
Practice Exam 1

1. (i) Find r ∈ Z such that 0 ≤ r < 7 and 3100 ≡ r (mod 7).
(ii) Let a, b, n ∈ Z. Suppose that a and n are relatively prime. Prove that the

congruence ax ≡ b (mod n) has solutions.

2. (i) Write the Cayley table of D4.
(ii) Prove or disprove the following statement: D4 is Abelian.

3. (i) Produce an example of a set S with a binary operation ∗ such that S is
closed under ∗.

(ii) Produce an example of an associative binary operation. Produce an exam-
ple of a non-associative binary operation.

(iii) Produce an example of a commutative binary operation. Produce an exam-
ple of a non-commutative binary operation.

(iv) Find the inverse element of 5 in U (12).

4. Let G be a group, and assume that ∀ a, b ∈ G, (ab)2 = a2b2. Prove that G
is an Abelian group.

5. (i) List the subgroups of Z30.
(ii) Produce a generator for each subgroup of Z30.
(iii) List all of the elements of Z30 that have an order of 5.

6. Let G be a group. Prove that the center Z(G) is a subgroup of G.

7. Let n ∈ Z+. Show that An is a subgroup of Sn.
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Solutions to Practice Exam 1

1. (i)

3100 ≡
(
32
)50 ≡ 950 ≡ 250 ≡ 24822 ≡

(
23
)16

4 ≡ 8164 ≡ 1164 ≡ 4 (mod 7) . (1)

(ii) By Bézout’s lemma, we know that ∃ s, t ∈ Z such that as+ nt = 1. There-
fore, abs+ nbt = b. We deduce that abs− b = n (−bt), so n|abs− b. This implies
that a (bs) ≡ b (mod n), so x ≡ bs (mod n) is the desired solution. �

2. (i) See page 33 of the text.
(ii) D4 is not Abelian, since V R90 = D′, but R90V = D.

3. (i) Possible answers include: R under addition, R under multiplication, Z
under multiplication

(ii) Possible associative binary operations include: multiplication of real num-
bers, matrix multiplication, function composition, addition of integers; possible
non-associative binary operations include: subtraction, division, cross products

(iii) Possible commutative binary operations include: multiplication of real
numbers, addition of real numbers; possible non-commutative binary operations
include: matrix multiplication, function composition, cross products

(iv) U (12) =
{
1, 5, 7, 11

}
. We notice that

(
5
) (

5
)
= 25 = 1, so 5 is the inverse

of 5.

4. Let a, b ∈ G. We know that (ab)2 = a2b2, so abab = aabb. Therefore, by
multiplying on the left by a−1, bab = abb. By multiplying this on the right by b−1,
this gives us ba = ab. Thus, G is Abelian. �
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5. (i) The subgroups of Z30 are:〈
30
30

〉
= Z30〈

30
15

〉
= {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 0}〈

30
10

〉
= {3, 6, 9, 12, 15, 18, 21, 24, 27, 0}〈

30
6

〉
= {5, 10, 15, 20, 25, 0}〈

30
5

〉
= {6, 12, 18, 24, 0}〈

30
3

〉
= {10, 20, 0}〈

30
2

〉
= {15, 0}〈

30
1

〉
= {0}

. (2)

(ii) The generators are 1, 2, 3, 5, 6, 10, 15, and 0.
(iii) The elements with order 5 must be elements of 〈6〉. We notice that

〈6〉 = 〈12〉 = 〈18〉 = 〈24〉 , (3)

so 6, 12, 18 and 24 are the elements with order 5.

6. First, we know that Z (G) 6= ∅, since e ∈ Z (G). Let a, b ∈ Z (G), and let
x ∈ G. This means that ax = xa and bx = xb.

We claim that b−1x = xb−1. First, we know that bx = xb, so bxb−1 = x. There-
fore, xb−1 = b−1x. This establishes the claim.

By the claim, ab−1x = axb−1. At the same time, ax = xa, so ab−1x = xab−1.
Thus, ab−1 ∈ Z (G). This shows that Z (G) is a subgroup of G. �

7. Let σ, τ ∈ An. In that case, σ = α1α2...αr for some even r ∈ Z and some
transpositions α1, α2, ..., αr ∈ Sn. At the same time, τ = β1β2...βs for some even
s ∈ Z and some transpositions β1, β2, ..., βs ∈ Sn. Thus, στ = α1α2...αrβ1β2...βs

is a product of r + s transpositions. As r and s are both even, so is r + s, and so
στ ∈ An. Since Sn is finite, An is also finite, and therefore, this shows that An is a
subgroup of Sn. �
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Practice Exam 2

1. Let E : Q → R such that ∀ x, y ∈ Q, E(x + y) = E(x)E(y). Show that
∀ x ∈ Q, E(x) = E(1)x.

2. (a) Find all cosets of 〈3〉 in Z18.
(b) Let K be a proper subgroup of H , and let H be a proper subgroup of G. If

|K| = 7 and |G| = 42, what are the possible orders of H?

