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Abstract

& The goal of this article is to illustrate the application of self-
organizing dynamics in the design of a model of lexical access.
We focus particularly on the mapping of sound structure on to
the lexicon and the influence of that structure on lexical access.
The approach is tested in a series of two sets of simulations
that explicate how lexical access might occur in normal
subjects and aphasic patients. Both sets of simulations address
the behavioral effects of both phonological and phonetic
variability of prime stimuli on the magnitude of semantic
priming. Results show that the model can successfully account
for the behavioral effects associated with several kinds of
acoustic manipulation, competitor presence, and the unfolding

of those effects over time—primarily because it balances three
important control parameters: resting lexical activation,
positive feedback, and negative feedback. These simulations
are offered as support (in the form of an existence proof) that
deficits in the degree of lexical activation can account for the
lexical processing impairments shown by Broca’s aphasics who
have reduced lexical activation, and Wernicke’s aphasics who
have increased lexical activation. Overall, results suggest that
the present approach promises to offer a coherent theoretical
framework within which to link empirical evidence in language
processing and cognitive neuroscience in terms of possible
underlying mechanisms. &

INTRODUCTION

One persistent family of questions that has emerged
from research on language processing concerns the
mechanisms and processes that afford lexical access.
Some such questions include: What is the form of the
representations of sound structure? What is the man-
ner in which such representations contact the lexi-
con? How do the activations of lexical entries
translate into semantic facilitation of responses to
related lexical entries? How do activations of lexical
entries influence each other? How do lexical access
processes form the basis for behavioral responses,
such as lexical decisions? And how do these lexical
access processes and representations come to be the
way they are?

These issues have been addressed in the literature
to varying degrees. Specifically, several models have
been proposed that each offer a different perspective
on the possible nature of the mechanisms underlying
lexical access. One of the most well known of these
models is probably the TRACE model (Elman &
McClelland, 1986; McClelland & Elman, 1986), which
is actually a pair of connectionist, ‘‘interactive activa-
tion’’ models of speech perception; this model is often
cited in relation to an earlier and highly influential
model of lexical access: the ‘‘Cohort’’ model (Marslen-
Wilson, 1987; Marslen-Wilson & Welsh, 1978). But

several other models have been proposed as well.
Chief models among these are Klatt’s Lexical Access
from Spectra model (LAFS—see Klatt, 1979, 1986,
1989), the Neighborhood Activation model (Luce,
1986; Luce & Pisoni, 1998), and the Shortlist model
by Norris (1994).

In this article, we offer a model of lexical access that
builds on a number of the principles and assumptions of
these earlier models and extends them within a self-
organizing dynamical system. We seek to realize the
following three goals:

1. To illustrate the application of self-organizing
dynamics in the design of a mechanism for lexical access.

2. To characterize how sound structure maps on to
the lexicon and to offer an explanation of how phonetic
and phonological variability affect lexical access. We
focus particularly on the degree to which such
phonological and phonetic manipulations influence the
magnitude of semantic priming in a lexical decision task
and the potential role of lexical competition on such
priming.

3. To model hypothesized deficits in lexical access in
Broca’s and Wernicke’s aphasics. Through a series of
simulations we illustrate that deficits in the degree of
activation of lexical candidates can account for the
behavioral results of aphasic patients in a series of lexical
decision experiments investigating the influence of
phonetic and phonological manipulations on lexical
access.Brown University
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At the broadest level, our strategy is to use mathema-
tical (dynamical) modeling in order to link language
processing with neuroscience for the purposes of devel-
oping a method for understanding both the behavioral
and neural mechanisms underlying linguistic perfor-
mance. We apply a small-scale ‘‘existence proof’’ techni-
que to make our claims, although we believe that the
same results would emerge from much larger systems
(see below). Our long-term goal is to understand how
both normal and impaired brains produce and perceive
language, although in this paper our focus is on auditory
word (lexical) processing.

Some Representative Models of Auditory Lexical
Access

The approach to the issues of lexical access that we take
builds on the findings of a number of extant models of
lexical access. Before considering in detail this approach,
we briefly summarize the basic principles that we adopt
from these earlier models in an attempt to identify both
the origins of our basic assumptions and our reasoning
in extending the modeling endeavor in the manner that
we do.

One of the first models of lexical access and selection
is the Cohort model proposed by Marslen-Wilson and
Welsh (1978) and Marslen-Wilson (1987). It is a model of
how lexical choice is made, given a sequential input such
as a series of phonemes. In this model, the ongoing
bottom-up sensory input specifies a subset of word
candidates through a process that matches the current
input against sound structure (phonemic) templates for
all possible words in the system’s lexicon. Subsequent
information further constrains that set as time goes on,
in that word candidates with characteristics at odds with
the input drop out of the subset or ‘‘cohort.’’

The Cohort model has formed the framework for
much of the research on auditory word recognition
and lexical access. It incorporates principles of graded
activation, competition, and time course of activation—
principles that we adopt as well. Nonetheless, the
Cohort model was developed descriptively rather than
quantitatively. The TRACE model provided a remedy by
incorporating many of these principles in its explicit
formulation (Elman & McClelland, 1986; McClelland &
Elman, 1986).

While the TRACE model addressed other (lower)
levels of auditory/speech processing in addition to the
lexical one, in many ways it served as a formalization of
the Cohort model, even though it did not exactly model
Cohort completely. Two versions of the model have
been implemented: they are referred to as TRACE 1
(Elman & McClelland, 1986), which deals with real
speech input but not with lexical access, and TRACE 2
(McClelland & Elman, 1986), which deals with lexical
access, but takes as its input mock spectra rather than
real speech. In the spirit of this paper, it is perhaps best
to see TRACE as a family of possible models, each with

different strengths and weaknesses, and represented by
TRACE 2 in this paper.

The most important principle realized in TRACE 2 is
that of interactive activation. In such a model, informa-
tion processing manifests itself through ‘‘excitatory and
inhibitory interactions of a large number of simple
processing units, each working continuously to update
its own activation on the basis of the activations of other
units to which it is connected’’ (McClelland & Elman,
1986).

TRACE can be construed as an organized hierarchy of
units or ‘‘nodes.’’ Each of these nodes accepts positive
activation from units whose hypotheses are consistent
with theirs, and reinforces those units with positive
activation; meanwhile they also send inhibition to and
receive inhibition from nodes corresponding to hypoth-
eses inconsistent with theirs. These ‘‘hypotheses’’ are
hypotheses about the nature of the input (the currently
analyzed utterance), and the degree of activation of such
a unit varies directly with the strength of the hypothesis
for which the unit stands.

The network deals with time itself by duplicating the
entire network for every time slice, so that there is a
complete set of nodes for features, phonemes, and
words at every time slice. Units in the same level at
adjacent time slices send inhibition to each other. This
property allows the system to recognize words no
matter when in the utterance they appear. But it also
results in an extremely (and ultimately unrealistically)
large system.

The primary motivation of Shortlist (Norris, 1994) is to
remedy the massive reduplication of nodes required for
time-invariant recognition in TRACE. Shortlist avoids this
problem by using a (simulated) recurrent network to
generate word candidates, which then get wired into an
interactive activation (competitive) network similar to
the word level in TRACE.

In theory, the recurrent network generates lexical
candidates, which then compete at the lexical level.
We build this feature into our model of lexical access
as well. However, Norris does not actually simulate the
generation of word candidates in his 1994 paper, but
draws on earlier work (Norris, 1990, 1992, 1993) in
which he simulated supervised learning mechanisms
for lexical access explicitly. We have every reason to
believe that the simplifying assumption of eliminating
reduplication in this case is a valid one. It is also
extremely effective: whereas TRACE would require
something like 1011 connections, Shortlist accomplishes
the same tasks with a maximum of only 30 nodes and
the connections between them (900).

Although both Shortlist and TRACE invoke the prin-
ciple of lexical competition via interactive activation,
there remain a number of crucial differences between
the two models. First, as mentioned above, Shortlist
requires many fewer lexical nodes in its architecture. But
this advantage in simplicity is tied to a number of other
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important differences. For one thing, the system is
bottom-up. There is no feedback from the lexical layer
to previous, lower-level processing layers. The prelexical
levels accomplish their task via the connectionist method
developed for the processing of sequences developed by
Jordan (1986); that is, temporal sequences are recog-
nized by a three-layer system trained by backpropagation
in which the hidden units are interconnected by time-
delayed connections.

Our approach to auditory word recognition and lex-
ical access processes is consistent with the reviewed
models and rests on several key assumptions:

There is now a fairly broad consensus (a) that
perceptual processing is based on a process of
competition between simultaneously active candi-
dates, (b) that the activation metaphor is the
appropriate one for representing the goodness of fit
between sensory inputs and lexical form representa-
tions, and (c) that the selection decision is based on
the relationship between levels of activation. Percep-
tual choice is made as the best fitting candidate
emerges from among the welter of competing
activation levels. (Marslen-Wilson & Warren, 1994, p.
654)
We are interested in extending the modeling to

account for a somewhat broader range of issues than
these earlier models have addressed. First, we wish to
posit a mechanism for lexical access whose architec-
ture arises from self-organizing processes. That is, we
wish to incorporate an account of how the system got
to be the way it is— in other words, we wish to
incorporate a strong learning component. We believe
that much learning of novel words occurs without the
aid of an external teacher that provides error-driven
feedback at every turn, and thus we do not adopt the
supervised learning algorithms employed by Norris
(1990, 1992, 1993). Second, we are interested in
modeling how manipulations of sound structure affect
not only word recognition but also lexical access, and
we wish to do so in a single model. Of the earlier
models, only LAFS does so explicitly (the family of
TRACE models does so only when one considers both
TRACE 1 and TRACE 2 together), but LAFS does not
incorporate a mechanism for semantic priming, lexical
decision, or competition, all of which we include in the
current model. Third, we wish to include a rough
approximation to a semantic component (which none
of the above models do), because the ultimate aim of
lexical access is to contact meaning, and a model of
lexical access must account not only for mapping
sound structure to the lexicon, but also for the influ-
ence of such mapping on the lexical network. Fourth,
we use this model as a framework for considering
lexical processing deficits in aphasia and for testing a
specific hypothesis about the nature of the deficit for
Broca’s aphasics, on the one hand, and Wernicke’s
aphasics, on the other.

