Practice Exam 1

1. (i) Find $r \in \mathbb{Z}$ such that $0 \leq r<7$ and $3^{100} \equiv r(\bmod 7)$.
(ii) Let $a, b, n \in \mathbb{Z}$. Suppose that a and n are relatively prime. Prove that the congruence $a x \equiv b(\bmod n)$ has solutions.
2. (i) Write the Cayley table of D_{4}.
(ii) Prove or disprove the following statement: D_{4} is Abelian.
3. (i) Produce an example of a set S with a binary operation $*$ such that S is closed under $*$.
(ii) Produce an example of an associative binary operation. Produce an example of a non-associative binary operation.
(iii) Produce an example of a commutative binary operation. Produce an example of a non-commutative binary operation.
(iv) Find the inverse element of 5 in U (12).
4. Let G be a group, and assume that $\forall a, b \in G,(a b)^{2}=a^{2} b^{2}$. Prove that G is an Abelian group.
5. (i) List the subgroups of \mathbb{Z}_{30}.
(ii) Produce a generator for each subgroup of \mathbb{Z}_{30}.
(iii) List all of the elements of \mathbb{Z}_{30} that have an order of 5 .
6. Let G be a group. Prove that the center $Z(G)$ is a subgroup of G.
7. Let $n \in \mathbb{Z}^{+}$. Show that A_{n} is a subgroup of S_{n}.

Solutions to Practice Exam 1

$$
\begin{align*}
& \text { 1. }(i) \\
& 3^{100} \equiv\left(3^{2}\right)^{50} \equiv 9^{50} \equiv 2^{50} \equiv 2^{48} 2^{2} \equiv\left(2^{3}\right)^{16} 4 \equiv 8^{16} 4 \equiv 1^{16} 4 \equiv 4(\bmod 7) \tag{1}
\end{align*}
$$

(ii) By Bézout's lemma, we know that $\exists s, t \in \mathbb{Z}$ such that $a s+n t=1$. Therefore, $a b s+n b t=b$. We deduce that $a b s-b=n(-b t)$, so $n \mid a b s-b$. This implies that $a(b s) \equiv b(\bmod n)$, so $x \equiv b s(\bmod n)$ is the desired solution.
2. (i) See page 33 of the text.
(ii) D_{4} is not Abelian, since $V R_{90}=D^{\prime}$, but $R_{90} V=D$.
3. (i) Possible answers include: \mathbb{R} under addition, \mathbb{R} under multiplication, \mathbb{Z} under multiplication
(ii) Possible associative binary operations include: multiplication of real numbers, matrix multiplication, function composition, addition of integers; possible non-associative binary operations include: subtraction, division, cross products
(iii) Possible commutative binary operations include: multiplication of real numbers, addition of real numbers; possible non-commutative binary operations include: matrix multiplication, function composition, cross products
(iv) $U(12)=\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$. We notice that $(\overline{5})(\overline{5})=\overline{25}=\overline{1}$, so $\overline{5}$ is the inverse of $\overline{5}$.
4. Let $a, b \in G$. We know that $(a b)^{2}=a^{2} b^{2}$, so $a b a b=a a b b$. Therefore, by multiplying on the left by $a^{-1}, b a b=a b b$. By multiplying this on the right by b^{-1}, this gives us $b a=a b$. Thus, G is Abelian.
5. (i) The subgroups of \mathbb{Z}_{30} are:

$$
\begin{gather*}
\left\langle\frac{30}{30}\right\rangle=\mathbb{Z}_{30} \\
\left\langle\frac{30}{15}\right\rangle=\{2,4,6,8,10,12,14,16,18,20,22,24,26,28,0\} \\
\left\langle\frac{30}{10}\right\rangle=\{3,6,9,12,15,18,21,24,27,0\} \\
\left\langle\frac{30}{6}\right\rangle=\{5,10,15,20,25,0\} \tag{2}\\
\left\langle\frac{30}{5}\right\rangle=\{6,12,18,24,0\} \\
\left\langle\frac{30}{3}\right\rangle=\{10,20,0\} \\
\left\langle\frac{30}{2}\right\rangle=\{15,0\} \\
\left\langle\frac{30}{1}\right\rangle=\{0\}
\end{gather*} .
$$

(ii) The generators are $1,2,3,5,6,10,15$, and 0 .
(iii) The elements with order 5 must be elements of $\langle 6\rangle$. We notice that

$$
\begin{equation*}
\langle 6\rangle=\langle 12\rangle=\langle 18\rangle=\langle 24\rangle, \tag{3}
\end{equation*}
$$

so $6,12,18$ and 24 are the elements with order 5 .
6. First, we know that $Z(G) \neq \varnothing$, since $e \in Z(G)$. Let $a, b \in Z(G)$, and let $x \in G$. This means that $a x=x a$ and $b x=x b$.

