1a. Lastname = Mauner
1b. Firstname = Gail
1c. Department = Psychology
1d. UB Card Barcode = 29072006506469
1e. Campus Address = 368B Park Hall
1f. Campus Phone = 645-3650 x 368
1g. Home Phone = 838-6948
1h. E-mail = mauner@acsu.buffalo.edu
1i. Fax = 645-3801
2a. Title = Brain and Language
2b. Call Number = no call #, shelved by title
2c. Volume = 59
2d. Issue = 2
2e. Date = 1997
2f. Pages = 334-366
2g. Author = Miikkulainen, R
2h. Article Title = Dyslexic and category-specific aphasic impairments in a self-organizing feature map model of the lexicon
Deliver = Email
LibraryOwn = HSL
status = Faculty

Sending Host: hamachi.psy.buffalo.edu
Sender's Client: Mozilla/4.75C-CCK-MCD {C-UDP; EBM-APPLE} (Macintosh; U; PPC)
Original URL:

DOC EXP
E-MAIL

RECEIVED APR 11 2002
Overview of the DISLEX Model

The DISLEX model consists of two main parts: memories for the lexical symbols in DISLEX and the method for processing symbols. DISLEX consists of two main parts: memories for the lexical symbols in DISLEX and the method for processing symbols. The model is designed to simulate the way human brains process language, including the way they remember and retrieve information.

The DISLEX model is based on the idea that the brain is made up of many different systems, each responsible for a specific function. DISLEX is designed to simulate these systems, each responsible for a specific task. The model includes a system for processing symbols, a system for retrieving information from memory, and a system for generating new information.

The DISLEX model is designed to be self-organizing, meaning that it can learn and adapt to new situations. As new information is added to the system, it can automatically adjust its internal processes to better understand and process the new information. This self-organizing nature makes DISLEX a powerful tool for simulating the way the brain works and learning about the processes involved in language processing.

Introduction

The DISLEX model is a self-organizing, feature map model of the lexical system. It is designed to simulate the way the brain processes language, including the way it learns and remembers new words and information. The model is based on the idea that the brain is made up of many different systems, each responsible for a specific function. DISLEX is designed to simulate these systems, each responsible for a specific task. The model includes a system for processing symbols, a system for retrieving information from memory, and a system for generating new information.

The DISLEX model is designed to be self-organizing, meaning that it can learn and adapt to new situations. As new information is added to the system, it can automatically adjust its internal processes to better understand and process the new information. This self-organizing nature makes DISLEX a powerful tool for simulating the way the brain works and learning about the processes involved in language processing.
Symbolic Representations

A common way to represent the essential symbols in the domain

Representing Symbols and Meanings

In this book, we introduce a hierarchical model of the computer's representations and the corresponding symbols. The model is based on the idea that the computer's representations can be organized into a hierarchical structure, with the highest level representing the most abstract concepts and the lower levels representing more concrete concepts.

In addition to organizing knowledge hierarchically, the computer also uses symbolic representations to encode knowledge in a way that is easy for humans to read and understand.

Semantic Concepts

Lexical Symbols

Orthographic Symbols

SELF-ORGANIZING FEATURE MAP LEARNING

Risto Miikkulainen

339
The model of the mind proposed in the document involves a neural network that represents knowledge and concepts. The network is structured to process information in a way that mirrors human cognitive processes. The core of this model is a neural network that learns to associate meanings with words, forming a type of semantic representation.

The network consists of a series of layers, each layer performing a specific function. The input layer receives words and their meanings, which are then processed through multiple layers of neurons. Each neuron in the network is connected to others, forming a dense network of interactions.

The network learns to associate words with their meanings through a process of training. This training involves adjusting the strengths of these connections (weights) to minimize the difference between the network's output and the actual meanings of the words. The goal is to create a representation of words and concepts that is accurate and predictive.

Similar to human language, the network is designed to understand the context in which words are used. This is achieved through the use of feature maps, which help the network to recognize patterns and relationships between words and meanings. These feature maps are learned during the training process and allow the network to generalize the learned representations to new, unseen data.

The network's ability to learn from data and make predictions about new information is what gives it the power to understand and generate human language. This capability is crucial for tasks such as natural language processing, machine translation, and conversational AI.

In conclusion, the neural network model presented in the document is a powerful tool for understanding and processing language. It learns to represent words and concepts in a way that is similar to how humans do, allowing it to perform tasks that require a deep understanding of language.

