Abstract Algebra

Mark Sullivan

March 8, 2019

Contents

1 Properties of \mathbb{Z} 1
1.1 Dictionary of terms and notations 1
1.1.1 Important theorems 2
2 Group theory 3
2.1 Dictionary of terms and notations 3
2.2 Examples 9
2.3 Propositions 10
2.3.1 Important theorems 19
3 Ring theory 21
3.1 Dictionary of terms and notations 21
3.2 Examples 25
3.3 Propositions, and their proofs 26
3.3.1 Important theorems 27
4 Field theory 28
4.1 Dictionary of terms and notations 28
4.2 Examples 29
4.3 Propositions, and their proofs 30
4.3.1 Important theorems 31

1 Properties of \mathbb{Z}

1.1 Dictionary of terms and notations

Definition 1.1 Let $a, b \in \mathbb{Z}$ such that $a \neq 0$. We say that $\underline{a \text { divides } b, \text { that } \underline{a} \text { is } a}$ factor of b, that \underline{a} is a divisor of b, or that b is a multiple of a provided that $\exists q \in \mathbb{Z}$ such that $b=q a$.

Notation We denote the statement " a divides b " by " $a \mid b$."

Definition 1.2 Let $p \in \mathbb{Z}^{+}$. We say that the number p is a prime number provided that $\forall n \in \mathbb{Z}^{+}$, if $n \mid p$, then $n=1$ or $n=p$.

Definition 1.3 Let $a, b \in \mathbb{Z} \backslash\{0\}$. The greatest common divisor of a and b is the greatest element of the set $\{d \in \mathbb{Z}|d| a$ and $d \mid b\}$.

Notation Given $a, b \in \mathbb{Z} \backslash\{0\}$, we denote the greatest common divisor of a and b by " $\operatorname{gcd}(a, b)$."

Definition 1.4 Let $a, b \in \mathbb{Z} \backslash\{0\}$. We say that a and b are relatively prime provided that $\operatorname{gcd}(a, b)=1$.

Definition 1.5 Let $a, b \in \mathbb{Z} \backslash\{0\}$. The least common multiple of a and b is the least element of the set $\{m \in \mathbb{Z}|a| m$ and $b \mid m\}$.

Definition 1.6 Let $n \in \mathbb{Z}^{+}$. Given $a, b \in \mathbb{Z}$, we say that a is congruent to b modulo \underline{n} provided that $n \mid a-b$.

Notation Given $a, b, n \in \mathbb{Z}$ such that $n>0$, we denote the statement " a is congruent to b modulo $n "$ by " $a \equiv b(\bmod n)$."

1.1.1 Important theorems

The following is known as the well-ordering principle.
Theorem 1.7 Given $S \subseteq \mathbb{Z}^{+}$, if $S \neq \varnothing$, then $\exists t \in S$ such that $\forall x \in S$, $t \leq x$.

The following is known as the division algorithm.

Theorem 1.8 Let $a, b \in \mathbb{Z}$ such that $b>0$. There exist unique $q, r \in \mathbb{Z}$ such that $a=b q+r$ and $0 \leq r \leq b$.

The following is known as Bézout's lemma or Bézout's identity.
Theorem 1.9 Given $a, b \in \mathbb{Z} \backslash\{0\}, \exists s, t \in \mathbb{Z}$ such that $a s+b t=\operatorname{gcd}(a, b)$.
The following is known as Euclid's lemma.
Theorem 1.10 Let $a, b, p \in \mathbb{Z}$. If p is a prime number and $p \mid a b$, then $p \mid a$ or $p \mid b$.
The following is known as the fundamental theorem of arithmetic.
Theorem 1.11 Let $n \in \mathbb{Z}$ such that $n>1$. The following statements are true.
(i) There exist prime numbers $p_{1}, p_{2}, \ldots, p_{r} \in \mathbb{Z}^{+}$such that $n=p_{1} p_{2} \ldots p_{r}$.
(ii) If $q_{1}, q_{2}, \ldots, q_{s} \in \mathbb{Z}^{+}$are prime numbers such that $n=q_{1} q_{2} \ldots q_{s}$, then for each $j \in\{1,2, \ldots, s\}, \exists i \in\{1,2, \ldots, r\}$ such that $q_{j}=p_{i}$.

The following is known as the principle of mathematical induction.
Theorem 1.12 Let $S \subseteq \mathbb{Z}^{+}$such that $S \neq \varnothing$. If $1 \in S$ and $\forall n \in S$, $n+1 \in S$, then $S=\mathbb{Z}^{+}$.

2 Group theory

2.1 Dictionary of terms and notations

Definition 2.1 Let S be a set. A binary operation on S is a function $*: S \times S \rightarrow S$.
Notation Given a binary operation $*$ on a set S and $x, y \in S$, we will often denote $*(x, y)$ as " $x * y$ " or simply " $x y$."

Definition 2.2 Let S be a set, and let $*$ be a binary operation on S. We say that $*$ is an associative binary operation provided that $\forall x, y, z \in S$,

$$
\begin{equation*}
x *(y * z)=(x * y) * z \tag{1}
\end{equation*}
$$

Definition 2.3 Let G be a nonempty set, and let $*$ be a binary operation on G. We say that $(G, *)$ is a group provided that the following statements are true.
(i) $*$ is associative.
(ii) $\exists e \in G$ such that $\forall a \in G, a * e=e * a=a$.
(iii) $\forall a \in G, \exists b \in G$ such that $a * b=b * a=e$.

Notation We will often write the statement " $(G, *)$ is a group" as " G is a group under *," or simply " G is a group."

Definition 2.4 Let G be a group. An identity element of G is an element $e \in G$ such that $\forall a \in G, a * e=e * a=a$.

Definition 2.5 Let G be a group, and let $e \in G$ be the identity element of G. Given $a \in G$, an inverse element of a in G is an element $b \in G$ such that $a * b=b * a=e$.

Notation Given a group G and $a \in G$, will often denote the inverse element of a by " a^{-1}."

Definition 2.6 Let G be a group. We say that G is a trivial group provided that $|G|=1$.

Definition 2.7 Let $n \in \mathbb{Z}^{+}$. The dihedral group of order $2 n$ is the group of isometries of a regular polygon with n sides.

