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1 Properties of Z

1.1 Dictionary of terms and notations

Definition 1.1 Let a, b ∈ Z such that a 6= 0. We say that a divides b, that a is a

factor of b, that a is a divisor of b, or that b is a multiple of a provided that ∃ q ∈ Z
such that b = qa.

Notation We denote the statement “a divides b” by “a|b.”

Definition 1.2 Let p ∈ Z+. We say that the number p is a prime number provided

that ∀ n ∈ Z+, if n|p, then n = 1 or n = p.

Definition 1.3 Let a, b ∈ Z \ {0}. The greatest common divisor of a and b is the

greatest element of the set
{
d ∈ Z

∣∣∣d|a and d|b
}

.

Notation Given a, b ∈ Z\{0}, we denote the greatest common divisor of a and
b by “gcd (a, b).”

Definition 1.4 Let a, b ∈ Z\{0}. We say that a and b are relatively prime provided

that gcd (a, b) = 1.

Definition 1.5 Let a, b ∈ Z\{0}. The least common multiple of a and b is the least

element of the set
{
m ∈ Z

∣∣∣a|m and b|m
}

.

Definition 1.6 Let n ∈ Z+. Given a, b ∈ Z, we say that a is congruent to b modulo

n provided that n|a− b.

Notation Given a, b, n ∈ Z such that n > 0, we denote the statement “a is
congruent to b modulo n” by “a ≡ b (mod n).”
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1.1.1 Important theorems

The following is known as the well-ordering principle.

Theorem 1.7 Given S ⊆ Z+, if S 6= ∅, then ∃ t ∈ S such that ∀ x ∈ S, t ≤ x.

The following is known as the division algorithm.

Theorem 1.8 Let a, b ∈ Z such that b > 0. There exist unique q, r ∈ Z such that

a = bq + r and 0 ≤ r ≤ b.

The following is known as Bézout’s lemma or Bézout’s identity.

Theorem 1.9 Given a, b ∈ Z \ {0}, ∃ s, t ∈ Z such that as+ bt = gcd (a, b).

The following is known as Euclid’s lemma.

Theorem 1.10 Let a, b, p ∈ Z. If p is a prime number and p|ab, then p|a or p|b.

The following is known as the fundamental theorem of arithmetic.

Theorem 1.11 Let n ∈ Z such that n > 1. The following statements are true.

(i) There exist prime numbers p1, p2, ..., pr ∈ Z+ such that n = p1p2...pr.

(ii) If q1, q2, ..., qs ∈ Z+ are prime numbers such that n = q1q2...qs, then for each

j ∈ {1, 2, ..., s}, ∃ i ∈ {1, 2, ..., r} such that qj = pi.

The following is known as the principle of mathematical induction.

Theorem 1.12 Let S ⊆ Z+ such that S 6= ∅. If 1 ∈ S and ∀ n ∈ S, n + 1 ∈ S,

then S = Z+.

2



2 Group theory

2.1 Dictionary of terms and notations

Definition 2.1 Let S be a set. A binary operation on S is a function ∗ : S×S → S.

Notation Given a binary operation ∗ on a set S and x, y ∈ S, we will often
denote ∗ (x, y) as “x ∗ y” or simply “xy.”

Definition 2.2 Let S be a set, and let ∗ be a binary operation on S. We say that ∗
is an associative binary operation provided that ∀ x, y, z ∈ S,

x ∗ (y ∗ z) = (x ∗ y) ∗ z. (1)

Definition 2.3 Let G be a nonempty set, and let ∗ be a binary operation on G. We

say that (G, ∗) is a group provided that the following statements are true.

(i) ∗ is associative.

(ii) ∃ e ∈ G such that ∀ a ∈ G, a ∗ e = e ∗ a = a.

(iii) ∀ a ∈ G, ∃ b ∈ G such that a ∗ b = b ∗ a = e.

Notation We will often write the statement “(G, ∗) is a group” as “G is a group
under ∗,” or simply “G is a group.”