We have chosen to develop and test our model by
offering small-scale simulations. These existence proofs
provide evidence that the theoretical and metaphorical
constructs used in the literature to account for empirical
data derived from experiments with normal subjects and
aphasic patients can actually combine to account for the
patterns of results obtained. Since there are a relatively
large number of such constructs invoked (both implicitly
and explicitly) by the various experiments and subse-
quent theoretical claims, our current purpose is best
served by modeling simple systems that allow us to
realize these constructs and to explore the nature of
their combination.

DESIGN PRINCIPLES FOR THE PRESENT
MODEL

Our approach originates with nonlinear dynamical sys-
tems theory (van Gelder, 1998; Kelso, 1995; Port & van
Gelder, 1995; Thelen & Smith, 1993). For the purposes
of this article, we consider the mind and brain to be
engaged in an ongoing effort to establish a better
adaptive relationship to the environment on a variety
of time scales (Turvey & Carello, 1981; Gibson, 1979).
Humans must be able to quickly adjust their internal
states in order to improve their relationship to their
environment, but at the same time must be able to
buffer their internal system such that old internal states
are not lost or forgotten when novel adjustments are
made. Following Grossberg (1980, 1982), and many
others, we refer to this process of balancing plasticity
and stability in the absence of an external teacher as self-
organization. Notice that we use the term self-organiza-
tion to refer to both the processes underlying the origins
of the lexicon (a developmental time scale) as well as the
on-line organization of linguistic behaviors such as lex-
ical decision.

We apply the concept of self-organization in neural
networks to attempt to understand how sound struc-
ture contacts the lexicon in normal subjects and apha-
sic individuals. Our approach is to relate the process of
auditory lexical decision to a fundamental environmen-
tal constraint on humans; namely, inherent variation in
the speech input that nonetheless is perceived as a
stable perceptual (phonetic/lexical) category represen-
tation. In doing so we seek to elucidate how represen-
tations of sound structure (the input to the system)
elicit representations of lexical status, identity, and
meaning (the output of the system), while at the same
time offering an account of the origins of the system’s
overall architecture. At each step, the model is made as
simple as possible—retaining only those qualities that
are absolutely necessary— in order to ensure the trans-
parency and generality of our account. Note that while
this approach may ultimately also illuminate develop-
mental data, our focus in this article is on adult
performance.
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We call our approach a systems approach, meaning
that we identify the effects of lesions in terms of systemic
properties, such as a change in control parameter set-
tings (e.g., resting lexical activation), rather than in
terms of the loss or impairment of specific functions
localizable in the brain. Similar assumptions have been
made in a number of models of language impairment.
These models have largely focused on simulating nam-
ing deficits in aphasia, and have ‘‘lesioned’’ their models
by altering such parameters as noise, decay rate, and
connection weights (Laine, Tikkala, & Juhola, 1998; Dell,
Schwartz, Martin, Saffran, & Gagnon, 1997; Tikkala &
Juhola, 1996; Martin et al., 1994).

Self-Organization Defined

As the notion of self-organization plays a strong role in
our model, at least a rough description of what we
mean by that term is necessary. Following Cilliers
(1998, p. 90), we claim that ‘‘the capacity for self-
organization is a property of complex systems that
enables them to develop or change internal structure
spontaneously and adaptively in order to cope with, or
manipulate, their environment.’’ In addition, ‘‘this
process is such that structure is neither a passive
reflection of the outside, nor a result of active, pre-
programmed internal factors, but the result of a com-
plex interaction between the environment, the present
state of the system, and the history of the system’’
(Cilliers 1998, p. 89). This form of self-organization can
occur on multiple time scales. In our model, self-
organization occurs on three time scales, two of which
are modeled explicitly and computationally. Self-orga-
nization at the longest time scale— that of many
years—operates on internal codes so as to develop a
lexicon without the aid of an external teacher. We
model these processes explicitly using the ART 2-A
algorithm (Carpenter, Grossberg, & Rosen, 1991; see
Appendix). At the intermediate time scale— that of
minutes or hours—we assume that subjects are self-
organizing so as to ‘‘optimize’’ their performance in a
given task. In an experiment, such strategies might
take subjects toward a self-configuration that maxi-
mizes speed while minimizing errors in responses.
While self-organization at this time scale is beyond
the scope of the present project, we do hope to focus
on it in future work; see the discussion of the ‘‘critical
state’’ in the concluding section. At the shortest time
scale— that of seconds or milliseconds—brain and
behavior self-organize in order to accomplish the im-
mediate tasks at hand (such as making a lexical
decision in a laboratory setting, or comprehending
and taking part in some linguistic communication in
the real world). Specifically, the brain must coordinate
its myriad structures so as to come up with responses
displaying many fewer degrees of freedom. We also
model these processes explicitly, using simple non-

linear difference equations that govern lexical and
semantic node activation.

Architecture

The basic architecture of our model is shown in Figure
1. The model essentially has four layers of neuron-like
nodes, ordered hierarchically: (1) the input layer, repre-
senting the sound structure of the current utterance in a
distributed fashion in terms of subphonetic features.

Figure 1. Basic network architecture.
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This layer corresponds to auditory input that has been
transformed into a spectral representation based on the
extraction of more generalized acoustic properties from
the acoustic waveform (cf. Blumstein, 1995). For exam-
ple, a continuum of values of voice-onset time (VOT), an
acoustic property important for defining voicing in stop
consonants, would be represented at this level, as would
spectral properties for identifying place of articulation in
stop consonants. Activation patterns at this layer were
normalized (i.e., scaled such that the length of the
vector was set equal to 1.0) before being passed through
weighted connections to (2) the second layer corre-
sponding to the conversion of the spectral representa-
tion to phonemes defined in terms of bundles of more
abstract feature representations. Here, for example, the
range of VOT values would be represented in terms of
two phonetic categories, voiced and voiceless, and other
acoustic properties would be mapped on to their asso-
ciated feature representations. Activation patterns at this
level were also distributed and were normalized (as
above) before being passed on to (3) the next layer
representing lexical entries. This layer corresponds to
the lexicon and in particular to the phonological form of
the individual lexical entries; and (4) the final and
uppermost layer representing meaning or semantics of
the lexical entries and corresponds to the lexical net-
work. It is at this level that we assume that words that
share, for example, properties of meaning or sound
structure may influence each other, and ultimately give
rise to semantic priming effects and lexical competitor
effects, respectively.

The third layer, that of ‘‘lexical entries,’’ is recurrent,
meaning that the nodes in that layer feed activation back
to themselves in a principled fashion. Specifically, each
node feeds activation back to itself. It is this feedback
that underlies the unfolding dynamics that make it
possible for the model to account for fine-grain reac-
tion-time patterns as described in the sections that
follow. The feedback is dependent (in a positive or
‘‘excitatory’’ fashion) on previous activation, as well as
(in a negative or ‘‘inhibitory’’ fashion) on time (i.e., time-
steps since initial activation). The equation for this
feedback is

xt‡1 ˆ … – £ t†xt …1†

where xt is the lexical activation at time step t, t is the
number of time steps since the last stimulus presenta-
tion, is the positive feedback constant, and is the
negative feedback constant. Thus, this equation estab-
lishes a relationship between positive feedback, negative
feedback, and the evolution of lexical activation.1 Note
that in this model, the mechanisms by which lexical
activations change over time are disabled if the nodes
reach either their maximum or minimum values. For the
lexical nodes, the minimum was always 0 and the
maximum was typically just above 1.0, e.g., 1.05. Thus,
these limits are potential steady states. Note that the

behavior of the model beyond this range—greater than
the maximum or less than the minimum—was not
relevant to the present inquiry.

Notice also from the figure that all between-layer
connections in the model are excitatory, with the ex-
ception of those that feed from the lexical layer to the
semantic layer, which are both excitatory and inhibitory.
In the latter case, any given lexical node excites semantic
representations that are consistent with it, and inhibits
semantic representations that are inconsistent with it.
Lexical decisions are assumed to involve the activations
of the lexical and semantic layers, and their evolution
over time. Since the semantic nodes receive their activa-
tion from the lexical ones, their activation patterns also
evolve over time. Thus the equation for the semantic
layer nodes is

st‡1 ˆ xt – c £ yt …2†

where s is the activation at the semantic layer node
corresponding to lexical node x, y corresponds to the
activation of the competitor lexical node (or nodes), and
c is the competition strength. A more detailed depiction
of the architecture of the upper two layers of this model
is shown in Figure 2.

Weight Derivation (Learning)

The learning of the weights connecting the layers were
derived as follows. Those weights connecting the sound
structure nodes to the phonemic nodes were self-orga-
nized as described in the Appendix section; it is worth
noting, however, that we do not make the learning of
those connections a major theme of the present article.

Figure 2. Detailed architecture of the upper two layers of the model.
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We do focus on the next (higher) connections: those
between the phonemic and the lexical layers. It is for
these connections that we make the strong claim of self-
organization. Finally, the uppermost connections—
those between the lexical and the semantic layers—are
assumed to be learned through simple Hebbian learning
principles (see Anderson, 1995); however, they were
ultimately ‘‘hardwired’’ for convenience (we leave it to
future work to explicate this learning). Thus, all nodes in
any given lower layer were fully interconnected with
feed-forward weighted connections to the next layer up,
although the derivation of those weights varied.