We claim that $b^{-1} x=x b^{-1}$. First, we know that $b x=x b$, so $b x b^{-1}=x$. Therefore, $x b^{-1}=b^{-1} x$. This establishes the claim.

By the claim, $a b^{-1} x=a x b^{-1}$. At the same time, $a x=x a$, so $a b^{-1} x=x a b^{-1}$. Thus, $a b^{-1} \in Z(G)$. This shows that $Z(G)$ is a subgroup of G.
7. Let $\sigma, \tau \in A_{n}$. In that case, $\sigma=\alpha_{1} \alpha_{2} \ldots \alpha_{r}$ for some even $r \in \mathbb{Z}$ and some transpositions $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \in S_{n}$. At the same time, $\tau=\beta_{1} \beta_{2} \ldots \beta_{s}$ for some even $s \in \mathbb{Z}$ and some transpositions $\beta_{1}, \beta_{2}, \ldots, \beta_{s} \in S_{n}$. Thus, $\sigma \tau=\alpha_{1} \alpha_{2} \ldots \alpha_{r} \beta_{1} \beta_{2} \ldots \beta_{s}$ is a product of $r+s$ transpositions. As r and s are both even, so is $r+s$, and so $\sigma \tau \in A_{n}$. Since S_{n} is finite, A_{n} is also finite, and therefore, this shows that A_{n} is a subgroup of S_{n}.

Practice Exam 2

1. Let $E: \mathbb{Q} \rightarrow \mathbb{R}$ such that $\forall x, y \in \mathbb{Q}, E(x+y)=E(x) E(y)$. Show that $\forall x \in \mathbb{Q}, E(x)=E(1)^{x}$.
2. (a) Find all cosets of $\langle 3\rangle$ in \mathbb{Z}_{18}.
(b) Let K be a proper subgroup of H, and let H be a proper subgroup of G. If $|K|=7$ and $|G|=42$, what are the possible orders of H ?
3. (a) List the elements of order 3 in \mathbb{Z}_{300}.
(b) Prove or disprove the following statement: $\mathbb{Z}_{120} \simeq \mathbb{Z}_{6} \oplus \mathbb{Z}_{20}$.
4. (a) Let $H \leq S_{4}$ defined via $H=\{(1),(1,2,3),(1,3,2)\}$. Prove or disprove: $H \triangleleft S_{4}$.
(b) Let G be a group, and let H be a subgroup of G such that $[G: H]=2$. Prove that $H \triangleleft G$.
5. List all group homomorphisms $\varphi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{6}$.
6. Consider the groups $\mathbb{Z}_{81}, \mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ and $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$. List the elements of order 3 of each group. Show that none of these groups are isomorphic.
7. Let $n \in \mathbb{Z}^{+}$be even. Define the set $S=\{x+n \mathbb{Z} \mid x$ is even $\}$. Show that S is a subring of \mathbb{Z}_{n}.

8 . (a) Produce an example of a ring R and an element $x \in R$ that is a zero divisor. Produce an example of an element $y \in R$ that is a unit.
(b) Let D be an integral domain. Given $a, b \in D$, assume that $a^{3}=b^{3}$ and $a^{4}=b^{4}$. Show that $a=b$.