Definition 2.4 Let G be a group. An identity element of G is an element e ∈ G

such that ∀ a ∈ G, a ∗ e = e ∗ a = a.

Definition 2.5 Let G be a group, and let e ∈ G be the identity element of G. Given

a ∈ G, an inverse element of a in G is an element b ∈ G such that a∗ b = b∗a = e.

Notation Given a group G and a ∈ G, will often denote the inverse element of
a by “a−1.”

Definition 2.6 Let G be a group. We say that G is a trivial group provided that

|G| = 1.

Definition 2.7 Let n ∈ Z+. The dihedral group of order 2n is the group of isome-

tries of a regular polygon with n sides.
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Notation We denote the dihedral group of order 2n by “Dn.”

Definition 2.8 Let n ∈ Z+. Define an equivalence relation ≡ on Z such that

∀ a, b ∈ Z, a ≡ b if and only if a ≡ b (mod n). The group of integers modulo

n is the quotient set Z /≡ under the binary operation defined via the relationship

[a] + [b] = [a+ b].

Notation Given n ∈ Z+, we denote the group of integers modulo n by “Z /n ,”
“Z /nZ ,” or “Zn.”

Definition 2.9 Let n ∈ Z+. The group of units modulo n is the set

U (n) =
{

[a] ∈ Z /n

∣∣∣gcd (a, n) = 1
}

(2)

under the binary operation defined via the relationship [a] · [b] = [ab].

Definition 2.10 Let Ω be a set. A permutation of Ω is a bijection σ : Ω→ Ω.

Definition 2.11 Let Ω be a nonempty set. The symmetric group based on Ω is the

group (SΩ, ◦), where

SΩ =
{
σ : Ω→ Ω

∣∣σ is a bijection
}
. (3)

Notation Given σ ∈ SΩ, we define σ1 = σ and for each n ∈ Z+, σn+1 = σ◦σn.

Definition 2.12 Let n ∈ Z+. The symmetric group of degree n is the symmetric

group SX , where X = {1, 2, ..., n}.

Notation We denote the symmetric group of degree n by “Sn.”

Definition 2.13 Let Ω be a set. A cycle in SΩ is a permutation σ ∈ SΩ such that

∀ a, b ∈ Ω, if σ(a) 6= a and σ(b) 6= b, then ∃ r ∈ Z+ such that σr(a) = b.

Definition 2.14 Let Ω be a set, and let σ ∈ SΩ be a cycle. The length of σ is the

cardinality
∣∣∣ {x ∈ Ω

∣∣σ(x) 6= x
} ∣∣∣.
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Definition 2.15 Let Ω be a set. Given a cycle σ ∈ SΩ and k ∈ Z+, we say that σ is

a k-cycle in SΩ provided that the length of σ is k.

Notation Given a k-cycle σ ∈ SΩ and a ∈ Ω such that σ(a) 6= a, we will often
write

σ =
(
a σ(a) σ2(a) ... σk−1(a)

)
. (4)

Definition 2.16 Let Ω be a set. Given cycles σ, τ ∈ SΩ, we say that σ and τ are

disjoint cycles provided that
{
x ∈ Ω

∣∣σ(x) 6= x
}
∩
{
x ∈ Ω

∣∣τ(x) 6= x
}

= ∅.

Definition 2.17 Let Ω be a set. A transposition in SΩ is a 2-cycle in SΩ.

Definition 2.18 The group of unit quaternions is the group (Q8, ·), where

Q8 = {1,−1, i,−i, j,−j, k,−k} , (5)

and · is defined so that i2 = j2 = k2 = −1, ij = k, jk = i, and ki = j.

Definition 2.19 Let n ∈ Z+, and let K be a field. The general linear group of

degree n over K is the group GLn (K) of n× n invertible matrices with entries in

K, under matrix multiplication.

Definition 2.20 Let n ∈ Z+, and let K be a field. The special linear group of

degree n over K is the group SLn (K) of n × n matrices with entries in K and

determinant 1, under matrix multiplication.