Limits

Each layer of nodes in the model has a maximum and
minimum activation; for all layers except the lexical one
these limits were set rather arbitrarily. If and when
patterns presented to the network resulted in activa-
tions (built up over time) at the lexical level that reached
the maximum level for that layer, activation was main-
tained at that level for an arbitrary period of time, that is,
the feedback no longer plays a role in the determining
the activation.

Resting States

A critical aspect of the model is the resting state of the
nodes in the lexical layer. This resting state (which was
the same for all nodes in the lexical layer, and thus was a
single parameter) was varied depending on whether the
subjects being modeled were normals, Broca’s aphasics,
or Wernicke’s aphasics, and it is these manipulations
that allowed us to discriminate between the various
types of subjects. As discussed below, we operationally
implement an impairment in lexical activation in aphasic
patients as a change in the resting state of the system in
the model.

Input Representations

In this model we represent the input in terms of
acoustic properties corresponding to phonetic features.
As this representation is distributed over a number of
units (in this case, 10 for each phonetic feature), we call
the input layer the ‘‘subphonetic’’ layer, i.e., a number of
acoustic variants were used as input representations,
which ultimately would be mapped to a particular
phonetic feature. The acoustic property that we were
most interested in was the VOT of initial stop conso-
nants. VOT represents a continuum of duration values
that correspond to the voiced and voiceless phonetic
categories. VOT is a measure of the timing relation
between the release of the closure of a stop consonant
and the onset of vocal cord vibration, and it is a major
cue in the perception of voicing in stop consonants.
Thus, a voiced stop like /b/ has a short VOT (around 20

msec), whereas a voiceless stop like /p/ has a longer VOT
(around 70 msec). It is therefore possible to create a
continuum of VOT values, some of which are closer than
others to the prototypical values for voiced or voiceless
stops, and some of which are closer or further away
from the category boundary between voiced and voice-
less stops. We represented different lengths of VOT as a
moveable bar across the field of 10 units (see Figure 3).
This technique has been effectively applied by Anderson
(1995) and others, and allows us to represent analog
feature values in a distributed fashion. There were 10
units in the preprocessing field dedicated to coding VOT
and the moveable bar was 5 units long. These exact
lengths were somewhat arbitrary in that there are
undoubtedly many such lengths that would have given
us the performance we sought for; however, this parti-
cular configuration allowed us to represent the kinds of
VOT manipulations that we needed quite straightfor-
wardly. For voiced stops (short VOT), the activations of
the first five of these units were set to a value of 1.0
(prior to normalization, etc.) and the last five were set to
0, i.e., 1111100000. For voiceless stops (long VOT), the
activations of the last five units were set to 1.0 and the
first five were set to 0, i.e., 0000011111. Thus, inputs
could be made ‘‘more voiceless’’ by shifting the bar to
the right and ‘‘more voiced’’ by shifting the bar toward
the left. In this way, we could create a continuum of
values that would allow for subphonetic manipulations
of VOT. For example, the code for canonical voiceless
initial stop consonants could be transformed into the
code for a voiceless stimulus with VOT shortened by
one-third by shifting the bar of high activation one unit
to the left and shortened by two-thirds VOT by shifting
the bar two units to the left. Thus, every one unit of shift
corresponded roughly to one-third of the length of the
VOT. Notice that this way of representing VOT is only a
first approximation to the dynamics of working memory,
an area that has been investigated in more detail by
Boardman, Grossberg, Myers, and Cohen (1999) and
Grossberg, Boardman, and Cohen (1997).

Figure 3. The moving bar used for the representation of voice-onset
time (VOT): (a) voiced stops (short VOT), (b) voiceless stops (long
VOT), and (c) voiceless stop with the VOT shortened. Other types of
phonetic features could be represented in a similar fashion.
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The elements in the input layer for VOT feed forward
into two units in the phonetic feature layer. These units
can be viewed as representing the presence and absence
of the relevant feature, respectively. In the case of VOT,
one of these units corresponds to voiced initial stops
and the other corresponded to voiceless ones. Thus,
when values of the first element were high, values of the
other were low, and vice versa. Specifically, ‘‘pure’’ or
typical instances of features elicited an activation of 1.0
in the node corresponding to that feature’s presence
and an activation of 0 in the node corresponding to that
feature’s absence. In the interest of simplicity, only four
additional pairs of units were added at this layer to
correspond to the ‘‘rest of the word,’’ for a total of 10
elements in the layer.

In the current study, we included detailed subpho-
netic characteristics only for VOT because, at this
juncture, we are focusing only on the voicing phonetic
contrast in initial position. For this reason, we imple-
mented a set of simple features to differentiate this set
in this context. In principle, the input representations
would need to include the set of acoustic properties
that ultimately map on to the phonetic features of
language and in this case English. That is, there would
be a set of acoustic properties corresponding to any
particular phonetic feature and there would be a
bundle of phonetic features corresponding to a given
phonetic segment. For the purposes of our simula-
tions, however, with the exception of the voicing
characteristics of the initial segment of individual
lexical entries, the mapping from subphonetic to the
feature layer was transparent and there was a single
value (rather than a range of values) at the subpho-
netic level corresponding to a single value at the
feature level, i.e., there was a 1:1 mapping from the
input representation to the phonetic feature level.
The resulting representation is a distributed represen-
tation of the entire word, and forms the input to the
lexical layer.

PHONOLOGICAL AND PHONETIC VARIATION
AND LEXICAL ACCESS

Spoken language is often produced in a noisy medium
in which the listener must extract the properties of
speech to ultimately understand what is being said.
Moreover, there is a great deal of variability inherent
in the speech production process itself. There is varia-
bility within a speaker from utterance to utterance due
to imprecision in the articulatory implementation of
speech. There is variability of the implementation of
sound structure as a function of phonetic context and
speaking rate. And there is variability across speakers.
And yet, despite these sources of variability listeners
appear to perceive a stable linguistic percept, whether it
be individual sound segments, such as [d] or [t], or
individual lexical items such as ‘‘cat’’ or ‘‘dog.’’

A great deal of research has been conducted exploring
the influence of sound structure variations on the
processes of word recognition and lexical access (cf.
Kessinger, 1998; Connine, Titone, Deelman, & Blasko,
1997; Utman, 1997; Zwisterlood, 1996; Andruski, Blum-
stein, & Burton, 1994; Warren & Marslen-Wilson, 1987,
1988; Streeter & Nigro, 1979). On balance, these results
have shown that indeed listeners are sensitive to pho-
nological as well as within phonetic category differences,
and importantly, that these differences affect both word
recognition and lexical access processes. It is beyond the
scope of this article to provide a detailed review of this
literature. Instead, we will focus on the detailed results
of a series of studies conducted in our laboratory that
have investigated the influence of phonological and
phonetic variation on lexical access. Taken together,
the results of these studies suggest that initial contact
with the lexicon is influenced by the ‘‘goodness’’ of the
stimulus input and the extent to which it matches the
sound structure representation. As a consequence,
poorer exemplars fail to activate a lexical entry to the
same degree as a good one, and the initial reduction in
activation influences the activation levels within the
lexical network itself.

We take as our starting point behavioral results with
normal subjects showing semantic priming in a lexical
decision task. That is, lexical decision latencies are
shorter for a target word when it is preceded by a
semantically related word than when it is preceded by
a semantically unrelated word or a nonword. Semantic
priming presumably arises because the presentation of a
word not only changes the activation of the particular
lexical representation, but also affects the pattern of
activation of those words that are semantically related to
it. As a consequence, response latencies are shorter in a
lexical decision task for the target word dog when it is
preceded by the word cat because the lexical represen-
tation for dog has already received partial activation
from the preceding semantically related word and thus
is closer to its threshold of activation.

Of importance for the purposes of this paper is a
series of experiments exploring the effects of stimulus
degradation on the magnitude of semantic priming.
Namely, normal subjects, presented with a semantically
related prime that is either phonologically modified
(cat–dog; gat–dog) or is phonetically a poorer exemplar
of the phonetic category show a reduction in the
magnitude of semantic priming that appears to be
proportional to the degree of ‘‘distortion’’ of the prime.
For example, if a prime stimulus such as cat is phono-
logically distorted such that its initial consonant is either
one phonetic feature away from [k], e.g., gat, or several
phonetic features away, e.g., wat, normal subjects show
a reduction in the magnitude of semantic priming to the
target word, dog (Milberg, Blumstein, & Dworetzky,
1988a). These same effects emerge not only when there
is a phonological change, i.e., a change in the phonetic
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category, but also if the initial consonant is phonetically
‘‘degraded’’ by either reducing the initial VOT of the
initial [k] (Andruski et al., 1994) or by increasing the
initial VOT of the initial [k] (Kessinger, 1998). In both
cases of ‘‘phonetic degradation,’’ the initial consonant is
still a member of the phonetic category [k]. Subjects
identify the initial consonant as [k] and they identify the
stimulus prime as the word ‘‘cat.’’ However, the pho-
netic manipulations render these stimuli as poorer ex-
emplars of the phonetic category.

Of interest, the reduction in semantic priming emer-
ges whether or not the prime stimulus has other
voicing lexical competitors, e.g., pear as a prime for
fruit, has a voiced lexical competitor, bear, whereas cat
as a prime for dog does not have a real word voice
lexical competitor, cf. gat (Andruski et al., 1994). These
effects emerge not only for within category phonetic
manipulations that are made in initial position, but also
for changes made in word medial as well as word final
position (Utman, 1997). The fact that the magnitude of
semantic priming is reduced when the semantically
related prime word has been phonologically or phone-
tically distorted has been interpreted to mean that the
initial contact with the lexicon is influenced by the
‘‘goodness’’ of the stimulus input, and that activation
levels in the lexicon are graded. As a consequence,
poorer exemplars fail to activate a lexical entry to the
same degree as a good one, and the initial reduction in
activation influences the activation levels within the
lexical network itself.

