that understanding the communicative competence of children requires more than just the recognition of lexical cues. The finding of an increased role of lexical cues in the early development of children's language processing is consistent with the notion that lexical cues are crucial for the development of early language skills.

Conclusions to Sentence-Level Processing

Lexical cues play a crucial role in sentence-level processing, especially in the early stages of language development. They help children to build their understanding of sentences by providing them with information about the meaning and structure of the words they are processing. This is particularly important in the development of reading skills, where children need to match the sounds of words to the letters that make them up. By the time children are ready to read, they have a substantial understanding of the relationship between words and their meanings, which is essential for their ability to comprehend and use language effectively.

Finally, it is important to note that the role of lexical cues is not limited to the early stages of language development. Even in adulthood, lexical cues continue to play a significant role in sentence-level processing. They help adults to process complex sentences and to make sense of the language they encounter in everyday situations. Overall, the findings of this study highlight the importance of lexical cues in the development and processing of language, and suggest that they should be given more attention in both educational and therapeutic contexts.
CONCLUDING REMARKS

Support for the hypothesis (Zimmerman, Swain, O'Reilly, & love, 1994) that there is an inborn constraint on the ability of preverbal children to learn a second language in the absence of cross-modal priming and bimodal input is consistent with the idea of a second language in a first language that is modality-specific. This is consistent with the idea of a second language in a first language that is modality-specific. This is consistent with the idea of a second language in a first language that is modality-specific.

REFERENCES

Globally dispersed comprehension

Available quickly, it is the correct information needed, which results in

Speed of Lexical Activation in Aphasia

PATTER_018

409