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ARTICLE NO. BL971820

Risto Miikkulainen

Department of Computer Sciences, The University of Texas at Austin

DISLEX is an artificial neural network model of the mental lexicon. It was built
to test computationally whether the lexicon could consist of separate feature maps
for the different lexical modalities and the lexical semantics, connected with ordered
pathways. In the model, the orthographic, phonological, and semantic feature maps
and the associations between them are formed in an unsupervised process, based
on cooccurrence of the lexical symbol and its meaning. After the model is organized,
various damage to the lexical system can be simulated, resulting in dyslexic and
category-specific aphasic impairments similar to those observed in human pa-
tients.  © 1997 Academic Press

INTRODUCTION

The human lexical system is believed to be highly modular, consisting of
a central semantic component and separate symbol memories for the differ-
ent input and output modalities (Caramazza, 1988; McCarthy & Warrington,
1990). Such an architecture is intuitively compelling since the modalities
give rise to different representations, and they are processed through different
neural structures. Considerable experimental evidence also supports the dis-
sociation of lexical components. Modularity therefore forms a good guide-
line for building a computational model of the lexical system

How are the individual components implemented in the brain? Not much is
known about the structures underlying higher functions such as the lexicon.
However, the perceptual mechanisms are very well understood, and they
appear to be organized around topological maps. For example, nearby re-
gions in the mammalian primary visual cortex respond to nearby regions in
the retina (Hubel & Wiesel, 1959, 1965). Similar topological maps are
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known to exist in other sensory systems and motor systems as well (Knudsen
et al., 1987), and it is quite possible that higher-level information is also
represented in a similar manner. However, higher areas of the brain represent
abstract information, and it is difficult to establish to what features a particu-
lar neuron is sensitive, let alone determine whether the sensitivity of neurons
in a particular area forms a topological organization. It has been possible to
locate cells that are responsive to particular faces and facial expressions, as
well as neurons that respond selectively to different words, and these cells
appear to form localized groups (Hasselmo et al., 1989; Heit et al., 1989;
Rolls, 1984).

Indirect evidence for localization in the lexical system comes from patients
with brain lesions. A number of patients have impairments of specific syntac-
tic or semantic categories, such as concrete words, inanimate objects, and
names of fruits and vegetables (Caramazza, 1988; Hart et al., 1985; War-
rington & Shallice, 1984). Such impairments could result from localized
damage to a topological map that lays out the semantic properties of words.

These observations form the motivation for the DISLEX model of the
human lexical system. The main hypothesis to be tested computationally is
that the lexical system consists of multiple topological feature maps, each
either representing the symbols within one modality or laying out the word
semantics. In the experiments reported in this paper, the DISLEX model was
first organized based on examples of desired input—output behavior, and then
subjected to simulated psycholinguistic experiments under various neural
damage. The dyslexic and aphasic behavior observed in the model as a result
was consistent with those of human patients. Because such behavior emerges
automatically from the DISLEX architecture (and is not programmed in per
se), it constitutes computational support for the hypothesis. The model also
predicts that form-specitic impairments would be possible in the human lexi-
cal system.

The orthographic and semantic components of DISLEX were used as the
lexicon for the DISCERN subsymbolic story processing system (Miikku-
lainen, 1993). This paper describes the first full implementation of DISLEX,
including the phonological modality as well. Below, an overview of DISLEX
is first given. The orthographic, phonological, and semantic representations
used in the model are reviewed, followed by an analysis of the topological
maps in DISLEX and the mechanisms for associating lexical symbols with
their meanings. The behavior of DISLEX is illustrated focusing on priming
and disambiguation, dyslexic impairments, and category-specific aphasic im-
pairments. A discussion of the limitations of the model and future research
directions concludes the paper.

OVERVIEW OF THE DISLEX MODEL

DISLEX consists of two main parts: memories for the lexical symbols in
the ditferent input and output modalities, and the memory for the lexical
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Fic. 1. The DISLEX model of the human lexical system. The lexical symbol memories
are modality and direction specific. Dashed lines indicate associative pathways, solid lines
propagation of distributed representations.

semantics (Fig. 1). The symbol memories store distributed representations
(vectors of gray-scale values between 0 and 1) for the orthographic and pho-
nological word symbols that are used in communication with the external
world. For example, the orthographic representation for DOG consists of the
visual form of the letters D, O, and G, while the phonological representation
stands for the string of phonemes /d/, /Q/, and /g/. The semantic memory
consists of distributed representations of distinct concepts. For example, the
concept dog refers to a specific animal and contains information such as
domestic, mammal, brown, and so on. There is a pathway from the semantic
memory to higher-level systems such as language processing and episodic
memory, which use the semantic representations. The semantic memory is
also connected to sensorimotor memory, which contains visual images of
objects and other perceptual and motor information. This pathway allows
nonlinguistic access to the semantic memory, and provides a possible means
for symbol grounding.

The symbol memories and the semantic memory are implemented as fea-
ture maps. There is one map for each input and output modality and one for
the semantic memory. Each unit in a feature map represents a word (i.e., a
symbol or a concept) in two ways: (1) each unit has an internal parameter
vector, also called the input weight vector, which stores a distributed repre-
sentation for a word, and (2) each unit is a local representation for that word
on the map. The maps lay out each high-dimensional distributed representa-
tion space on a 2D network so that the similarities between words become
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FiG. 2. Lexicon propagation. The orthographic input symbol DOG is translated into the
semantic concept dog in this example. The representations are vectors of gray-scale values
between 0 and |, stored in the weights of the feature map units. The size of the unit on the
map indicates how strongly it responds. Only a few strongest associative connections of the
orthographic input unit DOG {and only that unit) are shown.

apparent (Fig. 2). Lexical symbols with similar form, such as BALL and
DOLL, are represented by nearby units in the symbol map. In the semantic
map, semantic concepts with similar content, such as 1ivebat and prey,
are mapped near each other. When a word representation is input, the units
in the map respond according to how similar their input weight vector is to
the word representation. The maximally responding unit is taken to represent
the input word on the map, and its label indicates the classification of the
input. For example, an orthographic input pattern may be recognized this
way as an instance of the symbol DOG (Fig. 2).

The symbol maps are densely connected to the semantic map with one-
way associative connections (Fig. 2). Each symbol unit is initially connected
to all semantic units, although only a small subset of those connections re-
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main effective after learning. A localized activity pattern representing a sym-
bol (e.g., DOG) in an input map will cause a localized activity pattern to
form in the semantic map, representing the meaning of the symbol. The units
in the semantic map have input weight vectors just like the symbol units,
and these vectors represent distinct meanings. After the maximally active
semantic unit has been found (the one labeled dog), the corresponding se-
mantic representation is obtained from the input weights of this unit (i.e.,
by propagating its activity through the input weights to the output of the
semantic map).