Solutions to Practice Exam 2

1. Let $x=\frac{m}{n} \in \mathbb{Q}$. We notice that

$$
\begin{equation*}
E(x)=E\left(\frac{m}{n}\right)=E\left(\sum_{k=1}^{m} \frac{1}{n}\right)=\prod_{k=1}^{m} E\left(\frac{1}{n}\right)=E\left(\frac{1}{n}\right)^{m} . \tag{4}
\end{equation*}
$$

Also,

$$
\begin{equation*}
E(1)=E\left(\frac{n}{n}\right)=E\left(\frac{1}{n}\right)^{n} \tag{5}
\end{equation*}
$$

This implies that $E\left(\frac{1}{n}\right)=E(1)^{\frac{1}{n}}$. Thus,

$$
\begin{equation*}
E(x)=E\left(\frac{1}{n}\right)^{m}=\left(E(1)^{\frac{1}{n}}\right)^{m}=E(1)^{\frac{m}{n}}=E(1)^{x} . \tag{6}
\end{equation*}
$$

2. (a)

$$
\begin{equation*}
\langle 3\rangle, \quad 1+\langle 3\rangle, \quad 2+\langle 3\rangle . \tag{7}
\end{equation*}
$$

(b) Let $|H|=n$. By Lagrange's theorem, $7 \mid n$ and $n \mid 42$. Moreover, $n \neq 7$ and $n \neq 42$. Therefore, $n \in\{14,21\}$.
3. (a) $\overline{100}, \overline{200}$.
(b) Since $\operatorname{gcd}(6,20)=2 \neq 1$, we have that $\mathbb{Z}_{120} \not 千 \mathbb{Z}_{6} \oplus \mathbb{Z}_{20}$.
4. (a) We notice that

$$
\begin{align*}
& (1,4) H=\{(1,4),(1,2,3,4),(1,3,2,4)\} \tag{8}\\
& H(1,4)=\{(1,4),(1,4,2,3),(1,4,3,2)\}
\end{align*}
$$

Thus, $H \quad 丸 \quad S_{4}$.
(b) Let $x \in G$. If $x \in H$, then $x H=H=H x$. If $x \notin H$, then $x H \neq H$. At the same time, $H x \neq H$, so since there exists only one other coset of $H, H x=x H$ must be true. Either way, $H \triangleleft G$.
5. We know that a group homomorphism $\varphi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{6}$ is determined by $\varphi(\overline{1})$. There exist six possibilities:

$$
\begin{array}{lll}
\varphi_{1}(\overline{1})=\overline{0} & \varphi_{2}(\overline{1})=\overline{1} & \varphi_{3}(\overline{1})=\overline{2} \tag{9}\\
\varphi_{4}(\overline{1})=\overline{3} & \varphi_{5}(\overline{1})=\overline{4} & \varphi_{6}(\overline{1})=\overline{5}
\end{array}
$$

We note that, if φ is a homomorphism, then

$$
\begin{equation*}
2 \varphi(\overline{1})=\varphi(\overline{2})=\varphi(\overline{6})=6 \varphi(\overline{1})=\overline{0} . \tag{10}
\end{equation*}
$$

However, the only maps satisfying this condition are φ_{1} and φ_{4}. These are the only homomorphisms.
6. In \mathbb{Z}_{81} :

$$
\begin{equation*}
\overline{27}, \overline{54} \tag{11}
\end{equation*}
$$

In $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}:$

$$
\begin{equation*}
(\overline{0}, \overline{1}),(\overline{0}, \overline{2}),(\overline{9}, \overline{0}),(\overline{9}, \overline{1}),(\overline{9}, \overline{2}),(\overline{18}, \overline{0}),(\overline{18}, \overline{1}),(\overline{18}, \overline{2}) . \tag{12}
\end{equation*}
$$

In $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$:

$$
\begin{equation*}
(\overline{0}, \overline{3}),(\overline{0}, \overline{6}),(\overline{3}, \overline{0}),(\overline{3}, \overline{3}),(\overline{3}, \overline{6}),(\overline{6}, \overline{0}),(\overline{6}, \overline{3}),(\overline{6}, \overline{6}) . \tag{13}
\end{equation*}
$$