Notation We denote the dihedral group of order $2 n$ by " D_{n}."
Definition 2.8 Let $n \in \mathbb{Z}^{+}$. Define an equivalence relation \equiv on \mathbb{Z} such that $\forall a, b \in \mathbb{Z}, a \equiv b$ if and only if $a \equiv b(\bmod n)$. The group of integers modulo \underline{n} is the quotient set \mathbb{Z} / \equiv under the binary operation defined via the relationship $[a]+[b]=[a+b]$.

Notation Given $n \in \mathbb{Z}^{+}$, we denote the group of integers modulo n by " \mathbb{Z} / n," " $\mathbb{Z} / n \mathbb{Z}$," or " \mathbb{Z}_{n}."

Definition 2.9 Let $n \in \mathbb{Z}^{+}$. The group of units modulo n is the set

$$
\begin{equation*}
U(n)=\{[a] \in \mathbb{Z} / n \mid \operatorname{gcd}(a, n)=1\} \tag{2}
\end{equation*}
$$

under the binary operation defined via the relationship $[a] \cdot[b]=[a b]$.
Definition 2.10 Let Ω be a set. A permutation of Ω is a bijection $\sigma: \Omega \rightarrow \Omega$.
Definition 2.11 Let Ω be a nonempty set. The symmetric group based on Ω is the group $\left(S_{\Omega}, \circ\right)$, where

$$
\begin{equation*}
S_{\Omega}=\{\sigma: \Omega \rightarrow \Omega \mid \sigma \text { is a bijection }\} . \tag{3}
\end{equation*}
$$

Notation Given $\sigma \in S_{\Omega}$, we define $\sigma^{1}=\sigma$ and for each $n \in \mathbb{Z}^{+}, \sigma^{n+1}=\sigma \circ \sigma^{n}$.
Definition 2.12 Let $n \in \mathbb{Z}^{+}$. The symmetric group of degree n is the symmetric group S_{X}, where $X=\{1,2, \ldots, n\}$.

Notation We denote the symmetric group of degree n by " S_{n}."
Definition 2.13 Let Ω be a set. A cycle in S_{Ω} is a permutation $\sigma \in S_{\Omega}$ such that $\forall a, b \in \Omega$, if $\sigma(a) \neq a$ and $\sigma(b) \neq b$, then $\exists r \in \mathbb{Z}^{+}$such that $\sigma^{r}(a)=b$.

Definition 2.14 Let Ω be a set, and let $\sigma \in S_{\Omega}$ be a cycle. The length of σ is the cardinality $|\{x \in \Omega \mid \sigma(x) \neq x\}|$.

Definition 2.15 Let Ω be a set. Given a cycle $\sigma \in S_{\Omega}$ and $k \in \mathbb{Z}^{+}$, we say that σ is a k-cycle in S_{Ω} provided that the length of σ is k.

Notation Given a k-cycle $\sigma \in S_{\Omega}$ and $a \in \Omega$ such that $\sigma(a) \neq a$, we will often write

$$
\sigma=\left(\begin{array}{lllll}
a & \sigma(a) & \sigma^{2}(a) & \ldots & \sigma^{k-1}(a) \tag{4}
\end{array}\right) .
$$

Definition 2.16 Let Ω be a set. Given cycles $\sigma, \tau \in S_{\Omega}$, we say that σ and τ are disjoint cycles provided that $\{x \in \Omega \mid \sigma(x) \neq x\} \cap\{x \in \Omega \mid \tau(x) \neq x\}=\varnothing$.

Definition 2.17 Let Ω be a set. A transposition in S_{Ω} is a 2 -cycle in S_{Ω}.
Definition 2.18 The group of unit quaternions is the group $\left(Q_{8}, \cdot\right)$, where

$$
\begin{equation*}
Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}, \tag{5}
\end{equation*}
$$

and \cdot is defined so that $i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i$, and $k i=j$.
Definition 2.19 Let $n \in \mathbb{Z}^{+}$, and let K be a field. The general linear group of degree n over K is the group $\mathrm{GL}_{n}(K)$ of $n \times n$ invertible matrices with entries in K, under matrix multiplication.

Definition 2.20 Let $n \in \mathbb{Z}^{+}$, and let K be a field. The special linear group of degree n over K is the group $\mathrm{SL}_{n}(K)$ of $n \times n$ matrices with entries in K and determinant 1 , under matrix multiplication.

Definition 2.21 Let G be a group. We say that G is a cyclic group provided that $\exists a \in G$ such that $\forall b \in G, b=a^{n}$ for some $n \in \mathbb{Z}$.

Definition 2.22 Let S be a set, and let $*$ be a binary operation on S. We say that $*$ is a commutative binary operation provided that $\forall x, y \in S, x * y=y * x$.

Definition 2.23 Let $(G, *)$ be a group. We say that G is an Abelian group provided that $*$ is a commutative binary operation.

Definition 2.24 Let G be a group. The order of G is the cardinality $|G|$.

Definition 2.25 Let G be a group, and let $a \in G$. We say that a has finite order in \underline{G} provided that $\exists n \in \mathbb{Z}^{+}$such that $a^{n}=e$, where $e \in G$ is the identity element of G.

Definition 2.26 Let G be a group, and let $a \in G$. We say that a has infinite order in G provided that $\forall n \in \mathbb{Z}^{+}, a^{n}$ is not the identity element of G.

Definition 2.27 Let G be a group, and let $a \in G$ have finite order in G. Suppose that $e \in G$ is the identity element of G. The order of a is the least element $n \in \mathbb{Z}^{+}$ such that $a^{n}=e$.

Notation Given a group G and $a \in G$, we denote the order of a by " $|a|$."
Definition 2.28 Let $f: X \rightarrow Y$ be a function, and let $S \subseteq X$. The restriction map of f to S is the function $\left.f\right|_{S}: S \rightarrow Y$ via $\left.f\right|_{S}(x)=f(x)$.

Definition 2.29 Let $(G, *)$ be a group. Given a nonempty $H \subseteq G$, we say that H is a subgroup of G [with respect to $*$] provided that H is a group under $\left.*\right|_{H \times H}$.

Notation We will sometimes denote the statement " H is a subgroup of G " by " $H \leq G$."