In addition to activation through the associative connections, units on the
semantic map can be activated in a normal feature map manner through the
Ainput connections. If a particular meaning is to be output, its distributed rep-
resentation is given as input to the semantic map. A localized activity pattern
results, and activation propagates through the associative connections to the
output maps. The maximally activated symbol map unit then stands for the
symbol corresponding to the input meaning. Its distributed representation is
obtained from the input weights of the maximally activated symbol map
unit. The lexicon thus transforms a symbol representation into a semantic
representation, and vice versa, and serves as an input/output filter for lan-
guage processing.

The symbol and concept maps are organized and the associative connec-
tions between them are formed simultaneously in an unsupervised learning
process by presenting the system with cooccurring lexical symbols and their
meanings. Before discussing the details of the self-organizing process, let
us look at how the symbols and concepts are represented.

REPRESENTING SYMBOLS AND MEANINGS

As customary in artificial neural network models, both the symbols and
meanings are represented distributively as feature vectors, or vectors of gray-
scale values between O and 1. It is the similarities among these vectors that
determines the organization of the lexicon, and theretore they must be de-
signed so that they capture the essential similarities in the domain.

Symbol Representations

It is reasonable to assume that the neural representations in each lexical
symbol modality reflect the structure of the physical symbols for which they
stand. Therefore in DISLEX, the orthographic representations reflect the vi-
sual similarities among the written words, and spoken words that sound simi-
lar are represented by similar phonological feature vectors. The same ortho-
graphic and phonological representations are used for both input and output.
While certainly the motor representations for the symbols are different from
their perceptual counterparts, it is assumed that they encode essentially the
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FiG. 3. The training data for the lexicon. Orthographic representations are blurred bitmaps of
the orthographic words and phonological representations consist of concatenations of phoneme
representations. Concept representations were developed by FGREP in the case-role assign-
ment tusk and stand tor distinct meanings. Gray-scale boxes indicate component values be-
tween 0 and 1. The connections depict the mapping between the symbols and their meanings.
Many concepts map to several synonymous lexical symbols, and the homonymous symbols
CHICKEN and BAT map to two distinct concepts each. The orthographic and phonoiogical
symbols correspond one-to-one to each other in this data.

same information and can be approximated by representations of the physical
properties of the symbols.

In the orthographic domain, each letter of the alphabet was given a value
between 0 and 1 according to its darkness, measured by the number of black
pixels in its bitmap representation (Appendix A). The word representation
vectors were then formed by concatenating the darkness values of the indi-
vidual letters (Fig. 3). This encoding scheme is very simple and leaves out
many orthographic details: in effect, the representations stand for extremely
blurred pictures of the words. This scheme was chosen over more compli-
cated ones for two reasons: (1) In the orthographic domain, there is no obvi-
ous more accurate alternative that would capture the similarities any better.
(2) This scheme is quite adequate for the DISLEX task and data. Each written
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word symbol has a unique representation, and similar symbols have similar
representations (Figure 3).

A slightly more detailed encoding was employed in the phonological do-
main, not because more details were necessary, but because such an encoding
is standard in this domain. Each phoneme was represented as a feature vector
according to the International Phonetic Alphabet, with numeric values cod-
ing the features of place and manner of articulation, sound, chromaticity,
and sonority (Appendix B). The phoneme representation vectors were then
concatenated to form the word representations (Fig. 3). Again, each phono-
logical word symbol has a unique representation in the resulting vectors, and
similar words have similar representations.

Concept Representations

The semantic concept representations stand for distinct meanings in the
language. Although it is possible to encode meanings by hand as feature
vectors (see, e.g., McClelland & Kawamoto, 1986), as was done for symbols,
it is difficult to decide what the appropriate semantic features should be.

With the FGREP-mechanism (Miikkulainen, 1993; Miikkulainen & Dyer,
1991), it is possible to derive a distributed encoding automatically, based on
examples of how the words are used in the language. An FGREP-network
is a three-layer backpropagation (Rumelhart et al., 1986) network, where
part of a task is to modify the input representations so that they best support
the task. Representations for items that are used in similar ways in the train-
ing examples become similar, and in this sense, FGREP representations can
be claimed to stand for the meanings of the input items.

The semantic representations for DISLEX were formed with an FGREP
network in the sentence case-role assignment task of McClelland and Kawa-
moto (1986). A number of sentence exampies were generated based on a set
of templates and semantic categories (listed in Appendix C). Only concepts
that represented unique meanings among the lexical symbols were used. For
example, MAN, WOMAN, BOY, and GIRL were used exactly the same
way in the data, and therefore they were considered instances of the same
concept: human. On the other hand, CHICKEN had two distinct meanings:
food and prey. Such ambiguities between symbols and meanings were
set up intentionally to make the lexicon mapping more interesting. The input
to the network consisted of the syntactic assignments of the sentence (e.g.,
subject = human, verb = ate, object = food), and the network was
trained to assign the correct semantic case roles for them (agent = human,
verb = ate, patient = food).

Starting with initially random representations and weights, the FGREP
network was trained with 0.1 learning rate for 2000 epochs and with 0.05
for an additional 250 epochs, at which point the average output error E,,,
was 0.015. As a side effect of learning the case-role assignment task, the
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FiG. 4. A self-organizing feature map network. This network implements a mapping from
a 3-dimensional input space onto a two-dimensional location in the network. The values of
the input components, weights, and the unit output are indicated by gray-scale coding.

network developed representations for the input concepts (Fig. 3). Words
that belong to the same semantic category (such as animals, hitters, etc.)
have a number of uses in common, and their representations have become
similar. The total usage is different for each concept, and consequently their
representations are different. They stand for unique meanings.

The ambiguities between linguistic symbols and their meanings are shown
explicitly in the many-to-many mapping between unique symbols and unique
meanings of Fig. 3. These data were used to organize the lexicon. .

SYMBOL AND CONCEPT MEMORIES

The lexicon components are implemented as feature maps. The basic idea
of self-organizing feature maps is first briefly reviewed below, followed by a
description of the symbol and concept maps in DISLEX and their properties.

Self-Organizing Feature Maps

A 2-D topological feature map (Kohonen, 1989, 1990) implements a to-
pology-preserving mapping from a high-dimensional input space onto a 2-
D output space. The map consists of an array of processing units, each with
N weight parameters (Fig. 4). The map takes an N-dimensional vector as its
input and produces a localized pattern of activity as its output. In other words,
the input vector is mapped onto a location on the map.

Each processing unit receives the same input vector and produces one
output value. The response is proportional to the similarity of the input vector
and the unit’s weight vector. The unit with the largest output value constitutes
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the image of the input vector on the map. The weight vectors are ordered
in such a way that the output activity smoothly decreases with the distance
from the image unit, forming a localized response (an activity ‘‘bubble’”).