3. (a) List the elements of order 3 in Z300.
(b) Prove or disprove the following statement: Z120 ' Z6 ⊕ Z20.

4. (a) Let H ≤ S4 defined via H = {(1), (1, 2, 3), (1, 3, 2)}. Prove or dis-
prove: H / S4.

(b) Let G be a group, and let H be a subgroup of G such that [G : H] = 2.
Prove that H / G.

5. List all group homomorphisms ϕ : Z4 → Z6.

6. Consider the groups Z81, Z27 ⊕ Z3 and Z9 ⊕ Z9. List the elements of order
3 of each group. Show that none of these groups are isomorphic.

7. Let n ∈ Z+ be even. Define the set S =
{
x+ nZ

∣∣x is even
}

. Show that S
is a subring of Zn.

8. (a) Produce an example of a ring R and an element x ∈ R that is a zero
divisor. Produce an example of an element y ∈ R that is a unit.

(b) Let D be an integral domain. Given a, b ∈ D, assume that a3 = b3 and
a4 = b4. Show that a = b.
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Solutions to Practice Exam 2

1. Let x = m
n
∈ Q. We notice that

E (x) = E
(m
n

)
= E

(
m∑
k=1

1

n

)
=

m∏
k=1

E

(
1

n

)
= E

(
1

n

)m

. (4)

Also,

E (1) = E
(n
n

)
= E

(
1

n

)n

. (5)

This implies that E
(
1
n

)
= E (1)

1
n . Thus,

E (x) = E

(
1

n

)m

=
(
E (1)

1
n

)m
= E (1)

m
n = E (1)x. (6)

�

2. (a)

〈3〉 , 1 + 〈3〉 , 2 + 〈3〉. (7)

(b) Let |H| = n. By Lagrange’s theorem, 7|n and n|42. Moreover, n 6= 7 and
n 6= 42. Therefore, n ∈ {14, 21}. �

3. (a) 100, 200.
(b) Since gcd (6, 20) = 2 6= 1, we have that Z120 6' Z6 ⊕ Z20. �

4. (a) We notice that

(1, 4)H = {(1, 4), (1, 2, 3, 4), (1, 3, 2, 4)}
H(1, 4) = {(1, 4), (1, 4, 2, 3), (1, 4, 3, 2)}

. (8)

Thus, H 6 /S4.
(b) Let x ∈ G. If x ∈ H , then xH = H = Hx. If x /∈ H , then xH 6= H . At

the same time, Hx 6= H , so since there exists only one other coset of H , Hx = xH

must be true. Either way, H / G. �
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5. We know that a group homomorphism ϕ : Z4 → Z6 is determined by ϕ
(
1
)
.

There exist six possibilities:

ϕ1

(
1
)
= 0 ϕ2

(
1
)
= 1 ϕ3

(
1
)
= 2

ϕ4

(
1
)
= 3 ϕ5

(
1
)
= 4 ϕ6

(
1
)
= 5.

(9)

We note that, if ϕ is a homomorphism, then

2ϕ
(
1
)
= ϕ

(
2
)
= ϕ

(
6
)
= 6ϕ

(
1
)
= 0. (10)

However, the only maps satisfying this condition are ϕ1 and ϕ4. These are the only
homomorphisms. �

6. In Z81:
27, 54. (11)

In Z27 ⊕ Z3:(
0, 1
)
,
(
0, 2
)
,
(
9, 0
)
,
(
9, 1
)
,
(
9, 2
)
,
(
18, 0

)
,
(
18, 1

)
,
(
18, 2

)
. (12)

In Z9 ⊕ Z9: (
0, 3
)
,
(
0, 6
)
,
(
3, 0
)
,
(
3, 3
)
,
(
3, 6
)
,
(
6, 0
)
,
(
6, 3
)
,
(
6, 6
)
. (13)

Since Z81 has two elements of order 3 and both Z27 ⊕ Z3 and Z9 ⊕ Z9 have eight,
we see that Z81 6' Z27⊕Z3 and Z81 6' Z9⊕Z9. Additionally, Z27⊕Z3 6' Z9⊕Z9,
since Z27 ⊕ Z3 contains an element of order 27 (namely,

