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1 Introduction

The change of variables theorem is as follows.

Theorem 1.1 Let U, V ⊆ Rn be open in Rn, and let T : U → V be a diffeomor-

phism. Given a continuous function f : V → R,

ˆ
V

f =

ˆ
U

(f ◦ T )
∣∣ detDT ∣∣. (1)

There are some immediate questions that come with this. First, what is a diffeo-
morphism?

Definition 1.2 Let U, V ⊆ Rn be open in Rn. Given a bijection T : U → V , we

say that T is a diffeomorphism provided that T is C1 and T−1 is C1.

In other words, a diffeomorphism is a C1 function that has a C1 inverse.
Next, and more importantly, how is this theorem used? In general, the change

of variables theorem is used whenever we want to express an integral of f over
a complicated region as an integral over a less complicated region. For example,
suppose we want to integrate a function over the interior of the following curve:

(
x2 + y2

) 5
2 = x4 + 2

(
x2 + y2

) (
2x2 + y2

)
. (2)

This is positively horrific. Trying to express the interior would be even more of a
nightmare. However, by expressing the curve in polar coordinates, this same curve
can be written as

r =
(
cos2θ + 1

)2
. (3)

This makes the region in question much easier to deal with. Change of variables is
the theoretical foundation of such techniques.
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2 Calculus, revisited

In this section, we’ll show how to use the change of variables theorem to explain
the techniques for simplifying integrals that you learned in Calculus III.

2.1 Polar coordinates

Let’s say you want to find the integral of a function f(x, y) over over the region
bounded by the x-axis and the upper half of the unit circle. In Calculus III, you
learned that you can express this integral in two different ways:

ˆ 1

−1

ˆ √1−x2
−
√
1−x2

f(x, y) dydx =

ˆ π

0

ˆ 1

0

f (r cos θ, r sin θ) r drdθ. (4)

Using the change of variables theorem, we can explain how this formula comes
about.

First of all, let’s understand that the integral on the right side of Equation 4 is
actually an integral over a rectangle; it is a rectangle of width π and height 1 in
the θr-plane (as opposed to the xy-plane). In order to use the change of variables
theorem, we need a diffeomorphism that maps the interior of this rectangle to the
interior of the upper unit semicircle. This diffeomorphism is exactly the transfor-
mation from polar to rectangular coordinates: T : R2 → R2 via

T (r, θ) = (r cos θ, r sin θ) . (5)

The derivative DT can be represented by the Jacobi matrix:

J (T ) =

(
cos θ −r sin θ
sin θ r cos θ

)
. (6)

The determinant of DT is now just the determinant of the Jacobi matrix:

detDT = rcos2θ + rsin2θ = r. (7)
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Thus, the change of variables theorem states that

ˆ 1

−1

ˆ √1−x2
−
√
1−x2

f(x, y) dxdy =

ˆ π

0

ˆ 1

0

f ◦ T (r, θ)
∣∣ detDT ∣∣ drdθ

=

ˆ π

0

ˆ 1

0

f (r cos θ, r sin θ) r drdθ, (8)

as expected.

2.2 Cylindrical coordinates

Similarly, suppose we are given a function f : R3 → R3 and an integral

˚
R

f(x, y, z) dV, (9)

where R is the region of xyz-space bounded by the planes z = −1, z = 1 and the
cylinder x2+ y2 = 4. If we want to solve it by switching to cylindrical coordinates,
then we can accomplish this by using the change of variables theorem. We seek
some function T : R3 → R3 that maps a nice region in rθz-space smoothly to R.
In this case, the nice region that we want to integrate over is a rectangular prism in
rθz-space:

S =
{
(r, θ, z) ∈ R3

∣∣0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π and − 1 ≤ z ≤ 1
}
. (10)

Let’s take
T (r, θ, z) = (r cos θ, r sin θ, z) . (11)

Once again, we need the determinant of the Jacobi matrix:

detDT =

∣∣∣∣∣∣∣
cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r. (12)
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Now the change of variables theorem dictates that