The weight vectors approximate specific items of the input space in such
a way that topological relations are retained. This means roughly that nearby
vectors in the input space are mapped onto nearby units on the map. This
is a very useful property, because the complex similarity relationships of the
high-dimensional input space (such as a word representations) become visi-
ble on the map.

The organization of the map (i.e., the assignment of the weight vectors)
is formed in an unsupervised learning process (Kohonen, 1982b, 1989). The
input items are randomly drawn from the input distribution and presented
to the network one at a time (Fig. 4). The map responds to each vector by
developing a localized activity pattern. The weight vector of the maximally
responding unit and each unit in its neighborhood are changed toward the
input vector, so that these units will produce an even stronger response to
the same input in the future. This way, the map adapts in two ways at each
presentation: (1) the weight vectors become better approximations of the
input vectors, and (2) neighboring weight vectors become more similar. To-
gether these two adaptation processes eventually force the weight vectors to
become an ordered map of the input space. The process begins with very
large neighborhoods, that is, the weight vectors change in large areas. This
results in a gross ordering of the map. The size of the neighborhood and the
learning rate decrease with time, allowing the map to make finer and finer
distinctions between items.

There are several alternatives for implementing similarity metric, neigh-
borhood selection, and weight change in feature maps. A biologically plausi-
ble process would be based on weighted sum of the input, lateral inhibition
and redistribution of synaptic resources (Kohonen, 1982b; Sirosh & Miikku-
lainen, 1994). These mechanisms can be abstracted and replaced with com-
putationally more efficient ones without obscuring the process itself. The
similarity in DISLEX is measured by Euclidian distance, the neighborhood
consists of a square area around the maximaily responding unit, and the
weight changes are proportional to the Euclidian difference. More specifi-
cally, the output n; of unit (i) in a lexicon map is

1 — __x - :.—Q__ - NN:_:_ ;:..\v e 2:
q.—c = N\:Ex - NN_:S A_v

0 otherwise,

where x is the symbol or concept representation vector, m; is the weight
vector of unit (i,j), N, is the neighborhood around the image unit ¢ (defined
as the set of units within a certain vertical and horizontal distance from ¢),
and d,,;, is the smallest and d,,, the largest distance of X to a unit in the

———
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neighborhood. This formula generates a regular concentrated activity pattern
around the maximally responding unit.

With a(z) as the gain, the weight components are changed according to
the input vector—weight vector difference:

M) + DI — Wy if (i) € N1,

1) = 2
—\:»C. v tiAC otherwise, A )

where the neighborhood N (¢) shrinks with time.

Symbol and Concept Maps

The symbol and concept maps in DISLEX were organized independently
and simultaneously, so that associative connections between them could be
developed at the same time (as discussed in the next section). Because the
same symbol representations were used for both input and output in each
modality, the input and output maps developed the same order. This common
organization is referred to as the orthographic map and the phonological map
below.

During self-organization, each lexical symbol <> semantic concept repre-
sentation pair (figure 3) was presented to the appropriate maps 150 times in
random order. The same learning rate a(r) was used for all maps and associa-
tive connections (Egs. 2 and 3). The learning rate was linearly decreased
from 0.1 to 0.05 during the first 50 epochs, then to 0.0 during the remaining
100 epochs. At the same time, the neighborhood radii on all maps were
decreased from 4 to 1 and then from | 10 0.

In the self-organizing process, the symbol and concept representations.be-
come stored in the weights of the feature map units. Each orthographic and
phonological symbol has an image unit on the appropriate symbol map, and
this unit’s weight vector equals the representation for that word. Semantic
concepts are represented in the same manner, The weight vectors of interme-
diate units represent combinations of representations. For example, an unla-
beled semantic unit between dog and predator has features of both do-
mestic and carnivorous animals.

All final maps exhibit hierarchical knowledge organization (Fig. 5). Large
areas are allocated to different categories of words, and each area is divided
into subareas with finer distinctions. The symbol maps become mainly orga-
nized according to word length. There are separate, adjacent areas for ortho-
graphic symbols with 3, 4, 5, 6, and 7 characters, and words with 3, 4, and
5 phonemes. Within these areas, similar words are mapped near each other.
For exampie, BAT is mapped between BOY and HIT and DOLL is located
next 1o BALL in the orthographic map. Similarly in the phonological map,
/dQg/ and /dQ1/ and /b$1/ and /b$1/ are mapped near each other.

The semantic map has three main areas: verbs, animate objects, and inani-
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mate objects. Finer distinctions reveal the semantic categories used in gener-
ating the sentence examples for FGREP (Table 5). For example, there are
subareas for hitters, possessions, and fragile-objects, with vase, which be-
longs to all these categories, at the center. Note that the categorization was
not directly accessible to the FGREP network or the feature map at any point.
It was only implicitly represented by the sentences that were input to the
FGREP network. The categories were extracted by FGREP, coded into the
representations, and finally visualized on the semantic feature map. The final
map reflects both the syntactic and the semantic properties of the words.

In the self-organizing process, the distribution of the weight vectors be-
comes an approximation of the input vector distribution (Kohonen, 1982a,
1989; Ritter, 1991; Ritter & Schulten, 1986). More weight vectors are allo-
cated to dense areas of the input space, and as a result these areas are magni-
fied (represented to greater detail) on the map. This can be clearly seen in
the word maps. For example, the semantic representations for the different
animals are very similar, spanning only a very small part of the representation
space (Fig. 3), yet a relatively large area is allocated for animals on the
semantic map.

The two dimensions of the map do not necessarily stand for any recogniz-
able features of the input space. They develop automatically to facilitate
best discrimination between input items. The map tries to approximate high-
dimensional similarities with space-filling (Peano) surfaces and tries to fill
the whole area of the map with data. As a result, the ordered areas on the
map are likely to have complicated and intertwined, rather than compact and
regular, shapes. This is the case in all the maps in DISLEX.

Feature Maps as Lexicon Components

To conclude, seif-organizing feature maps have several properties that
make them a good model for the lexical system:

1. The classification performed by a feature map is based on a large num-
ber of parameters (the weight components), making it very robust. Incom-
plete or somewhat erroneous word representations can be correctly recog-
nized.

2. Once an inexact word symbol or concept is recognized, it is possible
to recover its exact representation from the weights of the image unit. In
other words, categorical perception can be modeled.

3. The map tends to be continuous, containing many intermediate units
that represent items between established categories. In other words, words
can have soft boundaries.

4. Several items can be active on the map at the same time, which means
that different alternatives (synonyms, or ambiguous meanings) can be repre-
sented distinctly and in parallel. With connections between different maps,
many-to-many mappings are possible.
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unit for each symbol representation. The map is
word length. (b) Phonological map. The labels indicate the images tor each phonological word
representation. Again, the word length is the major ordering factor. (¢) Semantic map. The
labels on this 7 X 7 map indicate the maximally responding unit for each concept representa-
tion. The map is organized according to the semantic categories (Table 5).