Definition 2.21 Let G be a group. We say that G is a cyclic group provided that

∃ a ∈ G such that ∀ b ∈ G, b = an for some n ∈ Z.

Definition 2.22 Let S be a set, and let ∗ be a binary operation on S. We say that ∗
is a commutative binary operation provided that ∀ x, y ∈ S, x ∗ y = y ∗ x.

Definition 2.23 Let (G, ∗) be a group. We say that G is an Abelian group provided

that ∗ is a commutative binary operation.

Definition 2.24 Let G be a group. The order of G is the cardinality |G|.
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Definition 2.25 Let G be a group, and let a ∈ G. We say that a has finite order in

G provided that ∃ n ∈ Z+ such that an = e, where e ∈ G is the identity element of

G.

Definition 2.26 Let G be a group, and let a ∈ G. We say that a has infinite order

in G provided that ∀ n ∈ Z+, an is not the identity element of G.

Definition 2.27 Let G be a group, and let a ∈ G have finite order in G. Suppose

that e ∈ G is the identity element of G. The order of a is the least element n ∈ Z+

such that an = e.

Notation Given a group G and a ∈ G, we denote the order of a by “|a|.”

Definition 2.28 Let f : X → Y be a function, and let S ⊆ X . The restriction map

of f to S is the function f
∣∣
S

: S → Y via f
∣∣
S

(x) = f(x).

Definition 2.29 Let (G, ∗) be a group. Given a nonempty H ⊆ G, we say that H

is a subgroup of G [with respect to ∗] provided that H is a group under ∗
∣∣
H×H .

Notation We will sometimes denote the statement “H is a subgroup of G” by
“H ≤ G.”

Definition 2.30 Let G be a group, and let a ∈ G. The cyclic group generated by a

is the group 〈a〉 =
{
an
∣∣n ∈ Z

}
.

Definition 2.31 Let G be a group. The center of G is the subset

Z(G) =
{
a ∈ G

∣∣∀ x ∈ G, ax = xa
}
. (6)

Definition 2.32 Let G be a group. Given a ∈ G, the centralizer of a in G is the set

C(a) =
{
x ∈ G

∣∣ax = xa
}
. (7)

Definition 2.33 Let G be a group, and let H be a subgroup of G. Given a ∈ G, the

left coset of G by H containing a is the set

a ∗H =
{
a ∗ h ∈ G

∣∣h ∈ H} . (8)
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Definition 2.34 Let G be a group, and let H be a subgroup of G. Given a ∈ G, the

right coset of G by H containing a is the set

H ∗ a =
{
h ∗ a ∈ G

∣∣h ∈ H} . (9)

Notation We will often denote a coset a ∗N by “aN ,” and N ∗ a by “Na.”

Definition 2.35 Let G be a group. Given a subgroup N of G, we say that N is a

normal subgroup of G provided that ∀ a ∈ G, aN = Na.

Notation We will often denote the statement “N is a normal subgroup of G” as
“N / G.”

Definition 2.36 Let G be a group, and let H be a subgroup of G. The quotient

space of G by H is the set

G /H =
{
aH
∣∣a ∈ G} . (10)

Definition 2.37 Let G be a group, and let H be a subgroup of G. The coset multi-

plication in G /H is the binary operation ∗ on G /H defined via aH ∗ bH = abH .

Definition 2.38 Let G be a group, and let N / G. The quotient group of G by N is

the group G /N under coset multiplication.

Definition 2.39 Let G1 and G2 be groups, and let ϕ : G1 → G2 be a function. We

say that ϕ is a [group] homomorphism provided that ∀ a, b ∈ G1,

ϕ (ab) = ϕ (a)ϕ (b) . (11)

Definition 2.40 Let ϕ : G1 → G2 be a homomorphism. Suppose that e2 ∈ G2 is

the identity element of G2. The kernel of ϕ is the set

kerϕ =
{
a ∈ G1

∣∣ϕ (a) = e2

}
(12)

Definition 2.41 Let ϕ : G1 → G2 be a homomorphism. The image or range of ϕ is

the set

Imϕ =
{
ϕ (a) ∈ G2

∣∣a ∈ G1

}
. (13)
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Definition 2.42 Let ϕ : G1 → G2 be a homomorphism. We say that ϕ is a

monomorphism provided that ϕ is injective.