(
1, 0
)
), while Z9 ⊕ Z9

contains no such element. �

7. We notice first that S 6= ∅, since 0+nZ ∈ S. Now, let x+nZ, y+nZ ∈ S.
In that case, (x − y) + nZ ∈ S, since if x and y are even, then x − y is also even.
Additionally, xy + nZ ∈ S, since if x is even or y is even, then xy is also even.
Thus, S is a subring of Zn.
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8. (a) Consider M2 (Z), and

A =

(
1 0

0 0

)
B =

(
0 0

0 1

)
(14)

Now AB = 0, thus A is a zero divisor. The identity matrix I2 is a unit, since
I2I2 = I2.

(b) We consider two cases: either a = 0 or a 6= 0. If a = 0, and a3 = b3, then
b2b = b3 = 0. This implies that either b2 = 0 or b = 0, since D is an integral
domain. However, if b2 = 0, then b = 0, so either way, b = 0 = a.

Consider the case that a 6= 0. Since a4 = b4 = b3b = a3b, we can write

a3 (a− b) = a4 − a3b = 0. (15)

Now, as a 6= 0, we know that a2 6= 0, and so a3 6= 0. We deduce that a − b = 0,
and therefore, a = b. �
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Practice Exam 3

1. Let R be a commutative ring, and let I and J be ideals of R. Prove that
I ∩ J is an ideal of R.

2. Let ϕ : Zn → Zn be a ring homomorphism. Show that ∀ m ∈ Z,
ϕ (m) = mϕ

(
1
)
.

3. Let D be an integral domain, and let f, g ∈ D[X] be nonzero polynomials.
Prove that

deg (fg) = deg f + deg g. (16)

4. Determine which of the following polynomials are irreducible over Q.
(a) f(X) = X6 − 5X5 + 10X2 + 5X + 5

(b) g(X) = X4 −X + 1

(c) h(X) = X5 +X4 +X3 +X2 +X + 1.

5. Show that 9 does not factor uniquely as a product of irreducibles in Z
[√
−8
]
.

6. Find the splitting field of X4 + 1 over Q.

7. Find the extension degree of Q
(√

3, 3
√
7
)

over Q.

8. Let f(X) = X3 + X2 + 1 ∈ Z2 [X]. Let α be a root of f in an extension
field of Z2. Find another root of f in the same extension field.
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Solutions to Practice Exam 3

1. First, since I and J are ideals of R, we know that I and J are subrings of
R. This indicates that 0 ∈ I and 0 ∈ J . We deduce that I ∩ J 6= ∅.

We claim that I ∩ J is an additive subgroup of R. Let a, b ∈ I ∩ J . We notice
that since a, b ∈ I , a− b ∈ I , as I is an ideal. Similarly, since a, b ∈ J , a− b ∈ J .
We deduce that a− b ∈ I ∩ J . This establishes the claim.

We claim that I ∩ J is an ideal of R. Let a ∈ I ∩ J , and let r ∈ R. In that case,
a ∈ I , so since I is an ideal of R, we have that ra ∈ I . Similarly, since a ∈ J and
J is an ideal of R, ra ∈ J . Thus, ra ∈ I ∩ J . This establishes that I ∩ J is an ideal
of R. �

2. Let m ∈ Z. We consider two cases: either m ≥ 0, or m < 0.

Consider the case that m ≥ 0. In that case, m =
m∑
i=1

1. Therefore, m =
m∑
i=1

1.

Now, since ϕ is a homomorphism,

ϕ (m) = ϕ

(
m∑
i=1

1

)
=

m∑
i=1

ϕ
(
1
)
= mϕ

(
1
)
. (17)

Consider the case that m < 0. In that case, −m > 0, so by the first case,
ϕ (−m) = −mϕ

(
1
)
. Now, we note that m + −m = 0, so since ϕ is a homomor-

phism,

ϕ (m)−mϕ
(
1
)
= ϕ (m) + ϕ (−m) = ϕ (m+−m) = ϕ

(
0
)
= 0. (18)

We deduce that ϕ (m) = mϕ
(
1
)
. �

3. Define deg f = m and deg g = n. In that case,

f(X) = amX
m + am−1X

m−1 + ...+ a1X + a0

g(X) = bnX
n + bn−1X

n−1 + ...+ b1X + b0
, (19)
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for some am 6= 0 and bn 6= 0. By definition of polynomial multiplication in D[X],

f(X)g(X) =
m+n∑
k=0

ckX
k, (20)

where for each k ∈ {0, 1, 2, ...,m+ n},

ck =
∑
i+j=k

aibj. (21)