5. The differences of the most frequent input items are magnitied in the
mapping, i.c., the variations of the most common word meanings or surface
forms are more finely discriminated.

6. The self-organizing process requires no supervision and makes no as-
sumptions on the form or content of the words. The properties of the repre-
sentations which provide the best discrimination are determined automati-
cally. .

In the following sections, it will be shown how the topological organiza-
tion of the map leads to plausible dyslexic and aphasic behavior under simu-
lated damage. However, first we need to discuss how the associative connec-
tions between maps translate symbols to concepts and vice versa.
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ASSOCIATING SYMBOLS AND CONCEPTS

The mapping between symbols and concepts is many-to-many. Some
words have multiple meanings (homonyms), and sometimes the same mean-
ing can be expressed with several different symbols (synonyms). For exam-
ple, in the DISLEX training data the lexical symbol CHICKEN could mean
a living chicken or food. Similarly, BAT could be a baseball bat or a living
bat. There are also several groups of synonymous words in the data. For
example, MAN, WOMAN, BOY, and GIRL all have the same meaning hu-
man, and WOLF and LION are both predators. The many-to-many map-
ping between symbols and meanings is implemented with associative con-
nections between the symbol and concept maps.

There is a unidirectional associative connection from each unit in the or-
thographic and w:o:o_ommom_ input maps to each unit in the semantic map,
and from each unit in the semantic map to each unit in the orthographic and
phonological output maps. The connection weight indicates the strength of
the association between the symbol and the concept.

The symbol and concept maps and the associative connections between
them are organized simultaneously by presenting examples of symbol—con-
cept pairs (listed in Fig. 3). Such a training scheme models the training data
in the real world. In any particular processing context, only one of the syn-
onyms or homonyms is active, but different mappings are possible at differ-
ent times. The many-to-many mapping must be learned from these individual
examples.

The distributed representation for the symbol is presented to the appro-
priate symbol map, which develops a localized activity pattern around the
image unit (Eq. 1). Ordinary feature map adaptation then takes place within
the neighborhood. At the same time, the representation for the oo:a%o:a_:m
concept is input to the semantic map, which develops a similar localized
response, and the feature map weight vectors adapt within the neighborhood.
At this point, both maps display localized patterns of activity. The lexicon
learns to associate them by their cooccurrence, that is, through Hebbian
learning (Hebb, 1949; Heriz et al., 1991; Gustatsson & Wigstrom, 1988).
The weights between active units are increased proportional to their acti vity:

D i, uv QAijJQJC uvs va

where w . is the unidirectional weight between the source map unit at loca-
tion (4,j) (either symbol or concept) and the destination unit at (i, v) (concept
or symbol), and ng; and N, indicate the activities of these units. As is
common with Hebbian learning, the associative weight vectors are then nor-
malized:

S\_,\.<=—.:v + DS\Q.::
AM:.;S\Q.E_QV + D(—\c..:.\“_uw_\m.

S\c.__;: + Hv = AA.V
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Normalization is carried out over all associative connections of the source
unit, and its effect is to decrease the strengths of the connections to less
active units. The process corresponds to redistribution of synaptic resources,
where the synaptic efficacy is proportional to the square root of the resource
(Sirosh & Miikkulainen, 1994).

Initially, the activity patterns on the symbol and semantic maps are large,
and associative weights are changed in large areas. As the maps become
ordered, the associations become gradually more focused. The final associa-
tive connections form a continuous many-to-many mapping between the
maps. Unambiguous symbols and concepts have focused connections, as
shown in Fig. 6. If a symbol has several meanings, or one meaning can be
expressed with several synonyms, there are several groups of strong connec-
tions (Fig. 7). Units located between image units tend to combine the connec-
tivity patterns of nearby words (Fig. 7).

The associative connections are responsible for translating a symbol to its
semantic counterpart, and vice versa. The activity in one map propagates
through the conngctions and causes an activity pattern to form in the other
map:

30.5 = WAVFL = & M S\Q.E._\._m_c s AMV
ij

where w;;,, stands for the weight between the source map unit (i,j) and the
destination map unit (,v), and ng; and Mp,,, indicate the activities of these
units. The activation function g(y) = y/y.., where y,,, is the largest of the
weighted sums y to the destination map. This function scales the activity
linearly within 0 and 1, approximating focusing the initial response through
lateral inhibition. The output representation is obtained from the input
weights of the maximally responding unit by propagating the activity (which
is equal to 1) through its weight vector to the output of the lexicon.

For example, in Fig. 2, the orthographic representation of DOG is input
to the orthographic input map, which forms a concentrated activity pattern
around the unit labeled DOG. The activity propagates through the associative
connections of all active units (Fig. 6) to the semantic map, where a localized
activity pattern forms around the unit labeled dog. The semantic representa-
tion for dog is then obtained by propagating activation through the weight
vector of this unit. In a similar fashion, a phonological input can be translated
to the corresponding concept, or a concept to its orthographic or phonological
counterpart.

The behavior of the system is very robust. Even if the input pattern is
noisy or incomplete, it is usually mapped on the correct unit. Even if this does
not happen, the associative connections of the intermediate units provide a
mapping that is close enough, so that the correct meaning or symbol can be
retrieved with top-down priming.
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Orthographic input map Orthographic output map
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FiG. 6. Sample unambiguous associative mappings. Shown here are the active connections
> () from the orthographic input unit DOG to the semantic map and the active connec-
Wa,iny > O from the semantic unit do11 to the orthographic output map. The darkness
of the box indicates the strength of the connection to the unit. The strongest connections
concentrate around the image units but tend to activate nearby representations as well. For
example, in noisy conditions the input might be understood as 1ivebat instead of dog, or
the symbol BALL might be output instead of DOLL., resulting in dyslexic behavior.

PRIMING AND DISAMBIGUATION

When an ambiguous symbol is input to the lexicon, all possible meanings
are activated at the same time (Fig. 7). Such behavior is consistent with
experimental results on lexical access. For example, Swinney (1979) showed
that in sentence processing, all meanings of ambiguous words are initially
activated upon reading the word, although after reading three more syllables,
only the correct meaning for the current context remains active.
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3.04 7. Sample ambiguous associative mappings. The semantic map shows the active con-
nections from the phonological input unit /J1kIn/ (chicken), which has two possible interpre-
S:o__m., food E:._ prey. A priming process is required to select between them. At right,
the active connections from the intermediate unit next to prey, livebat, dog, and preda-
tor to the phonological output map ure shown. Possible output symbols include all animal
names /JIIn/, /1Ql@n/, /Sip/, /wUIiY, /dQg/, and /b{t/.