Definition 2.30 Let G be a group, and let $a \in G$. The cyclic group generated by a is the group $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$.

Definition 2.31 Let G be a group. The center of G is the subset

$$
\begin{equation*}
Z(G)=\{a \in G \mid \forall x \in G, a x=x a\} . \tag{6}
\end{equation*}
$$

Definition 2.32 Let G be a group. Given $a \in G$, the centralizer of a in G is the set

$$
\begin{equation*}
C(a)=\{x \in G \mid a x=x a\} . \tag{7}
\end{equation*}
$$

Definition 2.33 Let G be a group, and let H be a subgroup of G. Given $a \in G$, the left coset of G by H containing a is the set

$$
\begin{equation*}
a * H=\{a * h \in G \mid h \in H\} . \tag{8}
\end{equation*}
$$

Definition 2.34 Let G be a group, and let H be a subgroup of G. Given $a \in G$, the right coset of G by H containing a is the set

$$
\begin{equation*}
H * a=\{h * a \in G \mid h \in H\} . \tag{9}
\end{equation*}
$$

Notation We will often denote a coset $a * N$ by " $a N$," and $N * a$ by " $N a$."
Definition 2.35 Let G be a group. Given a subgroup N of G, we say that N is a normal subgroup of G provided that $\forall a \in G, a N=N a$.

Notation We will often denote the statement " N is a normal subgroup of G " as " $N \triangleleft G$."

Definition 2.36 Let G be a group, and let H be a subgroup of G. The quotient space of G by H is the set

$$
\begin{equation*}
G / H=\{a H \mid a \in G\} \tag{10}
\end{equation*}
$$

Definition 2.37 Let G be a group, and let H be a subgroup of G. The coset multiplication in G / H is the binary operation $*$ on G / H defined via $a H * \overline{b H}=a b H$.

Definition 2.38 Let G be a group, and let $N \triangleleft G$. The quotient group of G by N is the group G / N under coset multiplication.

Definition 2.39 Let G_{1} and G_{2} be groups, and let $\varphi: G_{1} \rightarrow G_{2}$ be a function. We say that φ is a [group] homomorphism provided that $\forall a, b \in G_{1}$,

$$
\begin{equation*}
\varphi(a b)=\varphi(a) \varphi(b) . \tag{11}
\end{equation*}
$$

Definition 2.40 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. Suppose that $e_{2} \in G_{2}$ is the identity element of G_{2}. The kernel of φ is the set

$$
\begin{equation*}
\operatorname{ker} \varphi=\left\{a \in G_{1} \mid \varphi(a)=e_{2}\right\} \tag{12}
\end{equation*}
$$

Definition 2.41 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. The image or range of φ is the set

$$
\begin{equation*}
\operatorname{Im} \varphi=\left\{\varphi(a) \in G_{2} \mid a \in G_{1}\right\} \tag{13}
\end{equation*}
$$

Definition 2.42 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. We say that φ is a monomorphism provided that φ is injective.

Definition 2.43 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. We say that φ is an epimorphism provided that φ is surjective.

Definition 2.44 Let $\varphi: G_{1} \rightarrow G_{2}$ be a group homomorphism. We say that φ is a group isomorphism provided that there exists a group homomorphism $\psi: G_{2} \rightarrow G_{1}$ such that $\psi \circ \varphi=\operatorname{id}_{G_{1}}$ and $\varphi \circ \psi=\operatorname{id}_{G_{2}}$.

Definition 2.45 Let $\varphi: G_{1} \rightarrow G_{2}$ be a group homomorphism. We say that $\underline{G_{1}}$ and G_{2} are isomorphic [as groups] provided that there exists a group isomorphism $\varphi: G_{1} \rightarrow G_{2}$.

Notation We may denote the statement " G_{1} and G_{2} are isomorphic groups" by " $G_{1} \simeq G_{2}$."

2.2 Examples

Example 2.46 The following are examples of groups.
(i) \mathbb{Z} under addition.
(ii) \mathbb{Q} under addition.
(iii) \mathbb{R} under addition.
(iv) \mathbb{C} under addition.
(v) $\mathbb{Q} \backslash\{0\}$ under multiplication.
(vi) $\mathbb{R} \backslash\{0\}$ under multiplication.
(vii) $\mathbb{C} \backslash\{0\}$ under multiplication.
(viii) $\{0\}$ under addition (or multiplication). This is a trivial group.
(ix) Given $n \in \mathbb{Z}^{+}$and $a \in \mathbb{C}$ such that $a^{n}=1$, the set

$$
\begin{equation*}
G=\left\{1, a, a^{2}, a^{3}, \ldots, a^{n-1}\right\} \tag{14}
\end{equation*}
$$

is a group under multiplication. This is a cyclic group.
(x) Any vector space is a group.
(xi) All of the groups above are abelian groups. Given $n \in \mathbb{Z}^{+}$, the symmetric group S_{n} is a non-abelian group. The dihedral group $D_{2 n}$, the group of unit quaternions Q_{8}, the general linear group $\mathrm{GL}_{n}(\mathbb{C})$, and the special linear group $\mathrm{SL}_{n}(\mathbb{C})$ are also non-abelian groups.

Example 2.47 The following are examples of subgroups.
(i) \mathbb{Z} is a subgroup of \mathbb{Q}.
(ii) \mathbb{Q} is a subgroup of \mathbb{R}.
(iii) \mathbb{R} is a subgroup of \mathbb{C}.
(iv) $\mathrm{SL}_{n}(K)$ is a subgroup of $\mathrm{GL}_{n}(K)$.
(v) Every group contains a trivial subgroup.
(vi) Every group is a subgroup of itself.

2.3 Propositions

Proposition 2.48 Let G be a group. Given $e_{1}, e_{2} \in G$, if e_{1} and e_{2} are both identity elements of G, then $e_{1}=e_{2}$.

Proof Since e_{2} is an identity element of G, we can say that $e_{1} e_{2}=e_{1}$. At the same time, since e_{1} is an identity element of G, we have that $e_{1} e_{2}=e_{2}$. Thus, $e_{1}=e_{1} e_{2}=e_{2}$.

Proposition 2.49 Let G be a group, and let $e \in G$ be the identity element of G. If $\forall a, b \in G, a b=e$, then $G=\{e\}$.