Since \mathbb{Z}_{81} has two elements of order 3 and both $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ and $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$ have eight, we see that $\mathbb{Z}_{81} \not 千 \mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ and $\mathbb{Z}_{81} \not 千 \mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$. Additionally, $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3} \nsim \mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$, since $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ contains an element of order 27 (namely, $(\overline{1}, \overline{0})$), while $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$ contains no such element.
7. We notice first that $S \neq \varnothing$, since $0+n \mathbb{Z} \in S$. Now, let $x+n \mathbb{Z}, y+n \mathbb{Z} \in S$. In that case, $(x-y)+n \mathbb{Z} \in S$, since if x and y are even, then $x-y$ is also even. Additionally, $x y+n \mathbb{Z} \in S$, since if x is even or y is even, then $x y$ is also even. Thus, S is a subring of \mathbb{Z}_{n}.
8. (a) Consider $M_{2}(\mathbb{Z})$, and

$$
A=\left(\begin{array}{ll}
1 & 0 \tag{14}\\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Now $A B=0$, thus A is a zero divisor. The identity matrix I_{2} is a unit, since $I_{2} I_{2}=I_{2}$.
(b) We consider two cases: either $a=0$ or $a \neq 0$. If $a=0$, and $a^{3}=b^{3}$, then $b^{2} b=b^{3}=0$. This implies that either $b^{2}=0$ or $b=0$, since D is an integral domain. However, if $b^{2}=0$, then $b=0$, so either way, $b=0=a$.

Consider the case that $a \neq 0$. Since $a^{4}=b^{4}=b^{3} b=a^{3} b$, we can write

$$
\begin{equation*}
a^{3}(a-b)=a^{4}-a^{3} b=0 \tag{15}
\end{equation*}
$$

Now, as $a \neq 0$, we know that $a^{2} \neq 0$, and so $a^{3} \neq 0$. We deduce that $a-b=0$, and therefore, $a=b$.

Practice Exam 3

1. Let R be a commutative ring, and let I and J be ideals of R. Prove that $I \cap J$ is an ideal of R.
2. Let $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be a ring homomorphism. Show that $\forall m \in \mathbb{Z}$, $\varphi(\bar{m})=m \varphi(\overline{1})$.
3. Let D be an integral domain, and let $f, g \in D[X]$ be nonzero polynomials. Prove that

$$
\begin{equation*}
\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g \tag{16}
\end{equation*}
$$

4. Determine which of the following polynomials are irreducible over \mathbb{Q}.
(a) $f(X)=X^{6}-5 X^{5}+10 X^{2}+5 X+5$
(b) $g(X)=X^{4}-X+1$
(c) $h(X)=X^{5}+X^{4}+X^{3}+X^{2}+X+1$.
5. Show that 9 does not factor uniquely as a product of irreducibles in $\mathbb{Z}[\sqrt{-8}]$.
6. Find the splitting field of $X^{4}+1$ over \mathbb{Q}.
7. Find the extension degree of $\mathbb{Q}(\sqrt{3}, \sqrt[3]{7})$ over \mathbb{Q}.
8. Let $f(X)=X^{3}+X^{2}+1 \in \mathbb{Z}_{2}[X]$. Let α be a root of f in an extension field of \mathbb{Z}_{2}. Find another root of f in the same extension field.

Solutions to Practice Exam 3

1. First, since I and J are ideals of R, we know that I and J are subrings of R. This indicates that $0 \in I$ and $0 \in J$. We deduce that $I \cap J \neq \varnothing$.

We claim that $I \cap J$ is an additive subgroup of R. Let $a, b \in I \cap J$. We notice that since $a, b \in I, a-b \in I$, as I is an ideal. Similarly, since $a, b \in J, a-b \in J$. We deduce that $a-b \in I \cap J$. This establishes the claim.

We claim that $I \cap J$ is an ideal of R. Let $a \in I \cap J$, and let $r \in R$. In that case, $a \in I$, so since I is an ideal of R, we have that $r a \in I$. Similarly, since $a \in J$ and J is an ideal of $R, r a \in J$. Thus, $r a \in I \cap J$. This establishes that $I \cap J$ is an ideal of R.
2. Let $m \in \mathbb{Z}$. We consider two cases: either $m \geq 0$, or $m<0$.