Ho select the correct representation in DISLEX, a top-down priming mech-
anism combined with competition among the map units can be employed.
In mm&:o: to the associative activation, the semantic map receives priming
activation through its input connections (Fig. 8). Each unit (/,j) combines
the two activations in its response:

Ny = ol = plyay + pyiy), (6)
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Maximally responding
phonological unit
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Fi;. 8. Priming and disambiguation. 1. An ambiguous symbol /JIkIn/ (chicken) is input 1o
the phonological input map. The activity propagates through the associative connections of
/J1kIn/ to the semantic map, turning on prey and food, the two possible meanings associated
with /J1kIn/. 2. At the same time, priming activation is input to the semantic map through its
input connections. 3. The unit representing prey receives the largest total activation, turns
off the other units, and sends the pattern for prey to the output of the map.

where y, , indicates activation due to associative input and y, ; due to the
priming input, the parameter p:0 = p = | determines the strength of the
priming, and & is the standard sigmoid activation function. Due to the prim-
ing activation, the unit representing the correct meaning now responds more
strongly than the other units. The representation stored in its weights is prop-
agated to the output of the map.

Such priming input could originate from the high-level parsing processes.
For example, the expectations generated by the FGREP parsing network
(Section 3.2) could serve as a possible source. After inputting The preda-
tor ate the, the FGREP network generates a strong expectation for prey.
When the phonological symbol /JIkIn/ is input, it is mapped on the unit
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labeled /JIkIn/, whose associative connections activate prey and food
equally in the semantic map (Fig. 8). The expectation pattern, which is close
to the representation for prey, is input to the semantic map and the resulting
activity is combined with the activity propagated through the associative
connections. As a result, the prey unit becomes most highly activated and
is selected as the output of the lexicon.

The weights on the associative connections learn to represent statistical
likelihoods of the associations. A very frequently active connection becomes
stronger than a rare connection. For example, if most of the occurrences of
/JIKIn/ in the training data had been paired up with food, the /JIkIn/ unit
would tend to activate the £ood unit more than the prey unit. By default,
the food meaning would be selected, and stronger priming for prey would
be required to override it.

The current implementation of DISLEX simply selects and outputs the
representation stored at the maximally responding unit. The selection could
also be implemented with lateral inhibition. The units on the map would be
connected laterally with inhibitory weights, and the initial activation would
propagate through these connections, implementing cooperation and compe-
tition between units. In this process, the activation would gradually settle
into a localized response (Sirosh & Miikkulainen, 1994). The settling times
should correspond to the reaction times observed in humans (such as those
described by, e.g., Simpson & Burgess, 1985). High-frequency words should
have shorter reaction times, and these times could be changed with priming.
With several equally likely interpretations, settling would generally take
longer. The ambiguity effect, where a word with multiple meanings is recog-
nized faster than an unambiguous word (Balota et al., 1991]; Jastrzembski,
1981; Jastrzembski & Stanners, 1975), could result from proximity of initial
activation as proposed by Joordens and Besner (1994). Such a dynamic im-
plementation of the lexicon feature maps is an important direction of future
research.

DYSLEXIC ERRORS AND SEMANTIC SLIPS

In dyslexia, words are often confused with semantically or visually/aurally
similar ones. The lexicon architecture is well suited for modeling such be-
havior. If the system performance is degraded, for example, by adding
noise to the connections, two basic types of input and production errors
occur.

In production, noise in the input connections to the semantic map may
Cause a semantic representation to be classified incorrectly. As a result, a
word with a similar but incorrect meaning would be produced, corresponding
to a semantic error in deep dyslexia. For example, the representation for dog
may be accidentally mapped on the intermediate unit among dog, 1livebat,
predator, and prey. Instead of /dQg/, one of the animals /b{t/, /Sip/,
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Fi. 9. An example of dyslexic behavior. If the associative propagation is noisy, m>.rr
may be output instead of DOLL (a). Priming or residual activation on gear has a similar
etfect (b). .

AIkIn/, /wUIE/, or /1QI@n/ could be produced (Fig. 7). Or, due to noise in
the associative output connections, the activity in the mn:::_:.c map may
propagate incorrectly to the symbol map. In this case, a word with a similar
orthographic or phonological form but a different meaning S.O:E be output,
modeling surface dyslexic behavior. For example, BALL is likely to Um gen-
erated instead of DOLL in noisy propagation to the orthographic map (Fig. cv.,
Visual, phonological, and semantic errors may also occur during .:65. Ii
an orthographic representation is mapped incorrectly on a =Q=_“Q unit on the
orthographic map, a visual error results, corresponding to seeing E@ .<<ca
incorrectly. For example, DOLL may be input as BALL. ,_):m activity in E@
symbol map may also propagate incorrectly to a nearby unit in the m@im::o
map, in which case, for example, /JIkIn/ could be understood semantically
as livebat (Fig. 7). o
Combinations of the four basic error types are also possible, resulting in
visual-then-semantic or semantic-then-visual errors (such as sympathy ¢
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orchestra) and their phonological counterparts. For example, although
SPOON is not visually or semantically similar to BAT, such a confusion
oo—wa take place if SPOON was first visually mistaken for SHEEP, and the
activity then propagated incorrectly to 1ivebat. DISLEX can also explain
why dyslexic errors are often both visually/phonologically and semantically
related to the correct word. For example, if dog is presented to the semantic
map under noisy conditions, a localized response around the intermediate
unit among dog, livebat, predator, and prey might develop.
..ﬂ:o:mr the associative connections of these units, all the symbols represent-
ing animals would be activated in the phonological map. Each symbol re-
ceives activation from at least two semantic units: their own semantic unit
(e.g., /dQg/ from dog, /1Q1@n/ from predator), and the winning inter-
m:n&ma unit (as shown in figure 7). However, /dQg/ and /b{t/ are so close
in the phonological map that they both receive activation from both dog
and livebat. Therefore, if /dQg/ does not receive the highest activation,
then /b{t/ most likely will. In other words, /b{t/ would be output because
it is both semantically and phonologically similar 1o /dQg/.

.m:::ma visual, phonological, and semantic errors, as well as combined
visual-and-semantic and visual-then-semantic errors and their phonological
counterparts, have been well documented in patients with various forms of
dyslexia (Caramazza,1988; Coltheart et al., 1988a). They also occur in noisy,
stressful, and overload situations in normal human performance. Such behay-
ior can be explained by the above mechanisms, lending support to the multi-
ple feature map lexicon architecture.

With priming, it would also be possible to model another interesting type
of performance error: the semantic (Freudian) slip (see e.g., Aitchison 1987,
Freud 1926/1958). Such errors occur when very strong semantic priming

interferes with the output function. For example, if do11 was input to the
semantic m

. ap where gear is also active duc to the simultaneous or residual
priming, the activity would propagate through the associative connections
of both (Fig. 9). As a result, the symbol BALL would receive the strongest
activation, and would be output instead of DOLL. The two output symbols

are similar, but the meaning of BALL reveals the hidden semantic priming.