Proof Let $a \in G$. We know that $a e=a$, and by assumption, $a e=e$. Thus, $a=a e=e$.

Proposition 2.50 Let G be a group. Given $a, b, c \in G$, if $a c=b c$, then $a=b$. Similarly, if $c a=c b$, then $a=b$.

Proof Suppose that $a c=b c$. Since G is a group, $\exists c^{-1} \in G$ such that $c c^{-1}=e$, where $e \in G$ is the identity element of G. Thus,

$$
\begin{equation*}
a=a e=a c c^{-1}=b c c^{-1}=b e=b . \tag{15}
\end{equation*}
$$

The proof for $c a=c b$ is similar.

Proposition 2.51 Let G be a group. Given $a, b \in G$, $(a b)^{2}=a^{2} b^{2}$ if and only if $a b=b a$.

Proof (\Rightarrow) Assume that $(a b)^{2}=a^{2} b^{2}$. This means that $a b a b=a a b b$. Since G is a group, $\exists b^{-1} \in G$ such that $b b^{-1}=e$, where $e \in G$ is the identity element of G. At the same time, $\exists a^{-1} \in G$ such that $a^{-1} a=e$. Therefore,

$$
\begin{equation*}
b a=e b a e=a^{-1} a b a b b^{-1}=a^{-1} a a b b b^{-1}=e a b e=a b . \tag{16}
\end{equation*}
$$

(\Leftarrow) Assume that $a b=b a$. In that case, $a a b=a b a$, and so $a a b b=a b a b$, hence $a^{2} b^{2}=(a b)^{2}$.

Proposition 2.52 Let G be a group, and let $e \in G$ be the identity element of G. Given $a, b, c \in G$, if $a b=b a=e$ and $a c=c a=e$, then $b=c$.

Proof Suppose that $a b=b a=e$ and $a c=c a=e$. This means that $a b=a c$. By Proposition 2.50, we deduce that $b=c$.

Proposition 2.53 Let G be a group. Given $a \in G,\left(a^{-1}\right)^{-1}=a$.

Proof Define $b=a^{-1}$. We know that $a b=e$. Therefore,

$$
\begin{equation*}
a=a e=a b b^{-1}=e b^{-1}=b^{-1}=\left(a^{-1}\right)^{-1} \tag{17}
\end{equation*}
$$

Proposition 2.54 Let G be a group, and let $e \in G$ be the identity element of G. Given $a \in G$, if $a^{-1}=e$, then $a=e$.

Proof Suppose that $a^{-1}=e$. This implies that

$$
\begin{equation*}
e=a a^{-1}=a e=a . \tag{18}
\end{equation*}
$$

Proposition 2.55 Let G be a group. Given $a, b \in G,(a b)^{-1}=b^{-1} a^{-1}$.

Proof We notice that

$$
\begin{equation*}
(a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a e a^{-1}=a a^{-1}=e, \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1} e b=b^{-1} b=e \tag{20}
\end{equation*}
$$

Thus, $b^{-1} a^{-1}$ is the inverse element of $a b$.

Proposition 2.56 Let G be a group. Given $a_{1}, a_{2}, \ldots, a_{n} \in G$,

$$
\begin{equation*}
\left(a_{1} a_{2} \ldots a_{n}\right)^{-1}=a_{n}^{-1} \ldots a_{2}^{-1} a_{1}^{-1} . \tag{21}
\end{equation*}
$$

Proof We proceed by mathematical induction on n. First, $\left(a_{1}\right)^{-1}=a_{1}^{-1}$, trivially. This establishes a basis for induction. Assume, as the induction hypothesis, that for some $k \in \mathbb{Z}^{+},\left(a_{1} a_{2} \ldots a_{k}\right)^{-1}=a_{k}{ }^{-1} \ldots a_{2}{ }^{-1} a_{1}{ }^{-1}$. Proposition 2.55 indicates that

$$
\begin{equation*}
\left(a_{1} a_{2} \ldots a_{k} a_{k+1}\right)^{-1}=\left(\left(a_{1} a_{2} \ldots a_{k}\right) a_{k+1}\right)^{-1}=a_{k+1}^{-1}\left(a_{1} a_{2} \ldots a_{k}\right)^{-1} . \tag{22}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left(a_{1} a_{2} \ldots a_{k} a_{k+1}\right)^{-1}=a_{k+1}^{-1}\left(a_{k}^{-1} \ldots a_{2}^{-1} a_{1}^{-1}\right)=a_{k+1}^{-1} a_{k}^{-1} \ldots a_{2}^{-1} a_{1}^{-1} . \tag{23}
\end{equation*}
$$

This completes the induction.

Proposition 2.57 Let G be a group. Given a nonempty $H \subseteq G$, H is a subgroup of G if and only if $\forall a, b \in H, a b^{-1} \in H$.

Proof Let $(G, *)$ be a group, and let $H \subseteq G$ be nonempty.
(\Rightarrow) Assume that H is a subgroup of G. Let $a, b \in H$. In that case, $b^{-1} \in H$, since H is a group. Therefore, $a * b^{-1} \in H$.
(\Leftarrow) Assume that $\forall a, b \in H, a * b^{-1} \in H$. We will show that H is a subgroup of G. First, we know that $\left.*\right|_{H \times H}$ is associative, since $*$ is associative. As $H \neq \varnothing$, we know that $\exists a \in H$. By assumption, $e=a * a^{-1} \in H$, where $e \in G$ is the identity element of G. Now, $\forall b \in G, b * e=e * b=b$, so in particular, $\forall b \in H$, $b * e=e * b=b$. This shows that H contains an identity element. Given $a \in H$, we know that $a^{-1}=e * a^{-1} \in H$ by assumption. This shows that for each element
of H, an inverse element exists in H.
We claim that $\left.*\right|_{H \times H}$ is a binary operation on H (or in other words, that H is closed under $*$). Given $a, b \in H$, we know that $b^{-1} \in H$. Therefore, by assumption, $a *\left(b^{-1}\right)^{-1} \in H$. By Proposition 2.53, this implies that $a * b \in H$.

As H satisfies the conditions of a group, we deduce that H is a subgroup of G.