MODELING THE EFFECTS OF
PHONOLOGICAL VARIATION IN NORMAL
SUBJECTS

In this section, we address data concerning the effects of
phonological manipulations on the processes involved
in lexical access in normal subjects. Specifically, we
simulate the data reported in Milberg et al. (1988a).
That paper showed that activation of lexical entries
could have a graded quality; that is, a given stimulus
that is phonologically similar to a real word may partially
activate lexical entries (see also Connine et al., 1997).

Milberg et al. gathered data from normal subjects
engaged in an auditory lexical decision task on a target
that was preceded by one of several different prime
types. There were four such types: (1) real words that
were semantically related to the target; (2) nonwords
generated by distorting a semantically related word by
one phonetic feature; (3) nonwords generated by dis-
torting more than one phonetic feature; and (4) se-
mantically unrelated words. Thus, a target word like
dog, for example, could be preceded by any of the
following primes: (1) cat, (2) gat, (3) wat, or (4) table.
As in any lexical decision task, the word targets were
conjoined with an equal number of distractor nonword
targets.

Reaction times to correct responses to the word
targets were examined. The results showed a monotonic
relationship between the degree of phonetic distortion
of the initial phoneme and the degree to which re-
sponse times to the targets were facilitated (see also
Connine et al., 1997). In other words, the amount of
semantic priming was proportional to the degree of
distortion of the prime. For example, wat, which is
several phonetic features away from the word cat
showed less priming for dog than did gat, which was
only one phonetic feature away from the word cat.

Based on their findings, Milberg et al. (1988a) con-
cluded that lexical access—in particular, the aspects of
such processing that are required to elicit semantic
priming—allow for possible noise or distortion of the
speech signal, even when such distortion occurs in the
initial segments of the items. Moreover, they suggest
that access to the lexicon is graded, and even a nonword
may activate a lexical representation, if it is phonologi-
cally similar to it.

In terms of the present modeling endeavor, these
results have very explicit implications. Our system has
the potential to show tolerance to mismatch of the
above described kind by its very design. While mis-
matches between inputs and learned patterns will elicit
lower levels of activation of lexical and semantic nodes,
the system can be set up (by choice of parameters) to
balance the positive and negative feedback at the lexical
layer such that small mismatches will still result in lexical
nodes reaching their maximum, steady-state value over
time. In addition, the system can in principle make
lexical decisions in this way, since the system can be
set up such that only words (or slightly distorted words)
will reach the maximum level of activation, whereas
nonwords will not reach the maximum level before the
negative feedback (which is dependent on time) takes
over and brings activation of the lexical nodes back
down to below threshold (see Appendix).

How does such a system account for the data re-
ported by Milberg et al. (1988a)? The representations of
the stimuli used in this simulation were based on the
representation scheme described earlier. We developed
a representation of the entire CVC stimulus for the
second layer of the model in terms of clusters of
phonetic features. Because in this simulation, the map-
ping from the input layer to the phonemic layer was
totally transparent (i.e., the voicing characteristics of the
stimuli were the canonical forms of the phonetic input
and there were no within phonetic category variants
within this stimulus set), we describe only the nature of
the representations at the phonemic layer.

For our purposes, the representation for a word like
‘‘cat’’ was {0,1, 1,0, 1,0, 1,0, 1,0}, with the first two pairs
of nodes representing some phonetic features of the
initial phoneme. That is {0,1 . . .} might represent the
feature voice, and {. . . 1,0 . . .} might represent the
feature for manner of articulation. Together, {0,1, 1,0}
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represent the initial phonetic segment. Distortions of
the initial phoneme in this pattern could be represented
by changing one or both of the activation patterns of
those first two pairs. Thus we represented distortions of
a single phonetic feature (in this case voicing) for the
representation ‘‘cat’’ as {1,0, 1,0, 1,0, 1,0, 1,0} and
distortions of multiple phonetic features as {1,0, 0,1,
1,0, 1,0, 1,0}. Notice that the activation patterns in the
last six elements of all three patterns are the same,
which corresponds (roughly) to the fact that distorted
patterns in the Milberg et al. experiment shared the
same ‘‘rest of the word.’’ For example, a completely
different word such as ‘‘table’’ was represented as {1,0,
0,1, 0,1, 0,1, 0,1}.

Thus, for the purposes of this existence proof, there
are four input stimuli: the word ‘‘cat’’; a nonword
stimulus (not seen before by the network) in which
the initial ‘‘consonant’’ differed from the lexical repre-
sentation for ‘‘cat’’ by one phonetic feature; another
nonword stimulus in which the initial consonant differed
by more than one phonetic feature; and a real word
stimulus that was neither semantically nor phonologi-
cally related to ‘‘cat.’’ We investigate the influence of
each of these input representations on the lexical re-
presentation for ‘‘cat’’ at the lexical level and its seman-
tically related lexical network (for our purposes, ‘‘dog’’)
on the semantic level. The goal is to determine whether
activation of a lexical entry is graded whereby phonolo-
gically similar stimuli partially activate a lexical entry.

We have chosen to make the lexicon in our model
self-organizing. That is, we require our model to ‘‘learn’’
the vocabulary that forms the lexicon used in our
simulations without having an external teacher at every
step of the process. We also want to elucidate a process
whereby the system can map inputs on to stable cate-
gories (lexical entries) while allowing a certain tolerance
for mismatch between inputs and stored representa-
tions. The point of making the lexicon self-organizing
is to offer the beginning of an approach of how a lexical
system might originate, and how the system might be
able to make lexical decisions, i.e., distinguish inputs
that are part of the vocabulary (words) from those that
are not (nonwords). The Appendix details the learning
algorithm. We used the same ART 2-A simulator to
demonstrate self-organization weight derivations in the
remaining simulations in this article.

The input vectors corresponding to the stimulus input
for ‘‘cat’’ and its lexical network (‘‘dog’’) was learned by
using the ART 2-A network by committing a single node
to a critical feature pattern corresponding to a scaled
(normalized) version of that input vector. For the pur-
poses of our account, we give that vector the narrative
role of the word ‘‘cat.’’ Similarly, the network learned
another word, ‘‘table.’’ We then tested this (very simple)
network on the three input vectors described above.
These patterns were normalized (for mathematical
length of the vector) and the input activations were

passed through the weights for the single (‘‘cat’’) node
at the lexical level as well as the semantic level, and
lexical activations were derived.

The lexical activations for the original word, the non-
words with one and multiple phonological distortions,
and the unrelated word were 1.0, 0.8, 0.6, and 0.4,
respectively. At this point, the dynamics of the upper
two layers of the model were applied according to
Equations 1 and 2. That is, after the limits and threshold
have been applied, activation passes from the lexical
layer through two types of weights: (1) the recurrent
connections in the lexical layer—allowing activation
patterns in that layer to unfold over time—and (2) the
weights leading to the semantic layer.

Figure 4 shows the activation of the node in the
semantic layer (e.g., ‘‘dog’’) that results from the pre-
sentation of each of the input vectors corresponding to
the prime stimuli (e.g., ‘‘cat,’’ ‘‘gat,’’ ‘‘wat,’’ ‘‘table’’). It is
this activation that is assumed to reflect the degree of
semantic facilitation of the related target.2 Even though
these activation curves at first appear to be rather
unchanging, clearly the outer curves reach a steady
state, while the inner ones grow and then decay (it is
this set of properties that underlies the success of the
model depicted in Figure 5). The parameters for this
simulation were as follows: a, the feedback constant,
was 1.05; b, the temporal decay rate constant, was 0.01;
the minimum activation of the lexical nodes was 0.41,
while the maximum was 1.05; the minimum activation of
the semantic nodes was 0.52, while the maximum was
1.05; finally, the resting state of the lexical nodes was 0,
whereas the resting state of the semantic nodes was 0.
Baseline (minimum) semantic activation was 0.3. Each
time step on the figure corresponds to an updated
version of activation after it has gone through the
recurrent network (t = t + 1). Each time step is
assumed to correspond to roughly 50 msec of intersti-
mulus interval (ISI). Thus, as the figure shows, the
greatest activation occurs for the prime stimulus input
‘‘cat,’’ followed by ‘‘gat’’ and ‘‘wat,’’ whereas the un-

Figure 4. Simulation of the Milberg et al. (1988a) data on the effects
of phonological manipulations on semantic priming in normal subjects.
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related prime stimulus ‘‘table’’ shows minimal semantic
activation. Importantly, the activation of the word prime
‘‘cat’’ is greatest, and reaches the maximum level of
lexical activation, at which point its activation is main-
tained for the remaining time steps in what we refer to
as a ‘‘resonant state.’’ Activations resulting from the
phonologically distorted primes rise and decay over time
without ever reaching the resonant state (operationally
defined as approaching 1.0), although they both show
partial activation of the semantic network over the time
course of the simulation. Meanwhile, the activation
corresponding to the presentation of the unrelated
stimulus is very low, i.e., ‘‘table’’ fails to prime ‘‘dog.’’
Figure 5 shows the pattern of results of the simulation at
an ISI of 500 msec (the ISI used in the Milberg et al.,
1988a study and the last step of the reiteration in the
simulation). The pattern of results is similar to the
monotonic pattern of results reported by Milberg et al.
(1998a).