Consider the case that $m \geq 0$. In that case, $m=\sum_{i=1}^{m} 1$. Therefore, $\bar{m}=\sum_{i=1}^{m} \overline{1}$. Now, since φ is a homomorphism,

$$
\begin{equation*}
\varphi(\bar{m})=\varphi\left(\sum_{i=1}^{m} \overline{1}\right)=\sum_{i=1}^{m} \varphi(\overline{1})=m \varphi(\overline{1}) . \tag{17}
\end{equation*}
$$

Consider the case that $m<0$. In that case, $-m>0$, so by the first case, $\varphi(\overline{-m})=-m \varphi(\overline{1})$. Now, we note that $\bar{m}+\overline{-m}=\overline{0}$, so since φ is a homomorphism,

$$
\begin{equation*}
\varphi(\bar{m})-m \varphi(\overline{1})=\varphi(\bar{m})+\varphi(\overline{-m})=\varphi(\bar{m}+\overline{-m})=\varphi(\overline{0})=\overline{0} . \tag{18}
\end{equation*}
$$

We deduce that $\varphi(\bar{m})=m \varphi(\overline{1})$.
3. Define $\operatorname{deg} f=m$ and $\operatorname{deg} g=n$. In that case,

$$
\begin{gather*}
f(X)=a_{m} X^{m}+a_{m-1} X^{m-1}+\ldots+a_{1} X+a_{0} \\
g(X)=b_{n} X^{n}+b_{n-1} X^{n-1}+\ldots+b_{1} X+b_{0} \tag{19}
\end{gather*}
$$

for some $a_{m} \neq 0$ and $b_{n} \neq 0$. By definition of polynomial multiplication in $D[X]$,

$$
\begin{equation*}
f(X) g(X)=\sum_{k=0}^{m+n} c_{k} X^{k} \tag{20}
\end{equation*}
$$

where for each $k \in\{0,1,2, \ldots, m+n\}$,

$$
\begin{equation*}
c_{k}=\sum_{i+j=k} a_{i} b_{j} . \tag{21}
\end{equation*}
$$

In particular, the coefficient of X^{m+n} in $f(X) g(X)$ is

$$
\begin{equation*}
c_{m+n}=\sum_{i+j=m+n} a_{i} b_{j}=a_{m} b_{n} \tag{22}
\end{equation*}
$$

As D is an integral domain and neither a_{m} nor b_{n} is 0 , we know that $a_{m} b_{n} \neq 0$. Therefore, $a_{m} b_{n}$ is the leading coefficient of $f g$, and so $\operatorname{deg}(f g)=m+n$.
4. (a) f is irreducible by Eisenstein's criterion with $p=5$.
(b) We claim that the polynomial g is irreducible over \mathbb{Q}. We consider the polynomial $\bar{g}(X)=X^{4}-X+1 \in \mathbb{Z}_{2}[X]$. Assume, with the expectation of a contradiction, that \bar{g} is reducible over \mathbb{Z}_{2}. We notice that

$$
\begin{align*}
& \bar{g}(0)=1 \tag{23}\\
& \bar{g}(1)=1
\end{align*}
$$

This shows that \bar{g} has no linear divisor over \mathbb{Z}_{2}. Therefore, \bar{g} factors into quadratic polynomials:

$$
\begin{equation*}
\bar{g}(X)=\left(X^{2}+b X+c\right)\left(X^{2}+e X+f\right) \tag{24}
\end{equation*}
$$

for some $b, c, e, f \in \mathbb{Z}_{2}$. Ergo,

$$
\begin{equation*}
X^{4}-X+1=X^{4}+(e+b) X^{3}+(f+b e+c) X^{2}+(b f+c e) X+e f \tag{25}
\end{equation*}
$$

This tells us that

$$
\begin{gather*}
e+b=0 \\
f+b e+c=0 \tag{26}\\
b f+c e=-1=1 \\
c f=1
\end{gather*}
$$

Now, if $c f=1$, then $c=f=1$. Thus, the system becomes

$$
\begin{gather*}
e+b=0 \\
1+b e+1=0 \tag{27}\\
b+e=1
\end{gather*}
$$

Ergo, $b+e=0$ and $b+e=1$. This contradiction leads us to conclude that our assumption that \bar{g} is reducible is false; \bar{g} is irreducible over \mathbb{Z}_{2}. Thus, g is also irreducible over \mathbb{Q}.
(c) We notice that

$$
\begin{equation*}
h(X)=\frac{X^{6}-1}{X-1}, \tag{28}
\end{equation*}
$$

so $h(-1)=0$. This shows that $X+1 \mid h(X)$, and so h is reducible over \mathbb{Q}.
5. We notice that

$$
\begin{equation*}
(3)(3)=9=(1+\sqrt{-8})(1-\sqrt{-8}) . \tag{29}
\end{equation*}
$$

