Practice Exam 1

(¢) Find r € Z such that 0 < r < 7 and 3" = (mod 7).
(77) Let a,b,n € Z. Suppose that a and n are relatively prime. Prove that the

congruence ax = b (mod n) has solutions.

(7) Write the Cayley table of D,.

(17) Prove or disprove the following statement: D, is Abelian.

(7) Produce an example of a set S with a binary operation * such that S is
closed under .

(77) Produce an example of an associative binary operation. Produce an exam-
ple of a non-associative binary operation.

(#ii) Produce an example of a commutative binary operation. Produce an exam-
ple of a non-commutative binary operation.

(1v) Find the inverse element of 5 in U (12).

Let G be a group, and assume that V a,b € G, (ab)2 = a®b?. Prove that G
is an Abelian group.

(1) List the subgroups of Zs,.
(17) Produce a generator for each subgroup of Zs.
(7i7) List all of the elements of Zs, that have an order of 5.

Let GG be a group. Prove that the center Z(G) is a subgroup of G.

Letn € Z*. Show that A, is a subgroup of S,,.



Solutions to Practice Exam 1
(i)
3100 = (32)™ = 9% = 20 = 21892 = (2%) 4 =814 = 1'%4 = 4 (mod 7). (1)

(77) By Bézout’s lemma, we know that 3 s, ¢ € Z such that as + nt = 1. There-
fore, abs + nbt = b. We deduce that abs — b = n (—bt), so n|abs — b. This implies

that a (bs) = b (mod n), so x = bs (mod n) is the desired solution. [J

(1) See page 33 of the text.
(17) D, is not Abelian, since V Rgg = D', but RggV = D.

(1) Possible answers include: R under addition, R under multiplication, Z
under multiplication

(17) Possible associative binary operations include: multiplication of real num-
bers, matrix multiplication, function composition, addition of integers; possible
non-associative binary operations include: subtraction, division, cross products

(7ii) Possible commutative binary operations include: multiplication of real
numbers, addition of real numbers; possible non-commutative binary operations
include: matrix multiplication, function composition, cross products

(iv) U (12) = {1,5,7,11}. We notice that (5) (5) = 25 = 1, so 5 is the inverse
of 5.

Let a,b € G. We know that (ab)® = a2b?, so abab = aabb. Therefore, by
multiplying on the left by a—!, bab = abb. By multiplying this on the right by b1,
this gives us ba = ab. Thus, G is Abelian. [



(7) The subgroups of Zs, are:

30\ __
30) = Zso
(30) — {2,4,6,8,10, 12, 14,16, 18, 20, 22, 24, 26, 28, 0}
(38) = {3,6,9,12,15,18,21,24,27,0}
(39 = {5,10, 15,20, 25,0}

(2)

(%) ={6,12,18,24,0}

() ={10,20,0}
(F) = {15,0}
(F)=1{0}
(17) The generators are 1, 2, 3, 5, 6, 10, 15, and 0.
(7i) The elements with order 5 must be elements of (6). We notice that

(6) = (12) = (18) = (24), (3)

so 6, 12, 18 and 24 are the elements with order 5.

First, we know that Z (G) # @, since e € Z (G). Let a,b € Z (G), and let
x € (G. This means that ax = xa and bx = xb.

We claim that b 'z = xb~!. First, we know that bx = zb, so bxb~! = x. There-
fore, xb~! = b~'x. This establishes the claim.

By the claim, ab~ 'z = axb~!. At the same time, ax = xa, so ab~'x = zab~ L.
Thus, ab~! € Z (G). This shows that Z (@) is a subgroup of G. [J

Let 0,7 € A,,. In that case, 0 = ajqs...cr, for some even r € Z and some
transpositions o, g, ..., o, € S,. At the same time, 7 = (3, 35...5; for some even
s € Z and some transpositions 31, Ba, ..., Bs € S,. Thus, o7 = ayas...q. 01 5s...0s
is a product of r + s transpositions. As r and s are both even, so is 7 + s, and so
ot € A,,. Since S,, is finite, A,, is also finite, and therefore, this shows that A,, is a
subgroup of .S,,. [



Practice Exam 2

Let £ : Q — RsuchthatVx,y € Q, E(x +y) = E(x)E(y). Show that
VreQ, E(x)=E(1)".

(a) Find all cosets of (3) in Zs.
(b) Let K be a proper subgroup of H, and let H be a proper subgroup of G. If
|K| = 7 and |G| = 42, what are the possible orders of H?

(a) List the elements of order 3 in Z3q.

(b) Prove or disprove the following statement: Z99 =~ Zg @ Zsyo.

(a) Let H < S, defined via H = {(1),(1,2,3),(1,3,2)}. Prove or dis-
prove: H <.5,.

(b) Let G be a group, and let H be a subgroup of G such that [G : H] = 2.
Prove that H < G.

List all group homomorphisms ¢ : Z, — Zg.

Consider the groups Zg;, Zo7r b Zs and Zg & Zg. List the elements of order

3 of each group. Show that none of these groups are isomorphic.