Concept Representations

Similar words have similar representations, and the network can learn to associate words with their meanings in a way that is both efficient and effective. This is achieved through a process of learning and adaptation, where the network adjusts its weights based on the input data. The result is a system that can understand and generate language in a way that is both accurate and human-like.
where \(N \) is the symbol of concept representation vector \(\mathbf{w} \), the weight vector of \(f \), and \(a \) is the smallest number among the horizontal and vertical distance from \(c \) to the set of units within a certain vertical and horizontal distance from \(c \) and \(P \) is the output of the nearest neighbor around the image unit \(c \) (determined according to the formula \(f \)).

\[
N \in (f) \iff \frac{a^2}{a^2 + ||\mathbf{w} - \mathbf{x}||^2} = \theta
\]

The formula \(f \) is the output of the nearest neighbor around the image unit \(c \) (determined according to the formula \(f \)).

In the formula \(f \), the weight vector of \(f \) and the weight vector of the map refer to the weight vectors of the map and the weight vectors of the concept representation vector \(\mathbf{w} \), respectively.
Many-to-one mappings are possible. Words are defined by multiple senses (e.g., "run" can mean "to move" or "to play a running game"). The brain is flexible and can adapt to new meanings. The mapping is not always one-to-one, and synonyms often overlap.

The mapping process involves the association of words with the concepts they represent. This mapping is not always perfect, and words can have multiple meanings. For example, "dog" can refer to a pet animal or a hunting animal. The mapping process is complex and involves the interaction of various cognitive processes.
\[\sum_{i=1}^{n} \left[\frac{1^{m_i} m + (1)^{m_i} J}{1^{m_i} m + (1)^{m_i} J} \right] = (1 + 1)^{m_i} \]

where \(m \) is the unconditioned weight between the source map and target.

The weights between active units are increased proportionally to their activity.

In this model, the meaning of a symbol is given by the combination of all symbols that are active at the same time. The meaning of a symbol is the sum of the meanings of all active symbols. The model is capable of learning to associate new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

A key feature of the model is its ability to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.

The model is able to learn new concepts by associating new symbols with existing ones, and it is able to generate new symbols based on existing ones. The model is also capable of generating new meanings for symbols, which can be used to create new concepts.
When an ambiguous symbol is input to the lexicon, all possible meanings can be determined. The correct meaning is chosen when the context reveals enough information to choose the correct one. The correct meaning is chosen when the context reveals enough information to choose the correct one. The correct meaning is chosen when the context reveals enough information to choose the correct one. The correct meaning is chosen when the context reveals enough information to choose the correct one. The correct meaning is chosen when the context reveals enough information to choose the correct one. The correct meaning is chosen when the context reveals enough information to choose the correct one.
The DISLEX function is a measure of the ability to identify and process phonological information, which is essential for reading and spelling abilities. In DISLEX-Y and DISLEX-X, the function is modeled as a combination of three factors: phonological processing, orthographic processing, and visual-spatial processing. The DISLEX-Y model includes a phonological processing component, which is responsible for the conversion of auditory input into a phonological representation. The DISLEX-X model includes an orthographic processing component, which is responsible for the conversion of phonological input into a graphemic representation. The visual-spatial processing component is common to both models and is responsible for the integration of visual and spatial information.

The DISLEX function is estimated from performance on a series of tasks that require the identification and processing of phonological, orthographic, and visual-spatial information. These tasks include word recognition, phoneme deletion, and visual word identification. The DISLEX function is used to predict reading and spelling abilities in children and adults with and without reading difficulties.

The DISLEX function is a useful tool for identifying and assessing reading and spelling difficulties, and for developing targeted interventions to improve these abilities.
Those results could be explained by an unsupervised process that makes the matching of expression higher, because it is present in both cases. The matching of expression is related to the human brain's ability to recognize patterns in the environment. These findings suggest that the same mechanisms are involved in both cases.

In the DISFERN condition, the probability of matching the expression is higher because the scene is more similar to the one in DISFERN. This is because the DISFERN condition is more similar to the real-world scene, which is more complex and contains more information. The DISFERN condition also contains more details, such as textures and colors, which are more important in recognizing the scene.

In the DISFERN condition, the probability of matching the expression is higher because the scene is more similar to the one in DISFERN. This is because the DISFERN condition is more similar to the real-world scene, which is more complex and contains more information. The DISFERN condition also contains more details, such as textures and colors, which are more important in recognizing the scene.

DISCUSSION

The results of this study suggest that the DISFERN condition is more effective than the DISFERN condition in recognizing the scene. This is because the DISFERN condition contains more details, such as textures and colors, which are more important in recognizing the scene. The DISFERN condition is also more similar to the real-world scene, which is more complex and contains more information. This is why the DISFERN condition is more effective than the DISFERN condition in recognizing the scene.