Proposition 2.58 Let G be a group, and let $a \in G$. Given a subgroup H of G, if $a \in H$, then $\langle a\rangle \subseteq H$.

Proof Let H be a subgroup of G. Let $a \in H$. We claim that $\forall n \in \mathbb{Z}^{+}$, $a^{n} \in H$. We proceed by mathematical induction on n. First, we note that $a^{1}=a \in H$. This establishes a basis for induction. Assume, as the induction hypothesis, that $a^{k} \in H$ for some $k \in \mathbb{Z}^{+}$. Now $a^{k+1}=a^{k} a \in H$, since H is a group. This completes the induction.

We know that $e \in H$, since H is a subgroup of G. Thus, $a^{0} \in H$. Further, for each $n \in \mathbb{Z}^{+}, a^{-n} \in H$, since $a^{-n}=\left(a^{n}\right)^{-1}$, and H is a group. Therefore, $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\} \subseteq H$.

Proposition 2.59 Let G be a group, and let $a \in G$. Suppose that $e \in G$ is the identity element of G. Given $n \in \mathbb{Z}, a^{n}=e$ if and only if $|a|$ divides n.

Proof Let $a \in G$, and let $n \in \mathbb{Z}$. Define $k=|a|$.
(\Rightarrow) Assume that $a^{n}=e$. We know from Theorem 1.8 that $\exists q, r \in \mathbb{Z}$ such that $n=k q+r$ and $0 \leq r<k$. Therefore,

$$
\begin{equation*}
e=a^{n}=a^{k q+r}=a^{k q} a^{r}=\left(a^{k}\right)^{q} a^{r}=e^{q} a^{r}=a^{r} . \tag{24}
\end{equation*}
$$

Since $r<k$, and k is the least element of \mathbb{Z}^{+}such that $a^{k}=e$, we must have that $r \notin \mathbb{Z}^{+} ; r=0$. Thus, $n=k q$, and so $k \mid n$.
(\Leftarrow) Assume that $k \mid n$. In that case, $\exists q \in \mathbb{Z}$ such that $n=k q$. Thus,

$$
\begin{equation*}
a^{n}=a^{k q}=\left(a^{k}\right)^{q}=e^{q}=e . \tag{25}
\end{equation*}
$$

Proposition 2.60 Let G be a group. Given $a \in G,\left|a^{-1}\right|=|a|$.
Proof Let $a \in G$, and define $|a|=k$ for some $k \in \mathbb{Z}^{+}$. Define $l=\left|a^{-1}\right|$. Assume, with the expectation of a contradiction, that $l \neq k$. We notice that

$$
\begin{equation*}
e=e^{k}=\left(a a^{-1}\right)^{k}=a^{k}\left(a^{-1}\right)^{k}=e\left(a^{-1}\right)^{k}=\left(a^{-1}\right)^{k} \tag{26}
\end{equation*}
$$

where $e \in G$ is the identity element of G. This shows that $l \leq k$, so $l<k$. Now, we notice that $a^{l} \neq e$, so

$$
\begin{equation*}
e=e^{l}=\left(a^{-1} a\right)^{l}=\left(a^{-1}\right)^{l} a^{l}=e a^{l}=a^{l} \neq e . \tag{27}
\end{equation*}
$$

This contradiction leads us to conclude that our assumption that $l \neq k$ is false; $l=k$.

Proposition 2.61 Let G be a group, and let $a \in G$. If a has finite order in G, then $|a|=|\langle a\rangle|$. If a has infinite order in G, then $\langle a\rangle$ is an infinite set.

Proof Let $a \in G$, and suppose that a has finite order in G. Define $k=|a|$. Let $S=\left\{a, a^{2}, \ldots, a^{k}\right\}$.

We claim that $S=\langle a\rangle$. First, it is clear that $S \subseteq\langle a\rangle$, by definition. Now, suppose that $x \in\langle a\rangle$. In that case, $x=a^{n}$ for some $n \in \mathbb{Z}$. We note that $n \equiv m(\bmod k)$ for some $m \in\{1,2, \ldots, k\}$, since congruence modulo k is an equivalence relation. In that case, $k \mid n-m$. We deduce that $a^{n-m}=e$, by Proposition 2.59. Ergo, $x=a^{n}=a^{m} \in S$.

Since $\langle a\rangle=S$, and $|S|=k,|\langle a\rangle|=k=|a|$.

Proposition 2.62 Let G be a group, and let $a \in G$. Suppose that $|a|=k$ for some $k \in \mathbb{Z}^{+}$. Given $l \in \mathbb{Z}^{+},\left\langle a^{l}\right\rangle=\left\langle a^{\operatorname{gcd}(k, l)}\right\rangle$.

Proof Define $d=\operatorname{gcd}(k, l)$, and let $l=q d$ for some $q \in \mathbb{Z}$.
(\subseteq) Let $x \in\left\langle a^{l}\right\rangle$. In that case, $x=\left(a^{l}\right)^{r}$ for some $r \in \mathbb{Z}$. We deduce that

$$
\begin{equation*}
x=\left(a^{q d}\right)^{r}=\left(a^{d}\right)^{q r} \in\left\langle a^{d}\right\rangle . \tag{28}
\end{equation*}
$$

This shows that $\left\langle a^{l}\right\rangle \subseteq\left\langle a^{d}\right\rangle$.
(\supseteq) Let $x \in\left\langle a^{d}\right\rangle$. This means that $x=\left(a^{d}\right)^{r}$ for some $r \in \mathbb{Z}$. By Bézout's lemma (Theorem 1.9), $\exists s, t \in \mathbb{Z}$ such that $k s+l t=d$. We deduce that

$$
\begin{equation*}
x=\left(a^{d}\right)^{r}=\left(a^{k s+l t}\right)^{r}=\left(a^{k s} a^{l t}\right)^{r}=\left(\left(a^{k}\right)^{s}\left(a^{l}\right)^{t}\right)^{r} \tag{29}
\end{equation*}
$$

However, $a^{k}=e$, where $e \in G$ is the identity element of G, since $k=|a|$. Thus,

$$
\begin{equation*}
x=\left(\left(a^{k}\right)^{s}\left(a^{l}\right)^{t}\right)^{r}=\left(e^{s}\left(a^{l}\right)^{t}\right)^{r}=\left(a^{l}\right)^{t r} \in\left\langle a^{l}\right\rangle \tag{30}
\end{equation*}
$$

This shows that $\left\langle a^{d}\right\rangle \subseteq\left\langle a^{l}\right\rangle$.