Letn € Z" be even. Define the set S = {z + nZ|z is even}. Show that S

is a subring of Z,,.

(a) Produce an example of a ring R and an element = € R that is a zero
divisor. Produce an example of an element y € R that is a unit.

(b) Let D be an integral domain. Given a,b € D, assume that a® = b and
a* = b*. Show that a = b.



Solutions to Practice Exam 2

Letz = % € Q. We notice that

s (@) -2 (E£2)-fio() ()

k=1 k=1
Also, .
E(l)zE(%) :E<%) . 5)
This implies that £ (1) = E (1)7. Thus,
E(:c)—E(%)m— (E<1)%)m:E(1)% — E(1)". ©6)
O
(a)
(3), 1+(3), 2+ (3). ()

(b) Let |H| = n. By Lagrange’s theorem, 7|n and n|42. Moreover, n # 7 and
n # 42. Therefore, n € {14,21}. O

2
ng (6, 20) =2 7£ 1, we have that leo ;ﬁ Zﬁ D Zgo. [

(a) We notice that

(1,4)H = {(1,4),(1,2,3,4),(1,3,2,4)}

. ()
H(1,4) ={(1,4),(1,4,2,3),(1,4,3,2)}

Thus, H AS;.

(b)Letzx € G. If v € H,thena®H = H = Hz. If © ¢ H, then H # H. At
the same time, Hx # H, so since there exists only one other coset of H, Hx = v H
must be true. Either way, H < G. [J



We know that a group homomorphism ¢ : Z, — Zg is determined by ¢ (T)

There exist six possibilities:

_ _ _ _ - _ 9
ea(1) =3 ¢5(1) =4 (1) =5.
We note that, if ¢ is a homomorphism, then
2¢p (T) = (5) = (6) = 6¢p (T) =0. (10)

However, the only maps satisfying this condition are ¢; and (4. These are the only

homomorphisms. [

In Zgli

N
B

(1)

In Zo7 & Zs:
(@.7),(0,2),(3,0),(3.1).(3.2), (15.0), (8.7), (8,2).  (12)

In Zg @ Zo:
(0.3), (0.6).(3,0) . (3.3) . (3.6) , (6.0). (6.3) . (6.5) . (13)

Since Zsg; has two elements of order 3 and both Zy; & Z3 and Zg & Zg have eight,
we see that Zgl ¢ Z27 D Zg and Zgl ;ﬁ Zg D Zg. Addlthl’laHy, Z27 D Zg ;é Zg D Zg,
since Zoy @ Zs contains an element of order 27 (namely, (1,0)), while Zy & Zg

contains no such element. [

We notice first that S # @, since 0+nZ € S. Now, let v +nZ,y+nZ € S.
In that case, (z — y) + nZ € S, since if x and y are even, then x — y is also even.
Additionally, xy + nZ € S, since if x is even or y is even, then xy is also even.

Thus, S is a subring of Z,,.



(a) Consider M, (Z), and

A:<1 0) B:<o 0) .
00 0 1

Now AB = 0, thus A is a zero divisor. The identity matrix /5 is a unit, since
L1, = 1.

(b) We consider two cases: either a = 0 ora # 0. If @ = 0, and a® = b3, then
b*b = b = 0. This implies that either > = 0 or b = 0, since D is an integral
domain. However, if b2 = 0, then b = 0, so either way, b = 0 = a.

Consider the case that a # 0. Since a* = b* = b3b = a3b, we can write
a*(a—b) =a" - a’b = 0. (15)

Now, as a # 0, we know that a? # 0, and so a® # 0. We deduce that a — b = 0,

and therefore, ¢ = b. J



Practice Exam 3

Let R be a commutative ring, and let / and J be ideals of . Prove that
I'n Jis anideal of R.

Let o : Z, — Z, be a ring homomorphism. Show that V m € Z,
o (m) = mep (1).

Let D be an integral domain, and let f, g € D[X] be nonzero polynomials.
Prove that
deg (fg) = deg f + degyg. (16)

Determine which of the following polynomials are irreducible over QQ.

(a) f(X)=X®—-5X°+10X2+5X +5

(b) g(X)=X*"— X +1

h(X) =X+ X+ X34+ X2+ X + 1.

Show that 9 does not factor uniquely as a product of irreducibles in Z [\/ —8} .
Find the splitting field of X* + 1 over Q.

Find the extension degree of Q (v/3, V/7) over Q.

Let f(X) = X®+ X2+ 1 € Zy[X]. Let a be aroot of f in an extension
field of Z,. Find another root of f in the same extension field.



Solutions to Practice Exam 3

First, since [ and J are ideals of R, we know that / and J are subrings of
R. This indicates that 0 € [ and 0 € J. We deduce that I N J # &.

We claim that 7 N J is an additive subgroup of R. Let a,b € I N J. We notice
that since a,b € I, a — b € I, as [ is an ideal. Similarly, since a,b € J,a —b € J.
We deduce that a — b € I N J. This establishes the claim.