It is reasonable to ask whether the patterns of results
obtained in this simulation would emerge were the
network to have a substantially larger vocabulary, i.e.,
were the simulations to be scaled up. We believe that our
simulations offer a reasonable first approximation to the
system we envision even with respect to much larger–
sized vocabularies. We assume that the large majority of
words in a vocabulary are similar to only a small number
of candidates, and are relatively dissimilar to a larger
number of others. Thus, even with a larger vocabulary,
the inputs would influence only a small subset of the
total vocabulary, and hence would not influence the
dynamics of the system. This can be seen with respect
to the architecture of the model. Namely, we applied a
threshold of lexical activation at all time-steps, even prior
to the application of bias and feedback. As a result, any
activation that fell below threshold initially (0.41 or less)
never elicited lexical activations above 0, led to lexical
feedback, or took part in competitor effects. In the
simulations themselves, we simulated two words that
were relatively different, e.g., ‘‘cat’’ and ‘‘table,’’ and each

pattern activated the lexical entry for the other at 0.4
(i.e., below threshold), and thus played no role in the
lexical dynamics of the system. Neighborhoods (Luce,
1986) would need to be handled differently. However,
the effects of neighborhoods on reaction times are
relatively small (see Luce, 1986; Luce, Pisoni, & Gold-
inger, 1989). We leave consideration of neighborhood
effects in terms of our system to future work.

In conclusion, our model succeeds in accounting for
the findings of Milberg et al., thereby explicating how
phonological manipulations of primes can influence
semantic priming of targets. Specifically, the model
operationalizes several findings in the literature relating
to word recognition and lexical processing—nonwords
appear to activate the lexicon but to a lesser extent than
words (see McClelland & Rumelhart, 1981); the closer
phonologically nonwords are to real words, the greater
will be the priming effects obtained (see Connine et al.,
1997); and activation of the lexicon appears to be graded
(Connine et al., 1997; Andruski et al., 1994; Marslen-
Wilson & Warren, 1994; McClelland & Elman, 1986). In
addition, the origin of the architecture is explicated in
terms of self-organization (Carpenter et al., 1991; see
also Carpenter & Grossberg, 1987a, 1987b; Grossberg,
1980).

MODELING THE EFFECTS OF SUBPHONETIC
VARIATION IN NORMAL SUBJECTS

Early research in lexical processing generally assumed
that ‘‘fine’’ acoustic differences of phonetic category
structure are ‘‘cleaned’’ up in earlier stages of processing
and thus have little or no effect on word recognition or
lexical access. And yet, listeners seem to harness the
variability in the speech stream and are able to rely on
the fine acoustic details intrinsic in the variation of
speech in the process of word recognition (Warren &
Marslen-Wilson, 1987, 1988; see also Marslen-Wilson,
1978, 1989). In particular, listeners monitor the acoustic
signal continuously, not waiting until the end of a
segment in order to guide or constrain their lexical
choice.

It has also been shown that listeners are sensitive to
fine acoustic differences in word recognition. Streeter
and Nigro (1979) showed longer lexical decision laten-
cies when stimuli were altered by either removing
medial consonant transitions or juxtaposing conflicting
transitions. Because this effect emerged for words but
not for nonwords, they concluded that processing was
slowed during lexical lookup (Pitt & Samuel, 1995, but
see Whalen, 1991 for an alternative point of view).

Fine acoustic differences are inherent to the structure
of the phonetic categories of speech. Importantly, how-
ever, these differences are not weighted equally. Rather,
phonetic categories have an internal structure to them
such that some values of an acoustic parameter serve as
better exemplars of the phonetic category than do

Figure 5. Simulation results for the final time steps of Figure 4,
corresponding to the 500-msec ISIs used in the Milberg et al. (1988a)
experiment.
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others. Thus, although there is a continuum of VOT
values corresponding to the voiceless phonetic feature,
some values are perceived by listeners as better exem-
plars than others. Experimental findings with normal
subjects have shown that these within phonetic category
(i.e., subphonetic) differences affect not only word
recognition, i.e., access to lexical form, but also lexical
access, i.e., activation of the lexical network itself (Ut-
man, 1997; Andruski et al., 1994).

Research in our lab has shown a reduction in the
amount of semantic priming in a lexical decision task
when a poorer exemplar of a phonetic category is used
in the prime word stimulus. Andruski et al. (1994)
investigated the effects of shortening the VOT of the
initial stop consonant primes on the lexical decision
latencies to semantically related targets. They found that
reducing the VOT by one-third had no effect on the
degree of semantic priming at ISIs of 50 or 250 msec, but
that reducing the VOT by two-thirds reduced semantic
priming at an ISI of 50 msec; this effect disappeared with
an ISI of 250 msec. There was also an effect of compe-
titor status: in the presence of a voiced competitor (as
pear has with bear), RTs were slower overall than if
there were no competitor (as cat has no voiced compe-
titor, cf. gat). However, this effect did not interact with
the effects of subphonetic manipulation; i.e., the decre-
ment in semantic priming with phonetic distortion was
of a similar magnitude for prime stimuli with or without
voiced competitors.

These findings generalize to acoustic properties other
than voicing in initial stop consonants. Both removing
the closure phonation in voiced final stops consonants
in prime words and increasing the vowel duration in
medial lax vowels in prime words result in reduced
semantic priming (Utman, 1997). Taken together, these
results are consistent with the view that the representa-
tion that is first abstracted from the speech waveform
and that is mapped on to phonetic categories incorpo-
rates information about within category subphonetic
variation. Moreover, because this low-level acoustic in-
formation affects lexical access (at least at short ISI
intervals), it suggests that activation levels in the lexicon
are graded, and that differences in the magnitude of
semantic priming are due to the extent to which the
initial consonant of the prime stimulus is a good or poor
exemplar of the phonetic category.

To account for these findings in our model, we again
focused on the phonetic category for voicing and im-
plemented the more fine-grain VOT representations in
the input to the network, as described earlier. This
implementation differed from the first simulation that
used the ‘‘canonical’’ representations for voiced and
voiceless initial consonants. Additionally, in order to
simulate competitor effects, we added an additional
‘‘word’’ beginning with an initial voiced consonant in
the system’s ‘‘lexicon’’ (and associated lexical network in
the semantic level).

The input representations to the model (once it had
been trained) corresponded to canonical voiced and
voiceless exemplars as well as a subphonetic ‘‘distor-
tion’’ of the voiceless phonetic category by sliding the
moving bar in our distributed representation. As de-
scribed earlier, while the representation for a voiced
VOT was {1,1, 1,1, 1,0, 0,0, 0,0} and that for a voiceless
VOT was {0,0, 0,0, 0,1, 1,1, 1,1}, we represented a
shortening of the VOT of the voiceless exemplars as a
shift of the bar of 1s to the left. Thus the representation
of a VOT shortened by one-third was {0,0, 0,0, 1,1, 1,1,
1,0}, and the representation of a VOT shortened by two-
thirds was {0,0, 0,1, 1,1, 1,1, 0,0}. In this way, the
similarity of the distorted shortened voiceless VOTs to
the original exemplars was reduced proportionally to
the degree of distortion, while still making it most
similar to the voiceless pattern (i.e., it was still categor-
ized by our model as ‘‘voiceless’’ similar to the behavior-
al results of Andruski et al., 1994). The result of using
such patterns as input resulted in a weakening in the
activation of the voiceless node and an increase in the
activation of the corresponding voiced node in the
phonetic feature layer. Thus, instead of 1 and 0 (for
the activation of the voiceless node and voiced nodes)
when the input representation was a canonical voiceless
stimulus, it was, respectively, 0.8 and 0.2 for an input
representation with a VOT reduction of one-third, and
0.6 and 0.4 for a VOT reduction of minus two-thirds.

In this simulation, we trained the system using the
ART 2-A simulator using two ‘‘lexical’’ and correspond-
ing semantic nodes, so that we could implement com-
petition between stimuli such as pear and bear. We did
this by making the lexical entries for these stimuli inhibit
each other’s semantic representations. The constant for
this inhibition was 0.2. This parameter setting was the
same for all simulations.

We then simulated the effects of within phonetic
category distortion and lexical competition described
above. The stimulus input representations included
the exemplar stimulus cat and the two-thirds phonetic
variant of cat,3 as well as the exemplar stimulus pear,
and its phonetic variant. Figure 6 shows the activation of
the node in the semantic layer (e.g., ‘‘dog’’ and ‘‘fruit’’)
unfolding over time that results from the presentation of
each of the input vectors. As in the previous simulation
of phonological distortion on semantic activation, each
time step on the figure corresponds to an updated
version of activation after it has gone through the
recurrent network (t = t + 1). Each time step is
assumed to correspond to roughly 50 msec of ISI. Thus,
the figure shows the time course of semantic activation
from 50 to 250 msec, the two ISI intervals used by
Andruski et al. (1994). Several things are clear from
these results: first, there was greater semantic activation
for exemplar input representations compared to the
phonetically distorted representations. Second, the ef-
fects of the phonetic distortion were greatest at the
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shortest first iteration (comparable to an ISI of 50 msec),
but was much less so after several iterations (compar-
able to longer ISIs). In fact, the effect of the – 2/3 VOT
manipulation for ‘‘cat’’ on semantic activation for ‘‘dog’’
disappeared completely by 250 msec and was very small
for ‘‘pear.’’ Also, a competitor effect appears at all ISIs.
Namely, there is less semantic activation for an input
representation that has a lexical competitor (‘‘pear’’)
than for one that does not (‘‘cat’’) and this does not
seem to interact with the effect of acoustic distortion.

These patterns emerge in the model because lexical
activations of the target word are initially lower for input
representations that are acoustically distorted, but over
time those activations grow towards their maximum
activation levels. The effects of acoustic distortion dis-
appear when those maxima are reached. However, as
competition is implemented from the lexical layer to the
semantic layer (see Figure 2), those effects persist. A
small effect of acoustic distortion also persists for stimuli
with a competitor, because those activations are influ-
enced by the competitor, whose own activation is
reduced in the presence of acoustic modification (and
never reaches its maximum).

The patterns of the model parallel the priming results
of Andruski et al. (1994). Namely, there was a greater
magnitude of priming for target words preceded by
exemplar stimuli than semantically related primes con-
taining phonetic distortions; there was a significant
effect of distortion in the – 2/3 condition; the effects of
this phonetic distortion were short-lived disappearing by
250 msec; and the presence of a lexical competitor
similarly slowed reaction-time latencies in all conditions.