Proposition 2.63 Let G be a group, and let $a \in G$. Suppose that $|a|=k$ for some $k \in \mathbb{Z}^{+}$. Given $l \in \mathbb{Z}^{+},\left|a^{l}\right|=\frac{k}{\operatorname{gcd}(k, l)}$.

Proof Define $d=\operatorname{gcd}(k, l)$, and let $k=q d$ for some $q \in \mathbb{Z}$.
We claim that $\left|a^{d}\right|=q$. First, we notice that

$$
\begin{equation*}
\left(a^{d}\right)^{q}=a^{q d}=a^{k}=e \tag{31}
\end{equation*}
$$

where $e \in G$ is the identity element of G. Therefore, $\left|a^{d}\right| \leq q$. Further, if $r \in \mathbb{Z}^{+}$ such that $r<q$, then $a^{r d} \neq e$, since $r d<q d=k=|a|$. Thus, $\left|a^{d}\right|=q$.

By Proposition 2.61, we know that $\left|a^{l}\right|=\left|\left\langle a^{l}\right\rangle\right|$. Now, by Proposition 2.62, $\left\langle a^{l}\right\rangle=\left\langle a^{d}\right\rangle$. Thus, $\left|a^{l}\right|=\left|\left\langle a^{d}\right\rangle\right|=\left|a^{d}\right|=q$, due to the claim.

Proposition 2.64 Let G be a group. If H is a subgroup of G and K is a subgroup of H, then K is a subgroup of G.

Proof Let $H \leq G$ and $K \leq H$. We will show that $K \leq G$. Let $a, b \in K$. In that case, since K is a group, $b^{-1} \in K$. Further, $a b^{-1} \in K$. Thus, by Proposition 2.57, $K \leq G$.

Proposition 2.65 Let G be a group. The center $Z(G)$ is a subgroup of G.
Proof Let $a, b \in Z(G)$. Given $x \in G$, we notice that $b x=x b$. Thus, $b x b^{-1}=x$, and so $x b^{-1}=b^{-1} x$. Further,

$$
\begin{equation*}
x\left(a b^{-1}\right)=a x b^{-1}=a b^{-1} x=\left(a b^{-1}\right) x \tag{32}
\end{equation*}
$$

Now, by Proposition 2.57, we find that $Z(G)$ is a subgroup of G.

Proposition 2.66 Let G be a group. Given $a \in G$, the centralizer $C(a)$ is a subgroup of G.

Proof Let $a \in G$. We will show that $C(a)$ is a subgroup of G. Let $x, y \in C(a)$. In that case, $a x=x a$. Now, since $a y=y a$, we deduce that $y^{-1} a y=a$, and so $y^{-1} a=a y^{-1}$. Thus,

$$
\begin{equation*}
a x y^{-1}=x a y^{-1}=x y^{-1} a, \tag{33}
\end{equation*}
$$

which shows that $x y^{-1} \in C(a)$. By Proposition 2.57, this shows that $C(a)$ is a subgroup of G.

Proposition 2.67 Let $\sigma, \tau \in S_{\Omega}$. If σ and τ are disjoint cycles, then $\sigma \circ \tau=\tau \circ \sigma$.
Proof Let $a \in \Omega$. Define $S=\{a \in \Omega \mid \sigma(a) \neq a\}$ and $T=\{a \in \Omega \mid \tau(a) \neq a\}$. As σ and τ are disjoint, we know that $S \cap T=\varnothing$. We consider three cases: $a \in S$, $a \in T$, or $a \notin S \cup T$.

Consider the case that $a \in S$. Suppose that $\sigma(a)=b$. We know that $a \neq b$, so since σ is bijective, $\sigma(b) \neq \sigma(a)=b$. Thus, $b \in S$. We deduce that $b \notin T$, so $\tau(b)=b$. Thus,

$$
\begin{equation*}
\tau \sigma(a)=\tau(b)=b=\sigma(a)=\sigma \tau(a) . \tag{34}
\end{equation*}
$$

Consider the case that $a \in T$. Suppose that $\tau(a)=c$. We know that $a \neq c$, so since τ is bijective, $\tau(c) \neq \tau(a)=c$. Thus, $c \in T$. We deduce that $c \notin S$, so $\sigma(c)=c$. Thus,

$$
\begin{equation*}
\tau \sigma(a)=\tau(a)=c=\sigma(c)=\sigma \tau(a) . \tag{35}
\end{equation*}
$$

Consider the case that $a \notin S \cup T$. This means that $\sigma(a)=a$ and $\tau(a)=a$. Therefore,

$$
\begin{equation*}
\tau \sigma(a)=\tau(a)=a=\sigma(a)=\sigma \tau(a) . \tag{36}
\end{equation*}
$$

Whatever the case, we see that $\tau \sigma(a)=\sigma \tau(a)$, and so $\tau \sigma=\sigma \tau$.

Proposition 2.68 Let $\sigma \in S_{n}$ be a permutation. Suppose that $\sigma=\alpha_{r} \circ \ldots \circ \alpha_{2} \circ \alpha_{1}$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \in S_{n}$ are disjoint cycles and for each $i \in\{1,2, \ldots, r\}$, the length of cycle α_{i} is k_{i}. In that case, $|\sigma|=\operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{r}\right)$.

Proof

Proposition 2.69 Let G be a group. The quotient space G / H is a group under coset multiplication if and only if $H \triangleleft G$.

Proof

Proposition 2.70 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. Suppose that $e_{1} \in G_{1}$ is the identity element of G_{1} and $e_{2} \in G_{2}$ is the identity element of G_{2}. In that case, $\varphi\left(e_{1}\right)=e_{2}$.

Proof

Proposition 2.71 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. Given any element $a \in G_{1}, \varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.

Proof

Proposition 2.72 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. The map φ is a monomorphism if and only if $\operatorname{ker} \varphi=\left\{e_{1}\right\}$, where $e_{1} \in G_{1}$ is the identity element of G_{1}.