Definition 2.43 Let ϕ : G1 → G2 be a homomorphism. We say that ϕ is an epi-

morphism provided that ϕ is surjective.

Definition 2.44 Let ϕ : G1 → G2 be a group homomorphism. We say that ϕ is a

group isomorphism provided that there exists a group homomorphism ψ : G2 → G1

such that ψ ◦ ϕ = idG1 and ϕ ◦ ψ = idG2 .

Definition 2.45 Let ϕ : G1 → G2 be a group homomorphism. We say that G1

and G2 are isomorphic [as groups] provided that there exists a group isomorphism

ϕ : G1 → G2.

Notation We may denote the statement “G1 and G2 are isomorphic groups” by
“G1 ' G2.”
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2.2 Examples

Example 2.46 The following are examples of groups.

(i) Z under addition.

(ii) Q under addition.

(iii) R under addition.

(iv) C under addition.

(v) Q \ {0} under multiplication.

(vi) R \ {0} under multiplication.

(vii) C \ {0} under multiplication.

(viii) {0} under addition (or multiplication). This is a trivial group.

(ix) Given n ∈ Z+ and a ∈ C such that an = 1, the set

G =
{

1, a, a2, a3, ..., an−1
}

(14)

is a group under multiplication. This is a cyclic group.

(x) Any vector space is a group.

(xi) All of the groups above are abelian groups. Given n ∈ Z+, the symmetric group

Sn is a non-abelian group. The dihedral group D2n, the group of unit quaternions

Q8, the general linear group GLn (C), and the special linear group SLn (C) are

also non-abelian groups.

Example 2.47 The following are examples of subgroups.

(i) Z is a subgroup of Q.

(ii) Q is a subgroup of R.

(iii) R is a subgroup of C.

(iv) SLn (K) is a subgroup of GLn (K).

(v) Every group contains a trivial subgroup.

(vi) Every group is a subgroup of itself.
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2.3 Propositions

Proposition 2.48 Let G be a group. Given e1, e2 ∈ G, if e1 and e2 are both identity

elements of G, then e1 = e2.

Proof Since e2 is an identity element of G, we can say that e1e2 = e1. At the
same time, since e1 is an identity element of G, we have that e1e2 = e2. Thus,
e1 = e1e2 = e2. �

Proposition 2.49 Let G be a group, and let e ∈ G be the identity element of G. If

∀ a, b ∈ G, ab = e, then G = {e}.

Proof Let a ∈ G. We know that ae = a, and by assumption, ae = e. Thus,
a = ae = e. �

Proposition 2.50 Let G be a group. Given a, b, c ∈ G, if ac = bc, then a = b.

Similarly, if ca = cb, then a = b.

Proof Suppose that ac = bc. Since G is a group, ∃ c−1 ∈ G such that cc−1 = e,
where e ∈ G is the identity element of G. Thus,

a = ae = acc−1 = bcc−1 = be = b. (15)

The proof for ca = cb is similar. �

Proposition 2.51 Let G be a group. Given a, b ∈ G, (ab)2 = a2b2 if and only if

ab = ba.

Proof (⇒) Assume that (ab)2 = a2b2. This means that abab = aabb. Since G is a
group, ∃ b−1 ∈ G such that bb−1 = e, where e ∈ G is the identity element of G. At
the same time, ∃ a−1 ∈ G such that a−1a = e. Therefore,

ba = ebae = a−1ababb−1 = a−1aabbb−1 = eabe = ab. (16)
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(⇐) Assume that ab = ba. In that case, aab = aba, and so aabb = abab, hence
a2b2 = (ab)2. �

Proposition 2.52 Let G be a group, and let e ∈ G be the identity element of G.