We claim that / N J is an ideal of R. Leta € I N J, and let r € R. In that case,
a € I, so since [ is an ideal of R, we have that ra € I. Similarly, since a € J and
J is anideal of R, ra € J. Thus, ra € I N J. This establishes that / N .J is an ideal
of R. [

Let m € Z. We consider two cases: either m > 0, or m < 0.
m m
Consider the case that m > 0. In that case, m = ) 1. Therefore, @ = ) _ 1.
' i=1

=1
Now, since ¢ is a homomorphism,

p(m) =¢ (ZT) =2 e (M) =me(1). (17)

Consider the case that m < 0. In that case, —m > 0, so by the first case,
¢ (=m) = —mp (1). Now, we note that 2 + —m = 0, so since ¢ is a homomor-

phism,
p(m) —myp (1) = ¢ (M) +¢(=m) = p(Mm+—m) = (0) =0.  (18)
We deduce that ¢ (M) = myp (1). O
Define deg f = m and deg g = n. In that case,

f(X) =anX™ + Q1 X"V L+ a X +oag

; (19)
g(X)=b, X"+ b, 1 X"+ .+ X + b



for some a,, # 0 and b,, # 0. By definition of polynomial multiplication in D[X],
F(X)g(X) =" axt, (20)
k=0

where for each k € {0,1,2,...,m + n},

Cr — Z Clibj. (21)
i+j=k
In particular, the coefficient of X™*" in f(X)g(X) is
Cmin = Y @ibj = by (22)

i+j=m+n

As D is an integral domain and neither a,, nor b, is 0, we know that a,,b, # 0.

Therefore, a,,b, is the leading coefficient of fg, and so deg(fg) = m + n. O

(a) f is irreducible by Eisenstein’s criterion with p = 5.
(b) We claim that the polynomial ¢ is irreducible over Q. We consider the
polynomial g(X) = X* — X + 1 € Z,[X]. Assume, with the expectation of a

contradiction, that g is reducible over Z,. We notice that
! (23)
X

This shows that g has no linear divisor over Z,. Therefore, g factors into quadratic
polynomials:
7(X)=(X?+bX +¢) (X*+eX + f) (24)

for some b, c, e, f € Z5. Ergo,

X' = X+1=X"+(e+b) X+ (f+be+c) X?+ (bf +ce) X +ef. (25)
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This tells us that

e+b=0
b =0
f+be+c 26)
bf +ce=—-1=1
cf=1
Now, if ¢f = 1, then ¢ = f = 1. Thus, the system becomes
e+b=0
1+be+1=0. (27)
b+e=1

Ergo, b +e = 0 and b + e = 1. This contradiction leads us to conclude that our
assumption that g is reducible is false; g is irreducible over Z,. Thus, g is also
irreducible over Q.

(c) We notice that

X6 -1

X -1’

so h (—1) = 0. This shows that X + 1|h(X), and so h is reducible over Q. [J

We notice that
(3)3)=9=(1+v-8) (1-v-38). (29)

h(X) = (28)

We claim that 3 is irreducible in Z [\/ —8}. Suppose that 3 = zy. In that case,
9=N(3)=N(z)N(y). If N(z) = 3 or N(y) = 3, then a* + 8b* = 3 for some
a,b € Z. As no such a and b exist, we see that one of N(x) and N(y) must be 1.

Ergo, one must be a unit, and so 3 is irreducible.
Similarly, since N ( 1++/ —8) =9, we see that 1 +£+/—8 are also irreducible. [J

Let K be the splitting field of X* + 1 over Q. We notice that

Xt 1= (X2 40) (X2 = 0) = (X =) (X4 eT) (X = ) (X 4 ).
(30)
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Now, €' = 1—\;%1 and ¢ = =L We notice that ¢’ — ¢'T = /2. Therefore,
V2 e K. Additionally ¢ = V2e'T — 1 € K, since K is a field. We deduce that the
splitting field is K = Q (\/5, z)

S

By the tower theorem,
@(v3.¥7) 0] = [o(v3.V7):0(v3)] [o(v3) :e]. @D
Since {1,/3} is a basis for Q (v/3) over Q, we see that
0(5):¢] -2
Since {1,75, 74} is a basis for @ (v3, V/7) over @ (v/3), we see that
[2(v5.v7) - (v9)] =3

Therefore,

[@ (ﬂ i"ﬁ) : @} — 6. (34)

Define K = Zy (a). As f () = 0, we know that o® + o? + 1 = 0. Thus,
o? = a? + 1, since charK = 2.

We claim that o is a root of f. We notice

f(@®)=a+a"+1 (35)
We have
at=a(@)=a(@®+1)=d’+a=a"+a+1. (36)
and
a6:(a3)2:((12—1—1)2:a4+2a2+1:a4+1:a2+a. 37
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Thus,
f(@?)=(?+a)+ (" +a+1)+1=0. (38)

Ergo, o is a root of f. [J
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