Proof

Proposition 2.73 Let $\varphi: G_{1} \rightarrow G_{2}$ be a group homomorphism. If φ is bijective, then φ^{-1} is also a group homomorphism.

Proof

Proposition 2.74 Let $\varphi: G_{1} \rightarrow G_{2}$ be a homomorphism. In that case, $\operatorname{ker} \varphi \triangleleft G_{1}$. Proof

Proposition 2.75 Let G be a group, and let $N \triangleleft G$. There exists a homomorphism $\varphi: G \rightarrow G / N$ such that $\operatorname{ker} \varphi=N$.

Proof

2.3.1 Important theorems

Theorem 2.76 Let G be a group, and let H be a subgroup of G. If G is cyclic, then H is cyclic.

Proof Let G be a cyclic group, and let $H \leq G$. In that case, $\exists a \in G$ such that $G=\langle a\rangle$. If $H=\{e\}$, where $e \in G$ is the identity element of G, then H is cyclic. Assume, therefore, that $H \neq\{e\}$. We define

$$
\begin{equation*}
S=\left\{n \in \mathbb{Z}^{+} \mid a^{n} \in H\right\} . \tag{37}
\end{equation*}
$$

We claim that $S \neq \varnothing$. Since $H \neq\{e\}, \exists b \in H$ such that $b \neq e$. Now, since $H \subseteq G, b=a^{t}$ for some $t \in \mathbb{Z} \backslash\{0\}$. If $t>0$, then $b \in S$. If $t<0$, then we notice that $a^{-t}=b^{-1} \in H$, since H is a group. In that case, $b^{-1} \in S$. Either way, $S \neq \varnothing$.

By the well-ordering principle (Theorem 1.7), our claim implies that S contains a least element. Let $m \in S$ be the least element of S. In that case, $a^{m} \in H$, which indicates that $\left\langle a^{m}\right\rangle \subseteq H$.

We claim that $H \subseteq\left\langle a^{m}\right\rangle$. Let $b \in H$. Since $H \subseteq G, b=a^{k}$ for some $k \in \mathbb{Z}$. Now, by the division algorithm (Theorem 1.8), $\exists q, r \in \mathbb{Z}$ such that $k=q m+r$ and $0 \leq r<m$. We notice that

$$
\begin{equation*}
b=a^{k}=a^{q m+r}=a^{q m} a^{r} . \tag{38}
\end{equation*}
$$

We deduce that $a^{r}=a^{-q m} b \in H$. However, m is the least positive integer such that $a^{m} \in H$, so if $a^{r} \in H$, then r cannot be a positive integer; $r=0$. Thus, $b=a^{q m}=\left(a^{m}\right)^{q} \in\left\langle a^{m}\right\rangle$.

Our claim implies that $H=\left\langle a^{m}\right\rangle$, and so H is a cyclic group.

Theorem 2.77 Let $\sigma \in S_{n}$. There exist disjoint cycles $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \in S_{n}$ such that $\sigma=\alpha_{r} \circ \ldots \circ \alpha_{2} \circ \alpha_{1}$.

Proof

Theorem 2.78 Let $\sigma \in S_{n}$. If $n>1$, then there exist 2 -cycles $\tau_{1}, \tau_{2}, \ldots, \tau_{s} \in S_{n}$ such that $\sigma=\tau_{s} \circ \ldots \circ \tau_{2} \circ \tau_{1}$.

Proof

Theorem 2.79 Let $n \in \mathbb{Z}$ such that $n>1$. Given $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \beta_{1}, \beta_{2}, \ldots, \beta_{s} \in S_{n}$ which are transpositions, if $\prod_{i=1}^{r} \alpha_{i}=\prod_{j=1}^{s} \beta_{j}$, then $r \equiv s(\bmod 2)$.

Proof

The following is known as Lagrange's theorem.

Theorem 2.80 Let G be a finite group. If H is a subgroup of G, then the order of H divides the order of G.

Proof

The following is known as Cauchy's theorem.

Theorem 2.81 Let G be a finite group. If $p \in \mathbb{Z}^{+}$is a prime number and p divides the order $|G|$, then $\exists a \in G$ such that the order of a is p.

Proof

The following is known as Cayley's theorem.

Theorem 2.82 Let G be a group. There exists a subgroup H of the symmetric group S_{G} such that $G \simeq H$.

Proof

3 Ring theory

3.1 Dictionary of terms and notations

Definition 3.1 Let R be a nonempty set, and let + and \cdot be binary operations on R. We say that $(R,+, \cdot)$ is a ring provided that the following statements are true.
(i) $(R,+)$ is an abelian group.
(ii) - is associative.
(iii) $\forall a, b, c \in R$,

$$
\begin{equation*}
a \cdot(b+c)=(a \cdot b)+(a \cdot c) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
(a+b) \cdot c=(a \cdot c)+(b \cdot c) . \tag{40}
\end{equation*}
$$

Notation Given a ring R and $a, b \in R$, we will often denote $a \cdot b$ by " $a b$."
Definition 3.2 Let $(R,+, \cdot)$ be a ring. The zero, or additive identity of R is the element $0 \in R$ such that $\forall a \in R, a+0=0+a=a$.

Definition 3.3 Let $(R,+, \cdot)$ be a ring. We say that R is a commutative ring provided that - is commutative.

Definition 3.4 Let $(R,+, \cdot)$ be a ring. A one, or multiplicative identity of R is an element $1 \in R$ such that $\forall a \in R, 1 a=a 1=a$.

Definition 3.5 Let R be a ring. We say that R is a ring with unity provided that there exists a multiplicative identity of R.

Definition 3.6 Let R be a ring with unity. Given $a, b \in R$, we say that b is a

Definition 3.7 Let R be a commutative ring with unity. A polynomial with coefficients in R is a sequence $\left(a_{n}\right)_{n=0}^{\infty}$ satisfying the following condition: $\exists n \in \mathbb{N}$ such that $\forall m \in \mathbb{N}$, if $m>n$, then $a_{m}=0$.

Definition 3.8 Let R be a commutative ring with unity, and let $f=\left(a_{n}\right)_{n=0}^{\infty}$ be a nonzero polynomial with coefficients in R. The degree of f is the non-negative number $\operatorname{deg} f=\max \left\{n \in \mathbb{N} \mid a_{n} \neq 0\right\}$.