In particular, the coefficient of Xm+n in f(X)g(X) is

cm+n =
∑

i+j=m+n

aibj = ambn. (22)

As D is an integral domain and neither am nor bn is 0, we know that ambn 6= 0.
Therefore, ambn is the leading coefficient of fg, and so deg(fg) = m+ n. �

4. (a) f is irreducible by Eisenstein’s criterion with p = 5.
(b) We claim that the polynomial g is irreducible over Q. We consider the

polynomial g(X) = X4 − X + 1 ∈ Z2 [X]. Assume, with the expectation of a
contradiction, that g is reducible over Z2. We notice that

g (0) = 1

g (1) = 1
. (23)

This shows that g has no linear divisor over Z2. Therefore, g factors into quadratic
polynomials:

g (X) =
(
X2 + bX + c

) (
X2 + eX + f

)
(24)

for some b, c, e, f ∈ Z2. Ergo,

X4 −X + 1 = X4 + (e+ b)X3 + (f + be+ c)X2 + (bf + ce)X + ef. (25)
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This tells us that
e+ b = 0

f + be+ c = 0

bf + ce = −1 = 1

cf = 1

(26)

Now, if cf = 1, then c = f = 1. Thus, the system becomes

e+ b = 0

1 + be+ 1 = 0

b+ e = 1

. (27)

Ergo, b + e = 0 and b + e = 1. This contradiction leads us to conclude that our
assumption that g is reducible is false; g is irreducible over Z2. Thus, g is also
irreducible over Q.

(c) We notice that

h(X) =
X6 − 1

X − 1
, (28)

so h (−1) = 0. This shows that X + 1|h(X), and so h is reducible over Q. �

5. We notice that

(3)(3) = 9 =
(
1 +
√
−8
) (

1−
√
−8
)
. (29)

We claim that 3 is irreducible in Z
[√
−8
]
. Suppose that 3 = xy. In that case,

9 = N (3) = N (x)N (y). If N(x) = 3 or N(y) = 3, then a2 + 8b2 = 3 for some
a, b ∈ Z. As no such a and b exist, we see that one of N(x) and N(y) must be 1.
Ergo, one must be a unit, and so 3 is irreducible.

Similarly, sinceN
(
1±
√
−8
)
= 9, we see that 1±

√
−8 are also irreducible. �

6. Let K be the splitting field of X4 + 1 over Q. We notice that

X4 + 1 =
(
X2 + i

) (
X2 − i

)
=
(
X − ei

3π
4

)(
X + ei

3π
4

) (
X − ei

π
4

) (
X + ei

π
4

)
.

(30)
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Now, ei
π
4 = 1+i√

2
and ei

3π
4 = −1+i√

2
. We notice that ei

π
4 − ei

3π
4 =

√
2. Therefore,√

2 ∈ K. Additionally i =
√
2ei

π
4 − 1 ∈ K, since K is a field. We deduce that the

splitting field is K = Q
(√

2, i
)
.

7. By the tower theorem,[
Q
(√

3,
3
√
7
)
: Q
]
=
[
Q
(√

3,
3
√
7
)
: Q
(√

3
)] [

Q
(√

3
)
: Q
]
. (31)

Since
{
1,
√
3
}

is a basis for Q
(√

3
)

over Q, we see that[
Q
(√

3
)
: Q
]
= 2. (32)

Since
{
1, 7

1
3 , 7

2
3

}
is a basis for Q

(√
3, 3
√
7
)

over Q
(√

3
)
, we see that

[
Q
(√

3,
3
√
7
)
: Q
(√

3
)]

= 3. (33)

Therefore, [
Q
(√

3,
3
√
7
)
: Q
]
= 6. (34)

�

8. Define K = Z2 (α). As f (α) = 0, we know that α3 + α2 + 1 = 0. Thus,
α3 = α2 + 1, since charK = 2.

We claim that α2 is a root of f . We notice

f
(
α2
)
= α6 + α4 + 1. (35)

We have
α4 = α

(
α3
)
= α

(
α2 + 1

)
= α3 + α = α2 + α + 1. (36)

and
α6 =

(
α3
)2

=
(
α2 + 1

)2
= α4 + 2α2 + 1 = α4 + 1 = α2 + α. (37)
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Thus,
f
(
α2
)
=
(
α2 + α

)
+
(
α2 + α + 1

)
+ 1 = 0. (38)

Ergo, α2 is a root of f . �
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