In conclusion, the results of this study suggest that the DISFERN condition is more effective than the DISFERN condition in recognizing the scene. This is because the DISFERN condition contains more details, such as textures and colors, which are more important in recognizing the scene. The DISFERN condition is also more similar to the real-world scene, which is more complex and contains more information. This is why the DISFERN condition is more effective than the DISFERN condition in recognizing the scene.
The phonological word symbols were represented in sensory or pro-

Appendix B

Phonological Representations

phonology, phonetic features that are perceived similarly to have more unique

even numbers, obtained from the CELF database at Max Planck Institute for Psy-

Appendix A

Phonological Representations

correlation to obtain certain patterns of phonology of the normal process of speech

The phonological word symbols were represented in sensory or pro-

What if, a person did not have any phonetic feature? This would not make sense, because phonological

even numbers, obtained from the CELF database at Max Planck Institute for Psy-

Appendix A

Phonological Representations

correlation to obtain certain patterns of phonology of the normal process of speech

The phonological word symbols were represented in sensory or pro-

What if, a person did not have any phonetic feature? This would not make sense, because phonological

even numbers, obtained from the CELF database at Max Planck Institute for Psy-

Appendix A

Phonological Representations

correlation to obtain certain patterns of phonology of the normal process of speech

The phonological word symbols were represented in sensory or pro-

What if, a person did not have any phonetic feature? This would not make sense, because phonological
APPENDIX D

Data, when parsed, has multiple and multifaceted uses.

The phoneme level is one of the most important levels in phonology.

<table>
<thead>
<tr>
<th>Phoneme</th>
<th>Example</th>
<th>Frequency</th>
<th>Note</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>peep</td>
<td>10</td>
<td>1</td>
<td>Value 1</td>
</tr>
<tr>
<td>t</td>
<td>tap</td>
<td>7</td>
<td>2</td>
<td>Value 2</td>
</tr>
<tr>
<td>k</td>
<td>kick</td>
<td>5</td>
<td>3</td>
<td>Value 3</td>
</tr>
<tr>
<td>s</td>
<td>skip</td>
<td>2</td>
<td>4</td>
<td>Value 4</td>
</tr>
<tr>
<td>l</td>
<td>lip</td>
<td>1</td>
<td>5</td>
<td>Value 5</td>
</tr>
</tbody>
</table>

The phoneme level is one of the most important levels in phonology.

TABLE 2

SEF ORGANIZING FEATURE MAP ORLEXON

<table>
<thead>
<tr>
<th>Letter</th>
<th>Example</th>
<th>Meaning</th>
<th>Sound</th>
<th>Chromatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>apple</td>
<td>Fruit</td>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>bear</td>
<td>Animal</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>cat</td>
<td>Animal</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>dog</td>
<td>Animal</td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>eye</td>
<td>Body</td>
<td>N</td>
<td>4</td>
</tr>
</tbody>
</table>

APPENDIX C

Semantic Representations

In Table 2, the semantic encoding of their feature values in Table 3.

TABLE 3

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoneme</td>
<td>p</td>
</tr>
<tr>
<td>Position</td>
<td>1</td>
</tr>
<tr>
<td>Category</td>
<td>p</td>
</tr>
<tr>
<td>Phoneme</td>
<td>t</td>
</tr>
<tr>
<td>Position</td>
<td>2</td>
</tr>
<tr>
<td>Category</td>
<td>t</td>
</tr>
<tr>
<td>Phoneme</td>
<td>k</td>
</tr>
<tr>
<td>Position</td>
<td>3</td>
</tr>
<tr>
<td>Category</td>
<td>k</td>
</tr>
<tr>
<td>Phoneme</td>
<td>s</td>
</tr>
<tr>
<td>Position</td>
<td>4</td>
</tr>
<tr>
<td>Category</td>
<td>s</td>
</tr>
<tr>
<td>Phoneme</td>
<td>l</td>
</tr>
<tr>
<td>Position</td>
<td>5</td>
</tr>
<tr>
<td>Category</td>
<td>l</td>
</tr>
</tbody>
</table>

The phoneme level is one of the most important levels in phonology.

There are no features in the feature set that are not associated with the phonemes in Table 2.
REFERENCES

caps are used in the sentences
some words are in the captions

Next Entry: 363
397

In recent years, consciousness—the application of conscious

Consciousness (or mental) networks are complete programs and associated

INTRODUCTION

In order to reproduce the patient's naming errors, a 1996 analysis of

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which

The simulation of naming disorders shows that the processes by which