We claim that 3 is irreducible in $\mathbb{Z}[\sqrt{-8}]$. Suppose that $3=x y$. In that case, $9=N(3)=N(x) N(y)$. If $N(x)=3$ or $N(y)=3$, then $a^{2}+8 b^{2}=3$ for some $a, b \in \mathbb{Z}$. As no such a and b exist, we see that one of $N(x)$ and $N(y)$ must be 1 . Ergo, one must be a unit, and so 3 is irreducible.

Similarly, since $N(1 \pm \sqrt{-8})=9$, we see that $1 \pm \sqrt{-8}$ are also irreducible.
6. Let K be the splitting field of $X^{4}+1$ over \mathbb{Q}. We notice that

$$
\begin{equation*}
X^{4}+1=\left(X^{2}+i\right)\left(X^{2}-i\right)=\left(X-e^{i \frac{3 \pi}{4}}\right)\left(X+e^{i \frac{3 \pi}{4}}\right)\left(X-e^{i \frac{\pi}{4}}\right)\left(X+e^{i \frac{\pi}{4}}\right) \tag{30}
\end{equation*}
$$

Now, $e^{i \frac{\pi}{4}}=\frac{1+i}{\sqrt{2}}$ and $e^{i \frac{3 \pi}{4}}=\frac{-1+i}{\sqrt{2}}$. We notice that $e^{i \frac{\pi}{4}}-e^{i \frac{3 \pi}{4}}=\sqrt{2}$. Therefore, $\sqrt{2} \in K$. Additionally $i=\sqrt{2} e^{i \frac{\pi}{4}}-1 \in K$, since K is a field. We deduce that the splitting field is $K=\mathbb{Q}(\sqrt{2}, i)$.
7. By the tower theorem,

$$
\begin{equation*}
[\mathbb{Q}(\sqrt{3}, \sqrt[3]{7}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, \sqrt[3]{7}): \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}] . \tag{31}
\end{equation*}
$$

Since $\{1, \sqrt{3}\}$ is a basis for $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q}, we see that

$$
\begin{equation*}
[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2 . \tag{32}
\end{equation*}
$$

Since $\left\{1,7^{\frac{1}{3}}, 7^{\frac{2}{3}}\right\}$ is a basis for $\mathbb{Q}(\sqrt{3}, \sqrt[3]{7})$ over $\mathbb{Q}(\sqrt{3})$, we see that

$$
\begin{equation*}
[\mathbb{Q}(\sqrt{3}, \sqrt[3]{7}): \mathbb{Q}(\sqrt{3})]=3 . \tag{33}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
[\mathbb{Q}(\sqrt{3}, \sqrt[3]{7}): \mathbb{Q}]=6 . \tag{34}
\end{equation*}
$$

8. Define $K=\mathbb{Z}_{2}(\alpha)$. As $f(\alpha)=0$, we know that $\alpha^{3}+\alpha^{2}+1=0$. Thus, $\alpha^{3}=\alpha^{2}+1$, since char $K=2$.

We claim that α^{2} is a root of f. We notice

$$
\begin{equation*}
f\left(\alpha^{2}\right)=\alpha^{6}+\alpha^{4}+1 \tag{35}
\end{equation*}
$$

We have

$$
\begin{equation*}
\alpha^{4}=\alpha\left(\alpha^{3}\right)=\alpha\left(\alpha^{2}+1\right)=\alpha^{3}+\alpha=\alpha^{2}+\alpha+1 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{6}=\left(\alpha^{3}\right)^{2}=\left(\alpha^{2}+1\right)^{2}=\alpha^{4}+2 \alpha^{2}+1=\alpha^{4}+1=\alpha^{2}+\alpha . \tag{37}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f\left(\alpha^{2}\right)=\left(\alpha^{2}+\alpha\right)+\left(\alpha^{2}+\alpha+1\right)+1=0 . \tag{38}
\end{equation*}
$$

Ergo, α^{2} is a root of f.