LEXICAL ACCESS IN APHASIA

The issues that we have discussed in this paper con-
cerning the dynamics of lexical processing bear impor-
tantly on current research in language deficits in aphasia.
Considerable research has shown that both Broca’s and

Wernicke’s aphasics display lexical processing impair-
ments (see Milberg, Blumstein, Katz, Gershberg, &
Brown, 1995; Prather, Zurif, Stern, & Rosen, 1992;
Swinney, Zurif, & Nicol, 1989; Blumstein, Milberg, &
Shrier, 1982; Milberg & Blumstein, 1981; Milberg, Blum-
stein, & Dworetzky, 1987). Although there is general
agreement within the literature that aphasic patients
have a lexical processing impairment, there has been
considerable controversy over the basis of that deficit.
There are some whose focus is on the time course of
activation, proposing a delay in the processes of activa-
tion, selection or decay of lexical candidates (ter Keurs
et al., 1999; Swaab et al., 1998; Tyler & Ostrin, 1994;
Prather et al., 1992). Others focus on mechanisms of
integration of information suggesting that the deficit
reflects an impairment in integrating lexical semantic
information into context (Milberg, Sullivan, & Blumstein,
1998; Hagoort, 1993). It is beyond the scope of this
article to review the evidence and arguments used to
support these various proposals. In this paper, we take
one series of experimental findings consistent with a
particular hypothesis about the basis of the lexical
processing deficits in aphasia and test that hypothesis
within a dynamical model of lexical access.

Our hypotheses derive from a series of lexical proces-
sing experiments conducted with both Broca’s and
Wernicke’s aphasics (Milberg & Blumstein, 1981; Milberg
et al., 1987, 1995; Milberg, Blumstein, & Dworetzky,
1998b; Blumstein et al., 1982). On the basis of the
pattern of results that have emerged, we have argued
that many aphasic language symptoms can be attributed
to alterations in the dynamics of lexical activation and
the resulting spread of activation from one lexical re-
presentation to another rather than a deficit due to
alterations in the representations themselves. The nat-
ure of the deficit, however, appears to be different
between Broca’s and Wernicke’s aphasics, and hence,
has different consequences not only for the patterns of
comprehension performance of these patients but also
for the clinical characteristics that they display (see
Blumstein, 1997; Blumstein & Milberg, 2000). In parti-
cular, we have proposed that Broca’s aphasics show an
initial underactivation of the lexicon whereas Wernicke’s
show overactivation of the lexicon either due to a
decreased threshold for the activation of lexical repre-
sentations or an overall increase in the gain of activation.

The evidence that gave rise to these hypotheses
comes from a series of semantic priming studies using
the lexical decision paradigm. In some experiments,
subjects were given a list of words, e.g., shoe . . . pear
. . . fruit . . . gluf, and they had to make a lexical decision
on every stimulus item (Milberg & Blumstein, 1981). In
others, the subjects were given either stimulus pairs
(Milberg et al., 1995; Blumstein et al., 1982), e.g., pear–
fruit, or stimulus triplets (Milberg et al., 1987), e.g.,
river–bank–money, and they had to make a lexical
decision on the final stimulus target.

Figure 6. Simulation of the Andruski et al. (1994) data on the effects
of subphonetic manipulations on semantic priming in normal subjects.
For the solid symbols the target is ‘‘fruit’’ and for the others the target
is ‘‘dog.’’
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Results of these studies exploring semantic priming in
a lexical decision task showed that Broca’s aphasics
displayed priming under some experimental conditions
and failed to show priming under other conditions. In
particular, when the stimuli were paired and were highly
predictable, these patients showed semantic priming.
When the stimuli were presented as lists (for a lexical
decision on every word) (Prather et al., 1992; Milberg &
Blumstein, 1981), or as triplets (for a lexical decision on
the third word of the series) (Milberg et al., 1987), and
the stimulus target could not be easily predicted based
on the preceding pairings (Milberg et al., 1987), they
failed to show semantic priming. Thus, in these on-line
tasks, Broca’s aphasics showed a lexical processing im-
pairment. And yet, in off-line tasks, using the same
stimuli (Blumstein et al., 1982; Milberg & Blumstein,
1981), Broca’s aphasics performed very well. Namely,
although they failed to show semantic priming, they
could accurately judge whether stimulus items were
related or were not. The failure of Broca’s aphasics to
show semantic priming under all of the lexical priming
conditions described above was interpreted as a lexical
processing impairment due to a reduction in the activa-
tion of lexical entries (Blumstein & Milberg, 2000; Mil-
berg et al., 1995).

In contrast to Broca’s aphasics, Wernicke’s aphasics
show semantic priming in a lexical decision task under
all of the priming conditions regardless of whether the
stimuli are presented in lists, in pairs, in triplets, and
whether or not a strategy can be invoked for determin-
ing the semantic relationship between the prime and the
target (Milberg & Blumstein, 1981; Milberg et al., 1988b;
Blumstein et al., 1982). Moreover, they are not ‘‘garden-
pathed’’ as are normal subjects when an ambiguous
word is put in the context of its two alternative mean-
ings, e.g., river, bank, money. However, in semantic
judgment tasks, Wernicke’s aphasics perform at chance
levels. Thus, although they appear to be able to access
lexical entries and to activate the lexical network as
shown by semantic priming, they are unable to use this
information in an off-line task. They also show priming
under a greater set of stimulus condition suggesting that
their lexical system may be ‘‘overactivated’’ or alterna-
tively, insufficiently ‘‘inhibited.’’

There are some models in the literature of consider-
able relevance to the hypothesized deficits of aphasic
patients, and although none address the particular
issues with which we are engaged, they do have some
bearing on our overall approach. Chief among the
models of lexical access in aphasia is the work of Dell
et al. (1997). In that paper, the authors offered detailed
analysis and predictions for performance (errors) by
Wernicke’s aphasics in a production task. As our ap-
proach focuses on word perception by aphasics, and in
particular reaction times rather than errors, the influ-
ence of that work on the present work is primarily at the
level of general principles. First, the model proposed by

Dell et al. is consistent with the continuity hypothesis,
according to which aphasic performance—and errors, in
particular— lie on a continuum of distorted perfor-
mance, with normal performance an upper limit of that
continuum. The present project also takes the continu-
ity hypothesis as an operating assumption (see discus-
sion in the section Conclusion: The Critical State). In
addition, the paper by Dell et al. account for aphasic
performance by making global parameter adjustments,
rather than creating ‘‘lesions’’ at specific sites in the
model. We also adopt this approach, since it is consis-
tent with the systems view that forms the foundation of
our model.

Two other modeling projects in the literature are
worth addressing: that of Laine et al. (1998) and Tikkala
and Juhola (1996). These projects are, as Dell et al.,
focused on naming performance in aphasics, and much
like our study they address multiple types of aphasia. In
fact, for us the observation that the lexical and semantic
thresholds in their models tend to be lower for Wer-
nicke’s as opposed to Broca’s aphasics (particularly in
the case of Laine et al.) suggests some form of indirect
support for one of the primary issues of the present
project: the overactivation/underactivation hypothesis
for Wernicke’s and Broca’s patients, respectively.
Further comparison between those two modeling pro-
jects and ours is difficult for many reasons, not the least
of which is the strong role for noise in those models,
which is a parameter we do not invoke at all in the
present project.

MODELING THE EFFECTS OF
PHONOLOGICAL VARIATION IN BROCA’S
AND WERNICKE’S APHASIA

In this section, we consider the results of a study
conducted by Milberg et al. (1988b) exploring the effects
of phonological variation on semantic priming in Broca’s
and Wernicke’s aphasics. This study was analogous to
the Milberg et al. (1988a) study described in detail in the
section Modeling the Effects of Phonological Variation in
Normal Subjects. In particular, subjects were presented
auditorily with stimulus pairs in which the initial con-
sonant of a prime stimulus, e.g., cat, was phonologically
altered such that its initial consonant was either one
phonetic feature away from [k], e.g., gat, or several
phonetic features away, e.g., wat. These prime stimuli
were paired with a real word target that was semantically
related to the phonologically unaltered prime word, e.g.,
dog, for lexical decision. The magnitude of semantic
priming was compared for these pairs compared to a
semantically unrelated ‘‘baseline’’ condition, table–dog.
The ISI used in this experiment was 500 msec, the same
as that used for the experiment with normal subjects.

Unlike normal subjects who showed a reduction in
the magnitude of semantic priming as the phonological
distortion increased, Broca’s aphasics showed semantic
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priming only in the phonologically unaltered condition,
i.e., cat–dog. They failed to show semantic priming for
any of the phonologically related prime conditions, i.e.,
gat–dog, wat–dog, compared to the baseline unrelated
condition, i.e., table–dog. In contrast, Wernicke’s apha-
sics showed semantic priming in all phonologically
altered conditions, and the magnitude of priming was
equivalent to the semantically related, e.g., cat–dog,
condition. Importantly, despite these ‘‘pathological’’
priming patterns, both groups of aphasic patients were
able to make correct lexical decisions on the prime
stimuli when they were presented in a separate posttest.
Thus, the patients showed that they could perceive the
phonological variants by correctly indicating that cat was
a word but that gat and wat were not. Thus, we find in
the experimental findings a dissociation between the
ability to distinguish words from nonwords for the
purposes of lexical decision and the influence of non-
words on semantic priming.

The pattern of results that emerged for Broca’s and
Wernicke’s aphasics were interpreted in terms of deficits
in lexical activation. The failure of Broca’s to show any
priming for the nonword stimuli was interpreted in
terms of a reduction in initial lexical activation. As such,
a phonologically distorted prime such as ‘‘gat’’ would
only minimally activate or fail to activate a lexical entry to
which it is phonologically related, i.e., ‘‘cat.’’ In contrast,
the fact that Wernicke’s aphasics show semantic priming
under all phonologically distorted conditions suggest
that there is an overactivation of the lexical system
whereby nonwords that are phonologically similar to
real words activate the lexicon to the same extent as real
words themselves.