CATEGORY-SPECIFIC APHASIC IMPAIRMENTS

The DISLEX architecture is consistent with recent cognitive neuropsy-
chology theories of the human lexical system, such as those of Caramazza
(1988), Warrington (1975), and Warrington and McCarthy (1987). Many
observed lexical deficits in acquired aphasia have straightforward explana-
tions in the model.

Aphasia is a language-processing disorder that typically results from a
well-localized damage to the central nervous system, such as cerebral in-
farction, brain tumor, or contusion (Damasio, 1981). A common feature of
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aphasic impairments is category specificity. A patient may have selective
difficulty or selective preservation of words that belong to a specific syntactic
or semantic category. In certain patients the lexical access to function words
is selectively impaired, in other cases the patient has trouble with verbs (Car-
amazza, 1988; Coltheart et al., 1988a). More specific impairments often oc-
cur in semantic hierarchies. Some patients have trouble with concrete words,
inanimate objects, or indoor objects (Warrington & McCarthy, 1983; War-
rington & Shallice, 1984; Yamadori & Albert, 1973), or even with classes
as specific as names of fruits and vegetables (Hart et al., 1985). In some
cases, categories such as letters, body parts, and colors are selectively pre-
served (Goodglass et al., 1986).

Deficits of this kind can be explained by the topological organization of
the semantic memory. The semantic map in DISLEX is hierarchically orga-
nized and reflects both the syntactic and the semantic properties of the words.
Localized lesions to the map that damage units or their connections would
produce selective impairments like the above.

In some cases the impairments cover all modalities, sometimes they are
limited only to verbal input or output, or even only to the orthographic or
phonological domain. This suggests that the semantic memory, visual input,
and verbal input and output modalities are represented in separate structures.
For example, some patients were unable to access specific meanings from
verbally as well as visually (with pictures) presented cues (Warrington, 1975;
Warrington & Shallice, 1984). This implies that the semantic memory itself
had been damaged. Another patient could not give definitions for aurally
presented names of living things such as *‘dolphin,”” although he was able
to describe other objects. But when shown a picture of a dolphin, he could
name it and give an accurate verbal description of it (McCarthy & War-
rington, 1988). This suggests that the visual pathway to the semantic mem-
ory, the semantic memory itseif, and the verbal outpui were preserved, but
the verbal access to the semantic memory had been damaged. In another
case, the patient was unable to name fruits and vegetables, although he was
able to match their names with pictures, and classify them correctly when
their names were presented aurally (Hart et al., 1985). In other words, his
semantic memory and verbal input were preserved, but the verbal output
function was selectively impaired.

The impairment of semantic categories restricted to a single input or output
modality can be modeled in DISLEX by damaged pathways between symbol
and concept maps. A necessary assumption is that the pathways in DISLEX
are not single axons, but consist of interneurons that also exhibit map-like
organization. Close to the semantic map the organization is semantic, close
1o a symbol map it parallels the symbol map. If the pathway is severed close
to the semantic map, a semantic impairment within this modality results.

The dissociation of the orthographic and phonological modalities is also
well documented in aphasic data. Some patients have deficits only in one of

P

JF



356 RISTO MIIKKULAINEN

the input or output channels, or different deficits in different channels (Basso
et al., 1978; Caramazza, 1988). For example, a patient may have spelling
difficulties exclusively in the orthographic output domain (Goodman & Cara-
mazza, 1986; Miceli et al., 1985). The types of errors in orthographic and
phonological dyslexia (Section 7) further suggest that the channels are orga-
nized according to the physical forms of the words. The DISLEX model
predicts that it would also be possible to lose access to specific types of
symbols, such as long or short words, as a result of localized damage to a
lexical map.

In the aphasic impairments, high-frequency words are often better pre-
served than rare words (Caramazza, 1988; Newcombe et al., 1965). This is
also predicted by the feature map organization. The most common words
occupy larger areas in the map, making them more robust against damage.

DISCUSSION

An important characteristic of the DISLEX model is that its performance
directly depends on the physical organization of the hardware. Noise can be
added to it and it can be locally lesioned, and it displays deficits similar to
those of human dyslexics and aphasics. This suggests that the model captures
some of the physical structures underlying the lexical system in the brain.
Its verification could therefore serve as a starting point for various neuropsy-
chological experiments. The central assumption, and the most important to
verify, is that the symbols and meanings are laid out on maps where different
units are selectively sensitive to different words in the data. Indeed, recently
it was found that neurons in the hippocampus respond selectively to visually
presented words (Heit et al., 1989). It would be important to find out whether
these selectivities form a map-like organization. Next, if such maps could
be found for the different modalities, it would perhaps be possible to verity
that they are connected with ordered pathways.

DISLEX still finesses much of the fine neural structure, and the mapping
to the neuron level is nontrivial. The units and connections in the model do
not necessarily correspond one-to-one to neurons and synapses, but rather
to connected groups of neurons. For example, the weight vectors in the se-
mantic map are used both for input and output, which is not a plausible
model of synaptic efficacies. However, these two-way connections could be
implemented with tightly interconnected (or phase-locking) groups of neu-
rons in the brain. Whether such groups can serve as the basic units of infor-
mation processing would need to be confirmed experimentally.

A number of other connectionist models of lexical access and lexical dis-
ambiguation have been proposed recently (Bookman, 1989; Cotrell &
Small, 1983; Gallant, 1991; Gasser, 1988 Gigley, 1988; Kawamoto, 1988:
Sharkey, 1989; Small, 1990; Waltz & Pollack, 1985). These models aim at
explaining lexical processing with low-level mechanisms, focusing on the
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timing of the process as well as on certain types of performance errors and
deficits. They are primarily process models, detached from the physical struc-
tures, and designed as controlled demonstrations of how disambiguation
could be carried out in the lexical system. One model that shares many of
the goals of DISLEX is that of Hinton and Shallice (1991), further developed
by Plaut (1991) and Plaut and Shallice (1993). In this model, an orthographic
word representation is mapped to a semantic feature representation of the
word meaning, and on to a phonological representation. An essential part of
the model is that the semantic representation layer is recurrent (trained
through backpropagation through time, Rumelhart et al. 1986, or as a deter-
ministic Boltzmann machine, Hinton 1989). A noisy orthographic input rep-
resentation causes initial activity in the semantic representation layer, which
then settles into one of the attractor states representing a meaning. The net-
work can be lesioned by deleting units and connections and by adding noise
to the connections. As a result, the attractor basins are distorted and words
are sometimes mapped to incorrect semantics in a manner that represents
the types of errors observed in human deep dyslexia.

Although DISLEX and the attractor model are based on very different
principles, they account for much of the same data. Hinton, Plaut, and Shal-
lice have addressed a wider range of dyslexic phenomena in their work,
including effects of word abstractness. On the other hand, DISLEX can ac-
count for many category-specific impairments in acquired aphasia. Further
computational experiments are necessary to compare the merits and disad-
vantages of the two approaches. Experimental results supporting neural maps
vs distributed and dynamic symbol and meaning representations would also
help in verifying the assumptions of the two models.