Definition 3.9 Let R be a commutative ring with unity, and let $f=\left(a_{n}\right)_{n=0}^{\infty}$ be a polynomial with coefficients in R. The leading coefficient of f is the element $a_{\operatorname{deg} f}$.

Definition 3.10 Let R be a commutative ring with unity, and let $f=\left(a_{n}\right)_{n=0}^{\infty}$ be a polynomial with coefficients in R. We say that f is monic provided that the leading coefficient of f is 1 .

Definition 3.11 Let R be a commutative ring with unity, and let $f=\left(a_{n}\right)_{n \in \mathbb{N}}$ be a polynomial with coefficients in R. We say that f is a constant polynomial provided that $\forall n \in \mathbb{Z}^{+}, a_{n}=0$.

Definition 3.12 Let R be a commutative ring with unity. The ring of polynomials with coefficients in R is the ring $R[X]$ whose elements are the polynomials with coefficients in R and with + defined via

$$
\left(a_{n}\right)_{n=0}^{\infty}+\left(b_{n}\right)_{n=0}^{\infty}=\left(a_{n}+b_{n}\right)_{n=0}^{\infty}
$$

and with \cdot defined via

$$
\left(a_{n}\right)_{n=0}^{\infty} \cdot\left(b_{n}\right)_{n=0}^{\infty}=\left(\sum_{i+j=n} a_{i} b_{j}\right)_{n=0}^{\infty}
$$

Notation Given a commutative ring R with unity, we will often refer to the subring $\{(r, 0,0, \ldots) \in R[X] \mid r \in R\}$ of $R[X]$ as R.

Definition 3.13 Let R be a commutative ring with unity. The indeterminate over R is the polynomial $X=(0,1,0,0, \ldots)$.

Notation Given a polynomial $f=\left(a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots\right)$, we will often write f as a linear combination of powers of the indeterminate: $a_{n} X^{n}+\ldots+a_{1} X+a_{0}$. When doing so, we will write $f(X)$ instead of f.

Definition 3.14 Let R be a commutative ring. Given $n \in \mathbb{Z}^{+}$, the matrix ring of degree n over R is the ring of $n \times n$ matrices over R.

Definition 3.15 Let D be a commutative ring with unity. We say that the ring D is an integral domain provided that $\forall a, b \in D$, if $a b=0$, then $a=0$ or $b=0$.

Definition 3.16 Let D be an integral domain. Given $a, b \in D$, we say that a divides \underline{b}, that \underline{a} is a factor of b, or that $\underline{b \text { is divisible by a in } D}$ provided that $\exists q \in D$ such that $b=q a$.

Definition 3.17 Let $(R,+, \cdot)$ be a ring. Given a nonempty $S \subseteq R$, we say that S is a subring of R provided that $\forall a, b \in S, a+b, a b \in S$ and S is a ring under $+\left.\right|_{S \times S}$ and $\left.\cdot\right|_{S \times S}$.

Definition 3.18 Let R be a ring. Given a subring I of R, we say that I is a left ideal of R provided that $\forall r \in R$ and $\forall a \in I, r a \in I$.

Definition 3.19 Let R be a ring. Given a subring I of R, we say that I is a right ideal of R provided that $\forall r \in R$ and $\forall a \in I$, ar $\in I$.

Definition 3.20 Let R be a ring. Given a subring I of R, we say that I is a twosided ideal of R provided that $\forall r \in R$ and $\forall a \in I$, ra, ar $\in I$.

Notation If R is a commutative ring, then we will often write the statement " I is an ideal of R " as " $I \triangleleft R$."

Definition 3.21 Let R be a commutative ring with unity. Given an ideal P of R, we say that P is a prime ideal of R provided that $\forall a, b \in R$, if $a b \in P$, then either $a \in P$ or $b \in P$.

Definition 3.22 Let R be a commutative ring. Given an ideal M of R, we say that M is a maximal ideal of R provided that $\forall I \triangleleft R$, if $M \subseteq I \subseteq R$, then $M=I$ or $I=R$.

Definition 3.23 Let R be a commutative ring, and let $S \subseteq R$ be a nonempty set. The ideal generated by S in R is the ideal $I \triangleleft R$ such that $S \subseteq I$ and, $\forall J \triangleleft R$, if $S \subseteq J$, then $I \subseteq J$.

Notation Given a ring R and a nonempty $S \subseteq R$,

1. We will often denote the ideal generated by S by " (S)."
2. When $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, we may denote the ideal generated by S by " $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$."

Definition 3.24 Let R be a commutative ring, and let I be an ideal of R. We say that I is a principal ideal provided that $\exists a \in R$ such that $I=(a)$.

3.2 Examples

Example 3.25 The following are examples of rings.
(i) \mathbb{Z}, with its usual addition and multiplication.
(ii) \mathbb{Q}, \mathbb{R}, and \mathbb{C}, with their usual additions and multiplications, are all rings.
(iii) $\{0\}$ is a trivial ring.
(iv) The rings above are all commutative. Given a ring R and $n \in \mathbb{Z}$ such that $n \geq 2$, the matrix ring $M_{n}(R)$ is a non-commutative ring.

3.3 Propositions, and their proofs

Proposition 3.26 Let R be a ring. Given $a \in R, a 0=0 a=0$.

Proof

Proposition 3.27 Let R be a ring with unity. Given $a, b \in R$, if a and b are both multiplicative identities of R, then $a=b$.

Proof

Proposition 3.28 Let R be a ring. Given $a, b, c \in R$, if $a b=1$ and $a c=1$, then $b=c$.

Proof

Proposition 3.29 Let R be a commutative ring. The ring R is an integral domain if and only if the following condition is true: $\forall a, b, c \in R$, if $a b=a c$, then $b=c$.

Proof

3.3.1 Important theorems

4 Field theory

4.1 Dictionary of terms and notations

Definition 4.1 Let K be a commutative ring with unity. We say that K is a field provided that $\forall a \in K, \exists b \in K$ such that $a b=1$.

4.2 Examples

4.3 Propositions, and their proofs

4.3.1 Important theorems