We simulated this design principle by simply changing
the value of the resting state of the lexical entries for the
different types of aphasics. In our simulations of the
normal subjects described in the sections Modeling the
Effects of Phonological Variation in Normal Subjects and
Modeling the Effects of Subphonetic Variation in Normal

Subjects, we set the lexical resting state at 0. For these
simulations, we ran the same system as described in the
section Modeling the Effects of Phonological Variation in
Normal Subjects changing only the lexical resting state
from 0 to – 0.39 in order to simulate the Broca’s
aphasics, and from 0 to 0.4 in order to simulate the
Wernicke’s aphasics. We thereby sought to give support
to the notion that a lowered lexical activation would
give rise to behavior like the Broca’s patients, and a
raised activation would give rise to behavior like the
Wernicke’s patients.

The results of these simulations for the Broca’s and
Wernicke’s aphasics are shown in Figures 7 and 8,
respectively. The simulation results for Broca’s aphasics
(Figure 7) show that semantic activation for ‘‘dog’’
emerges only for the semantically related real word
‘‘cat.’’ The amount of activation for ‘‘dog’’ given the
stimulus input of the phonological variants is the same
as that for the semantically unrelated baseline stimulus
‘‘table.’’ In contrast, the simulation of Wernicke’s pa-
tients (Figure 8) shows comparable activation for ‘‘dog’’
to a semantically related word as to the phonologically
distorted primes. Although the behavioral data that are
being modeled did not explore the time course of these
effects, it is interesting that the time course of the
activation in the simulation suggests that at the shortest
ISI (50 msec) there might be reduced activation for the
primes with the larger phonological distortions.

MODELING THE EFFECTS OF SUBPHONETIC
VARIATION IN BROCA’S APHASIA

We now turn to data reported by Utman, Blumstein, and
Sullivan (submitted). That study was based on the
Andruski et al. (1994) experiment and investigated the
effects of subphonetic (VOT) manipulations on semantic
priming in Broca’s aphasics. Results showed that, similar
to normal subjects, shortening the VOT by two-thirds
results in a reduction in the magnitude of semantic

Figure 7. Simulation of the Milberg et al. (1988b) data on the effects
of phonological manipulations on semantic priming in Broca’s
aphasics.

Figure 8. Simulation of the Milberg et al. (1988b) data on the effects
of phonological manipulations on semantic priming in Wernicke’s
aphasics.
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priming. However, there were two critical differences in
the pattern of results obtained for the Broca’s aphasics
compared to the normal subjects, one relating to lexical
competition and the other relating to the time course of
the priming patterns. Turning first to the competitor
effects, the reduction in semantic priming emerged only
for those prime stimuli that did not have a lexical
competitor. That is, phonetically altered cat showed a
significant reduction in the magnitude of priming for
dog. However, phonetically altered pear (with the lexical
competitor bear) failed to show any semantic priming
for the semantically related word fruit. Thus, the pre-
sence of a lexical competitor resulted in the loss of
semantic priming when the prime stimulus was a poorer
exemplar of the phonetic category. Importantly, the
Broca’s aphasics perceived the initial consonant of the
acoustically modified stimulus primes as voiceless, in-
dicating that the failure to show priming under condi-
tions of lexical competition were not due to a problem
in perceiving the competitor prime stimuli as beginning
with initial voiceless stop consonants.

In addition to the competitor effects that emerged,
Broca’s patients also showed a different pattern of
results compared to normals over the two ISI condi-
tions. Unlike normal subjects, where the effects of the
acoustic manipulation were short-lived, emerging at 50
msec and disappearing at 250 msec, for Broca’s aphasics,
the effects of the acoustic manipulations persisted. That
is, the reduction of semantic priming for acoustically
manipulated cat emerged at both ISI intervals, and the
failure of acoustically manipulated pear to show seman-
tic priming also emerged at both ISI intervals.

In theory, these behavioral results reflect the same
deficit that gave rise to the patterns of results in Milberg
et al. (1988b). The next simulation tested this hypoth-
esis by using the same system described in the section
Modeling the Effects of Subphonetic Variation in Nor-
mal Subjects and changing only the lexical resting state
to – 0.39 (as was done in the preceding simulation of
phonological manipulations). To review, the stimulus
input representations included the exemplar stimulus
cat, the 2/3 phonetic variant of cat, the exemplar
stimulus pear, and its phonetic variant. The activation
at the semantic layer for ‘‘dog’’ and for ‘‘fruit’’ was
determined for each input representation. Figure 9
shows the activation of the node in the semantic layer
(e.g., ‘‘dog’’ and ‘‘fruit’’) unfolding over time that
results from the presentation of each of the input
vectors. Each time step on the figure corresponds to
an updated version of activation after it has gone
through the recurrent network (t = t + 1) and is
assumed to correspond to roughly 50 msec of ISI. Thus,
the figure shows the time course of semantic activation
from 50 to 250 msec.

The results of the simulations parallel the behavioral
results. Semantic activation for both ‘‘dog’’ and ‘‘fruit’’
emerges when the input representation is a ‘‘prototy-

pical’’ exemplar of the phonetic category analogous to
the finding that semantic priming occurs for the un-
modified prime stimuli. Moreover, the amount of acti-
vation appears to be less when there is a competitor
than when there is not. Importantly, there is a lexical
competitor effect that interacts with the subphonetic
manipulations. Semantic activation is reduced when
there is no voiced lexical competitor and is lost when
there is a lexical competitor. These results are compar-
able to the reduction in semantic priming for acousti-
cally manipulated cat and the loss of semantic priming
for the acoustically manipulated pear. Finally, all of
these effects persist over the time course of the simula-
tion. In sum, we were able to account for the Broca’s
behavioral data simply by altering the resting state of
lexical activation to the same degree as the previous
simulation, while maintaining all other parameters of
the model.

CONCLUSION: THE CRITICAL STATE

The major conclusions that we draw from the present
study are threefold in nature. One of the main points of
the present project is that the present simulations
strongly suggest that the adult lexicon is the product
of an ongoing process of self-organization— internal
organization without explicit direction from outside
the system. Such a principle applies to at least three
time scales: the developmental time scale, in which the
lexicon is created and extended; the experimental/dis-
course time scale; and the time scale of immediate
responses such as on-line lexical decisions. One of our
claims, as detailed in the Appendix, is that develop-
mental processes of self-organization of the lexicon lead
to a dynamical system that is capable of making lexical
decisions. Once the weights have been established
(according to the system described in the Appendix),
word activations rise and reach a maximum steady
state, while typically nonword activations eventually
decrease in value. That evolution of lexical and seman-

Figure 9. Simulation of the Utman, Blumstein, and Sullivan (sub-
mitted) data on the effects of subphonetic manipulations on semantic
priming in Broca’s aphasics. Again, for the solid symbols the target is
‘‘fruit,’’ and for the others the target is ‘‘dog.’’
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tic activations constitutes self-organization at the smal-
lest time scale.

In addition, it is apparent from the literature that any
model of semantic priming must provide equations for
the dynamics of lexical and semantic activation, as the
patterns of the process of semantic priming change over
time. However, as is evidenced by our model, those
equations can be quite simple. While they do require
nonlinearities, they are limited to simple maxima, mini-
ma, thresholds, and normalization.

Finally, the present study paves the way for future
work using self-organizing nonlinear dynamical systems
as the substrate for model building in the investigation
of how sound structure contacts the lexicon in normals
and aphasics. As we do not believe that any single model
will offer a complete answer to all of the relevant issues
in the near future, we favor a pluralistic approach (see
Cilliers, 1998; Rescher, 1993; James, 1908/1977). But
even though we foresee the need for multiple models,
we strongly suspect that there will be a number of
consistent themes running through the endeavor.
Namely, we feel that the necessity of all three of these
characteristics— self-organization, nonlinearity, and
feedback dynamics— is clearly in evidence given the
present work.

Our current strategy is to characterize these self-
organizing nonlinear dynamical systems in terms of a
so-called critical state (compare with the notion of self-
organized criticality—Bak & Chen, 1991). We propose
that the normal human brain is poised at a critical state
with respect to task demands. This means that the
brain possesses a natural tendency to migrate—via
processes of self-organization— toward the best possi-
ble state that is dynamically achievable given the cir-
cumstances. Following Cilliers (1998; who followed Bak
& Chen, 1991), ‘‘. . . the system organizes itself towards
the critical point whose single events have the widest
possible range of effects. Put differently, the system
tunes itself towards optimum sensitivity to external
inputs.’’ It is in this region of optimum or near-opti-
mum sensitivity that effective linguistic communication
takes place. Since we were able to account for both
normal and two types of aphasic performance by
manipulating only one parameter (resting lexical activa-
tion), we may conclude that there is a continuum along
which effective communication and the aphasic condi-
tions appear (see Figure 10).

In the case of lexical access, the human perceptual
system evolves to a point at which control parameters
and the nodal interconnection strengths that code for
known words are balanced such that language compre-
hension is possible, based on lexical and semantic
activations. The aim of this self-organization is thus a
point of optimal (or at least highly effective) degree of
coordination between the organism, its experience, and
its environment (compare Turvey & Carello, 1981; see
also Van Orden & Goldinger, 1994).

This point is characterized by a critical balance be-
tween a number of crucial variables or control para-
meters, to use a term consistent with dynamical systems
theory. In our case, we considered the balance between
resting activation, positive feedback, and negative feed-
back. The success of our model in incorporating these
design principles and accounting for the normal data
implies to us that such a balance may be crucial to intact
language processing.