An important computational validation of DISLEX was performed as part
of the DISCERN system (Miikkulainen, 1993). In DISCERN, subsymbolic
neural network models of parsing, generation, episodic memory, and the
lexicon are brought together into a large artificial intelligence system that
learns to read, paraphrase, and answer questions about script-based stories.
In DISCERN the components, including the DISLEX lexicon, are not just
models of isolated cognitive phenomena; they are shown to be sufficient
computational constituents for generating complex high-level language pro-
cessing behavior.

The orthographic and phonological pathways to semantic representations
are very clearly separated in DISLEX. There is some evidence, however, that
orthographic access to semantics is at least partially affected by phonology
(Coltheart et al., 1988b). For example, Van Orden et al. (1988) found that
nonwords such as sut e and words with ambiguous phonological representa-
tions such as hare were often categorized according to their phonological
representation as a piece of clothing or a part of the human
body, although the orthographic representation alone would not activate
those meanings. These results could be explained by an automatic process
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that associates pronunciation to the text (or ‘‘reads aloud’’) in the back-
ground. Such a process could be modeled through associative connections
from the orthographic to the phonological map. Activation of an orthographic
representation would activate its phonological counterpart, which in turn
would send activation to the semantic map. It would be interesting to find
out whether such associations exist between other modalities as well; they
could easily be incorporated into the DISLEX architecture.

DISLEX is currently a model of single-word processing. It does not have
special mechanisms for representing and processing phrasal structures or
morphology. The model can deal with structured expressions in two ways:
(1) Most common morphological forms and idioms, such as nationalism
or The Big Apple can be represented like words, as single entries in the
lexicon. Different morphological forms of the same word are mapped nearby
on the semantic map and slips between forms are possible. (2) More complex
phrases and unusual, constructive forms such as kick the bucket or
nonpreemptive can be represented by their constituents in the lexicon,
and the responsibility for parsing/generating them lies within the sentence-
processing modules. These mechanisms together give a rough but fairly plau-
sible account of human performance (as described, e.g., by Aitchison 1987).
However, it seems likely that people initially process the constituents of a
new form or phrase separately, but after extensive practice the expression
becomes a single unanalyzable entry in the lexicon (Stemberger, 1985). How
this learning process could be modeled in DISLEX is an open question. Also,
dyslexic and aphasic data suggest that morphology is an independent system
that can be selectively impaired or preserved (Caramazza, 1988; Coitheart
et al., 1988a). In some cases, inflectional affixes are processed incorrectly
while the stems are preserved (Gleason, 1978), in others, the patient has
trouble producing appropriate word stems but demonstrates correct inflection
of the resuiting nonwords (Caplan et al., 1972). Such dissociations cannot
be easily explained by the current architecture.

In category-specific impairments, the more general terms are often betier
preserved (Caramazza et al., 1990; Warrington, 1975). For example, a nor-
mal subject would respond faster to ““Is a duck a bird?”’ than to *‘Is a duck
an animal?,”’ but the aphasic patient would find the latter question easier. In
some cases, the superordinate categories are accessible when the subordinate
categories are not. For example, the patient may be able to classify a canary
as abird, an animal, and a living thing, but could not confirm that it is yellow,
small, and a pet (Warrington, 1975). Such data suggest that the semantic
memory is hierarchically organized, and specific information is more vulner-
able than general information. Unfortunately in the lexicon model, the gen-
eral terms would be located at the center of more specific terms on the seman-
tic map, and would be equally easy to access and equally likely to be
impaired in local damage. Lack of physical hierarchy makes it also difficult
to account for certain psychological data on normal processing of category

S
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hierarchies. Rosch et al. (1976) and Rosch (1978) demonstrated that names
for basic-level categories (such as table or dog) are easier to process than
for superordinate and subordinate categories (e.g., furniture, spaniel). For
the current model, the level of the category would not make any difference.

However, if the semantic memory was implemented as a hierarchical tea-
ture map system (Miikkulainen 1990), the general terms would be repre-
sented higher in the hierarchy and could be better preserved. Access to the
basic level could be easier than either to the top or bottom of the hierarchy.
Such a hierarchical feature map lexicon opens many interesting possibilities
and constitutes a most promising direction for future research.

CONCLUSION

The DISLEX model was built to test computationally whether the lexical
system could consist of separate topologically organized feature maps for
the different modalities and the lexical semantics. The performance charac-
teristics and especially the dyslexic and aphasic behavior exhibited by the
model suggest that DISLEX is probably on the right track. The most impor-
tant direction of future work is to verify some of the assumptions and predic-
tions of the model experimentally and against clinical data. Such interaction
between experimental and modeling approaches should lead to better con-
straints on future models and eventually to a better understanding of the
lexical system.

APPENDIX A
Orthographic Representations

The orthographic symbol representations for each word were formed by
concatenating the values representing the darkness of each letter into a single
vector. The darkness values were obtained by counting the number of
black pixels for each letter in the 12pt MacIntosh Geneva font and scaling
the number between O and 1. The resulting darkness values are listed in
Table 1.

Although this encoding scheme is simple, it results in unique representa-
tions for all symbols in the training data, and similar symbols have similar
representations. With a larger vocabulary, more accurate representations
might be needed to make sure they are unique. The actual bitmaps of letters
could be used, or bitmaps that have been slightly blurred. Blurring introduces
overlap, causing letters that are perceived similar to have more similar repre-
sentations.

APPENDIX B
Phonological Representations ‘

The phonological word symbols were represented as sequences of pho-
nemes, obtained from the CELEX database at Max Planck Institute for Psy-
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TABLE 1
Orthographic Representations

Letter Value Letter Value Letter Value Letter Value
A 0.481481 H 0.666667 (0] 0.629630 v 0.370370
B 0.814814 I 0.148148 P 0.592593 w 0.814815
C 0.444444 J 0.296296 Q 0.666667 X 0.444444
D 0.703704 K 0.481481 R 0.703704 Y 0.259259
E 0.703704 L 0.296296 S 0.518519 Z 0.518519
F 0:444444 M 1.000000 T 0.333333
G 0.740741 N 0.666667 U 0.518519

Note. The number of black pixels for each letter in the MacIntosh Geneva font was scaled
between 0 and 1. Word representations were formed by concatenating the letter values into
a single vector.

cholinguistics. Following the International Phonetic Alphabet, each phoneme
was classified according to place and manner of articulation, sound, chroma-
ticity, and sonority, and the categorization was translated into a numerical
vector. The phoneme representation vectors were then concatenated into the
phonological word symbol vectors. The phoneme classifications are listed
in Table 2 and the numeric encoding of their feature values in Table 3.