˚
R

f(x, y, z) dV =

˚
S

f ◦ T (r, θ, z) | detDT | dV

=

ˆ 1

−1

ˆ 2π

0

ˆ 2

0

f (r cos θ, r sin θ, z) r drdθdz. (13)

2.3 Spherical coordinates

Now, let’s say we’re given f : R3 → R3 and an integral

˚
R

f(x, y, z) dV, (14)

where

R =

{
(x, y, z) ∈ R3

∣∣∣∣x ≥ 0, y ≥ 0,
√
x2 + y2 ≤ z ≤

√
9− x2 − y2

}
. (15)

If we use spherical coordinates, we could instead integrate over the rectangle

S =

{
(ρ, φ, θ) ∈ R3

∣∣∣∣0 ≤ ρ ≤ 3, 0 ≤ φ ≤ π

4
, and 0 ≤ θ ≤ π

2

}
. (16)

To use the change of variables theorem to convert this integral to spherical coor-
dinates, we need a function T : R3 → R3 that maps S smoothly to R. This will
do:

T (ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) . (17)
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Again, we need the determinant of the Jacobi matrix of T :

detDT =

∣∣∣∣∣∣∣
sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣∣∣∣∣∣∣
= cosφ

∣∣∣∣∣ρ cosφ cos θ −ρ sinφ sin θρ cosφ sin θ ρ sinφ cos θ

∣∣∣∣∣+ ρ sinφ

∣∣∣∣∣sinφ cos θ −ρ sinφ sin θsinφ sin θ ρ sinφ cos θ

∣∣∣∣∣+ 0

= cosφ
(
ρ2 sinφ cosφcos2θ + ρ2 sinφ cosφsin2θ

)
+ρ sinφ

(
ρsin2φcos2θ + ρsin2φsin2θ

)
= ρ2 sinφcos2φ+ ρ2 sinφsin2φ = ρ2 sinφ. (18)

Therefore,

˚
R

f(x, y, z) dV =

˚
S

f ◦ T (ρ, φ, θ) | detDT | dV

=

ˆ π
2

0

ˆ π
4

0

ˆ 3

0

f (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)φ2 sinφ dρdφdθ. (19)
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3 Solutions to the final homework

From Section 4.19, page 167

1. Let R be the region of R2 bounded by the curve x2 − xy + 2y2 = 1. We
seek a diffeomorphism T : R2 → R2 which maps B(0, 1) to R. We define

T (u, v) =

(
u+

1√
7
v,

2√
7
v

)
. (20)

One can show that, for x = u + 1√
7
v and y = 2√

7
v, if u2 + v2 = 1, then x2 −

xy + 2y2 = 1. (Thus, T maps the boundary of B(0, 1) to the boundary of R.) We
compute detDT :

detDT =

∣∣∣∣∣1 1√
7

0 2√
7

∣∣∣∣∣ . (21)

By the change of variables theorem, this integral is given by

¨
B(0,1)

(
u+

1√
7
v

)(
2√
7
v

)(
2√
7

)
dA. (22)

�

2. (a) LetE ⊆ R3 be the region in question, and letR be the image ofE under
projection onto the xy-plane. First, we can use Fubini’s theorem to say that

V =

˚
E

1 dV =

¨
R

ˆ 2x+6y+1

x2+2y2
1 dzdA =

¨
R

2x+6y+1− x2− 2y2 dA. (23)

Now we seek a diffeomorphism T : R2 → R2 mapping B(0, 1) to R. In or-
der to ensure that T maps the boundary of B(0, 1) to the boundary of R, we seek
T (u, v) = (x, y) so that if u2 + v2 = 1, then x2 + 2y2 = 2x + 6y + 1. This is
possible if

T (u, v) =
(√

20u+ 1,
√
10v + 3

)
. (24)
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We evaluate detDT :

detDT =

∣∣∣∣∣
√
20 0

0
√
10

∣∣∣∣∣ = 10
√
2. (25)

Therefore, the volume can be expressed as

¨
B(0,1)

(
2x+ 6y + 1− x2 − 2y2

)
10
√
2 dA. (26)

(b)

3.

4.

5.
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