We then investigated two ways in which variation in
activation (or ‘‘resting state’’ of the lexical entries)
would affect the behavior of the system: underactivation
(to model Broca’s aphasics) and overactivation (to
model Wernicke’s aphasics). The results strongly indi-
cate that such deficits may underlie the patterns of
performance observed in the findings addressed in the
present study. Further, we feel that lexical activation
deficits may have very specific predictions with regard to
their implications for the language perception/produc-
tion system as a whole (although clearly the present
study is only a first step towards demonstrating that)
(see Blumstein & Milberg, 2000). It is apparent to us
that with too little lexical activation, crucial relationships
(e.g., syntactic, semantic, or pragmatic) between ele-
ments of communication will be lost or missed; whereas
with too much activation, the system will be so over-
whelmed with extraneous information that processing
will also be impaired. In either case, the two types of
patients have trouble maintaining consistent success
with higher-order linguistic processing, albeit in diffe-
rent ways.

At the critical state the human system makes the best
possible use of information as quickly as it can while
maintaining stability. Happily, there seems to be a
range of parameter values that give rise to the critical
state, which may explain variability from subject to
subject in performance. Thus the critical state seems
to be robust yet flexible, thereby solving the stability–
plasticity dilemma (compare Grossberg, 1980, 1982,
especially regarding the noise-saturation dilemma as
well). However, extreme circumstances (such as brain
damage) can radically unbalance the control para-
meters crucial to the system’s operation. Hence, per-

Figure 10. The critical state as a region along a continuum of resting
lexical activations.
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haps the best way to evaluate aphasics may be in terms
of the way in which they have been perturbed from the
critical state. Thus, we feel that the present approach
opens up numerous possibilities for theoretical and
empirical work investigating the nature of the critical
state in the language system, both in normal and
aphasics.

APPENDIX

The Learning Algorithm

It is the purpose of this token simulation to develop an
existence proof of the ART 2-A’s self-organizing capabilities.
The design principles for the self-organizing neural network
used in this paper are based on the system developed by
Carpenter et al. (1991) called ‘‘ART 2-A.’’ ART 2-A is a simple,
algorithmic variant of Grossberg’s Adaptive Resonance Theory
systems (Carpenter & Grossberg, 1987a, 1987b; Grossberg,
1976a, 1976b, 1980, 1982). Specifically, it mimics the behavior
of ART 2 dynamical systems in an algorithmic manner; this
means that it takes as input elements whose activation values
can vary continuously (as opposed to ART 1, whose input
values must be binary), and it can stably form categorization
schemes of varying degrees of category coarseness. The basic
aspects of the algorithm that are relevant to the discussions in
this paper are given below; the reader who seeks a more
detailed description of the ART 2-A algorithm is referred to the
original paper by Carpenter et al.

In order to simulate the learning of lexical entries, we are
focusing on only two levels of the network, the mapping from
the phonemic level to the lexical level. Layer F1 represents the
information with which the lexical access system is initially
provided (i.e., sound structure), and layer F2 represents cate-
gory identity (i.e., entries in the lexicon). Each node in layer F2

receives inputs through weighted connections from every
node in F1, and each node in F2 corresponds to a single
category.

There are two types of operation of the network: a learning
phase and a testing phase. The learning phase provides an
account of how the system manages to acquire category
(lexical) representations, while the testing phase is used to
account for subject performance on smaller time scales;
namely, in the experimental setting.

The learning phase proceeds as follows. Given an M-dimen-
sional input vector I0 (representing sound structure in our
model), the input to the network is normalized through
Euclidean normalization:

I ˆ N…I† …3†

where

N…x† ˆ x
k x k

…4†

where

k x kˆ
i

x2
i …5†

The vector I forms the input to the network. Initially, all
category nodes (F2 nodes) are uncommitted; that is, they lack
any category identity whatsoever. However, as will be
described below, ART 2-A quickly establishes certain F2 nodes
as committed—each representing a particular category. When
an F2 node is committed, it acquires a set of weights feeding

into it from F1 that correspond to a profile of the features
characteristic of that category. We refer to this profile of
features as a critical feature pattern z, which is a scaled long-
term memory trace reflected in the vector of connections from
F1 to that F2 node.

For our purposes, only activations of committed F2 nodes
are considered, as the uncommitted nodes have no represen-
tational value. They are determined by the equation

Tj ˆ I ¢ z …6†

that is, the activation of each F2 node is found by taking the
dot product between the input vector and the critical feature
pattern corresponding to that node. Then a choice function is
applied to the activations, where

TJ ˆ max
j

…Tj† …7†

If

TJ ¶ …8†
where

0 µ µ 1 …9†

then I is considered a member of category j.
The parameter of the model called is known as the

vigilance parameter. It corresponds to the minimum degree
of match between an input and a category’s feature pattern
required for the pattern to be considered a member of that
category. The higher the vigilance, the greater the degree of
match required to include the current input as a member of
any existing category. A vigilance equal to 1 requires an exact
match, and therefore results in the highest possible number of
categories, i.e., equal to the number of input patterns.

If no F2 node matches the input sufficiently, a new node is
committed to that input pattern by setting the critical feature
pattern of the new node equal to the pattern I. Otherwise, if
the pattern matches a node sufficiently, the weights are
adjusted by means of the following equation:4

z…new†
j ˆ N… I ‡ …1 – †z…old†

j † …10†

where is the learning rate of the system, and

0 µ µ 1 …11†

The higher the value of the learning rate, the faster the
learning. Learning proceeds by repeated presentation of the
input set until the system has stabilized. We defined stable
behavior as a consistent categorization scheme that persists
over at least three consecutive presentations of the training
set.

The testing phase of the system proceeds according to
Equations 3, 4, 5, 6, 7, 8, and 9. That is, no new nodes are
committed and existing weights are not altered during the
testing phase. This allows a lexical choice to be made according
to Equations 7, 8, and 9, resulting in a ‘‘word’’ response. If no
such choice is available, then a ‘‘nonword’’ response is given.

Token Simulation

In order to illustrate the efficacy of the ART 2-A algorithm, we
ran a simulation that endeavored to illustrate how the ART 2-
A system can learn to accept and recognize familiar patterns
and reject unfamiliar patterns, even when the unfamiliar
patterns are similar to the familiar ones. In this simulation,
we created patterns made up of three ‘‘parts’’ each. This is
analogous to word-like units having a phonetic structure such
as CVC. In this case, the parts were comprised of four units
each (analogous to segments each being comprised of a set of
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phonetic features), making the whole pattern vector 12
elements long. In each of these groups of four units, one
element’s activation was set equal to 1.0, while the other
three were set equal to 0.2. Since there were four possible
‘‘parts’’ or segments (referred to as A, B, C, and D), and three
parts per pattern (phonetic feature comprising these seg-
ments), there were 64 possible ‘‘words,’’ starting with AAA
and AAB and ending with DDD.

We trained the ART 2-A network on 40 of these patterns; it
successfully distinguished these patterns from each other (and
formed 40 categories) when we set the vigilance parameter
equal to 1.0. Lower vigilance settings would lead to different
categorizations, resulting in a smaller set of potential words in
the lexicon. Note that since the greatest degree of match
between different patterns was just less than 0.81, any value
for vigilance between 0.81 and 1.0 give the same category
structure; further simulations with vigilance settings within
that range confirmed this property.

Next, we presented the network with the 24 possible
patterns on which it had not been trained. Both the words
and the nonwords contained a similar phonology and were
comprised of A’s, B’s, C’s, and D’s. It successfully categorized
all of these as unfamiliar (nonwords), because none of the new
vectors activated category nodes to a degree greater than that
of the vigilance parameter (which, as before, could range
between 0.81 and 1.0). Thus, the mechanism for recognizing
new patterns in the ART 2-A system could be applied to a task
that might be mapped on to the process of word learning.5

The fact that a range of vigilance values was possible indicates
that the system could manifest the same qualitative behavior
even while tolerating a certain degree of variation in familiar
patterns (so long as that variation did not bring the activation
of the corresponding category node below the level of vigi-
lance).

The success of the ART 2-A system as applied to lexical
access phenomena as demonstrated in this paper illustrates
the simplicity and power of the theoretical constructs that
make up our account. ART principles were first suggested as a
way to approach such phenomena by Grossberg and Stone
(1986). We believe that our approach both lives up to the
expectations put forward by that paper and improves on the
overall methods by simplifying them and offering simulations
as evidence of their efficacy. Specifically, we feel that we have
demonstrated ‘‘that the unifying power of the theory is due to
the fact that principles of adaptation—such as the laws reg-
ulating development, learning and unitization—are fundamen-
tal in determining the design of behavioral mechanisms’’
(Grossberg & Stone, 1986, p. 46), and we have done so in a
novel and useful way.
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Notes

1. Note that this equation can potentially be applied to
vectors and thus distributed patterns as well, such as the Brain-
State-in-a-Box model (Anderson, Silverstein, Ritz, & Jones,
1977). The main equation for such a system would be: xt + 1 =

( – £ t) Axt, where x and A are a vector of activations and a
matrix of connection weights, respectively.
2. It is assumed that the greater the unit of activation in the
simulation, the greater the magnitude of priming. We are
looking for a qualitative match between model behavior and
subject performance rather than a 1:1 correspondence
between the actual values obtained in the simulations and
the particular reaction-time latencies obtained by Milberg et al.
(1988a).
3. In this simulation, we reduced the VOT only by 2/3 since
results of reducing VOT by 1/3 were nonsignificant (and not
tested with aphasic patients).
4. Compare Killeen (1981).
5. We are well aware that the process of word learning is
considerably more complex than elaborated here. Our system
does not include semantics (cf. also Seidenberg & McClelland,
1989) nor do the input representations in the training phase
contain any unallowable phonological strings. Nonetheless, the
principles of self-organization could be applied as well to a
more complex system with a greater range of inputs.
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