APPENDIX C

Semantic Representations

The semantic representations were obtained with the FGREP method in
the task of assigning case roles to the syntactic constituents of the sentence.
The sentence templates are listed in Table 4 and the semantic categories in
Table 5. The input/output examples were generated from the templates by
filling each slot with a concept from a specified category. This data set was
obtained from McClelland and Kawamoto (1986) by replacing words that
were used in identical ways in their data by a single word. This way, {man,
woman, boy, girl} was replaced by human, {cheese, pasta, car-
rot} by food, {wolf, lion} by predator, {ball, hatchet, ham-
mer} by gear, {paperwt, rock} by block, {plate, window} by
glass, {fork, spoon} by utensil, and {desk, curtain} by fur-
niture. In addition, the occurrences of the ambiguous word chicken
were replaced by the appropriate unambiguous concepts food and prey,
and similarly bat was replaced by 1ivebat and gear. In the resulting
data, every concept has a unique and unambiguous usage.

APPENDIX D

DISLEX Code

The code and data for the DISLEX system are available by anonymous
ftp from cs.utexas.edu:pub/neural-nets/dilex, or on the World Wide Web,
under http://www.cs.utexas.edu/users/nn.

——— e
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TABLE 2
Phoneme Representations

Label  Example Place Manner Sound Chromacity  Sonority
1 plt none vowel voiced front-center hi-mid
E pEt none vowel voiced front mid-lo
{ pAL none vowel voiced front lo-mid
e bAy none vowel voiced front mid-hi
a bOut none vowel voiced front lo
Q pOt none vowel voiced center lo-mid
Vv pUu none vowel voiced center-back mid-lo
U pUt none vowel voiced center-back hi-mid
@ thE none vowel voiced center mid
i hEEd none vowel voiced front hi
u whO’d none vowel voiced back hi
3 bURn none vowel voiced front-center mid
$ bORn none vowel voiced back mid-lo
# bARn none vowel voiced center-back lo
p Pet bilabial stop unvoiced  none none
b Boat bilabial . stop voiced none none
t Tot alveolar stop unvoiced  none none
d Debt alveolar stop voiced none none
k Ketch velar stop unvoiced  none none
g Get velar stop voiced none none
N saNG velar nasal voiced none none
m Met bilabial nasal voiced none none
n Net alveolar nasal voiced none none
I Let alveolar lateral voiced none none
r Row alveolar approximant  voiced none none
f For labio-dental fricative frication none none
v Vow labio-dental fricative voiced none none
T THin dental fricative frication none none’
D THen dental fricative voiced none none
s Say alveolar fricative frication none none
z laZy alveolar fricative voiced none none
S SHop palatal-alveolar  fricative frication none none
Z alure palatal-alveoluar  fricative voiced none none
j Yes palatal approximant  voiced none none
X loCH velar fricative frication none none
h How glottat fricative aspiration  none none
w Why velar approximant  voiced none none
i CHeap palatal-alveolar  stop frication none none
— jubGe palatal-alveolar  stop voiced none none

Note. The phoneme label und an example of euch phoneme is given, followed by the values
of the five features that describe the phoneme. The actual representation vectors were formed
by replacing the feature values with their numeric encoding, shown in Table 3.
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TABLE 3
Phoneme Features

Place Manner Sound Chromacity Sonority
0.000 none 0.000 none 0.000 none 0.000 none 0.000 none
0.125 bilabial 0.167 stop 0.250 voiced 0.200 from 0.143 hi
0.250 labio-dental 0.333 fricative 0.500 frication 0.400 front-center  0.286 hi-mid
0.375 dental 0.500 approximant  0.750 unvoiced  0.600 center 0.429 mid-hi
0.500 alveolar 0.667 lateral 1.000 aspiration  0.800 center-back  0.571 mid
0.625 palatal-alveolar 0.833 nasal 1.000 back 0.714 mid-lo
0.750 palatal 1.000 vowel 0.857 lo-mid
0.875 velar 1.000 lo
1.000 glottal

Note. The values of each feature are represented as real numbers between 0 and 1.

TABLE 4
Sentence Templates

Sentence frame Correct case roles

I. The human ate. agent

2. The human ate the food. agent, patient

3. The human ate the food with the food. agent, patient, modifier
4. The human ate the food with the utensil. agent, patient, instrument
5. The animal ate. agent

6. The predator ate the prey. agent, patient

7. The human broke the fragileobj. agent, patient

8. The human broke the fragileobj with the breaker. agent, patient, instrument
9. The breaker broke the fragileob. instrument, patient
10. The animul broke the fragileobj agent, patient
11. The fragileobj broke. patient
12. The human hit the thing. agent, patient
13. The human hit the human with the possession. agent, patient, moditier
t4. The human hit the thing with the hitter. agent, patient, instrument
I5. The hiter hit the thing. instrument, patient

16. The human moved.

17. The humun moved the object.
18. The animal moved.

19. The object moved.

agent, patient
agent, patient
agent, patient
patieat

Note. Each frame has one to three concept slots (shown in roman typeface). Each slot has
a predetermined case role, shown at right. Each slot can be filled with any of the concepts in
the specified category, listed in Table 5. For instance, **The animal broke the fragileobj””
generates 4 X 2 different sentences, all with the case-role assignment agent = animal, patient
= fragileobj.
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TABLE 5
Semantic Categories

Semantic concepts

Calegory

human human

food food

utensil utensil

animal prey preditor livebat dog

fragileobj glass vase

breaker gear block

hitter gear block vase

possession gear vase doll dog

object gear block vase glass food furniture doll utensil

thing human prey preditor livebat dog gear block vase glass
food furniture doll utensil

verb hit ate broke moved

Note. Each slot in the sentence templates specifies a category and can be filled with any
semantic concept in that category. In other words, the categorization determines how the con-
cepts are used in the sentences.
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The Connectionist Simulation of Aphasic Naming
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The simulation of language disorders using interactive activation (1A) networks
and connectionist systems is discussed. An existing 1A account of aphasic naming
is described, in which two network parameters (decay rate and connection strength)
are varied to fit the error production of an aphasic patient. Fairly similar results can
be obtained through modification of additional parameters, including the so-called
**shared weight increase factor’” linking lexical and semantic units. This leads us
to consider simulation of aphasic naming using connectionist networks which do
not require explicit variation of network parameters. A modular connectionist archi-
tecture is presented, in which semantic-lexical and phonological knowledge are
instantiated using self-organizing Kohonen maps, while connections between them
are implemented using Hebbian networks; a linear connectionist network (Mada-
line) is used to simulate nonword repetition. The Hebbian connections are lesioned
in order to reproduce the patient’s naming errors. © 1997 Academic Press

INTRODUCTION

Connectionist (or neural) networks are computer programs and associated
data sets that can be used to simulate a wide range of *‘real-world”’ phenom-
ena. In recent years, connectionism—the application of connectionist net-
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