Given a, b, c ∈ G, if ab = ba = e and ac = ca = e, then b = c.

Proof Suppose that ab = ba = e and ac = ca = e. This means that ab = ac. By
Proposition 2.50, we deduce that b = c. �

Proposition 2.53 Let G be a group. Given a ∈ G, (a−1)
−1

= a.

Proof Define b = a−1. We know that ab = e. Therefore,

a = ae = abb−1 = eb−1 = b−1 =
(
a−1
)−1

. (17)

�

Proposition 2.54 Let G be a group, and let e ∈ G be the identity element of G.

Given a ∈ G, if a−1 = e, then a = e.

Proof Suppose that a−1 = e. This implies that

e = aa−1 = ae = a. (18)

�

Proposition 2.55 Let G be a group. Given a, b ∈ G, (ab)−1 = b−1a−1.

Proof We notice that

(ab)
(
b−1a−1

)
= a

(
bb−1

)
a−1 = aea−1 = aa−1 = e, (19)
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and (
b−1a−1

)
(ab) = b−1

(
a−1a

)
b = b−1eb = b−1b = e. (20)

Thus, b−1a−1 is the inverse element of ab. �

Proposition 2.56 Let G be a group. Given a1, a2, ..., an ∈ G,

(a1a2...an)−1 = an
−1...a2

−1a1
−1. (21)

Proof We proceed by mathematical induction on n. First, (a1)−1 = a1
−1, trivially.

This establishes a basis for induction. Assume, as the induction hypothesis, that for
some k ∈ Z+, (a1a2...ak)−1 = ak

−1...a2
−1a1

−1. Proposition 2.55 indicates that

(a1a2...akak+1)−1 = ((a1a2...ak) ak+1)−1 = ak+1
−1(a1a2...ak)−1. (22)

Therefore,

(a1a2...akak+1)−1 = ak+1
−1
(
ak
−1...a2

−1a1
−1
)

= ak+1
−1ak

−1...a2
−1a1

−1. (23)

This completes the induction. �

Proposition 2.57 Let G be a group. Given a nonempty H ⊆ G, H is a subgroup

of G if and only if ∀ a, b ∈ H , ab−1 ∈ H .

Proof Let (G, ∗) be a group, and let H ⊆ G be nonempty.
(⇒) Assume that H is a subgroup of G. Let a, b ∈ H . In that case, b−1 ∈ H ,

since H is a group. Therefore, a ∗ b−1 ∈ H .
(⇐) Assume that ∀ a, b ∈ H , a ∗ b−1 ∈ H . We will show that H is a subgroup

of G. First, we know that ∗
∣∣
H×H is associative, since ∗ is associative. As H 6= ∅,

we know that ∃ a ∈ H . By assumption, e = a ∗ a−1 ∈ H , where e ∈ G is the
identity element of G. Now, ∀ b ∈ G, b ∗ e = e ∗ b = b, so in particular, ∀ b ∈ H ,
b ∗ e = e ∗ b = b. This shows that H contains an identity element. Given a ∈ H ,
we know that a−1 = e ∗ a−1 ∈ H by assumption. This shows that for each element
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of H , an inverse element exists in H .
We claim that ∗

∣∣
H×H is a binary operation on H (or in other words, that H is

closed under ∗). Given a, b ∈ H , we know that b−1 ∈ H . Therefore, by assumption,
a ∗ (b−1)

−1 ∈ H . By Proposition 2.53, this implies that a ∗ b ∈ H .
AsH satisfies the conditions of a group, we deduce thatH is a subgroup ofG. �

Proposition 2.58 Let G be a group, and let a ∈ G. Given a subgroup H of G, if

a ∈ H , then 〈a〉 ⊆ H .

Proof Let H be a subgroup of G. Let a ∈ H . We claim that ∀ n ∈ Z+, an ∈ H .
We proceed by mathematical induction on n. First, we note that a1 = a ∈ H . This
establishes a basis for induction. Assume, as the induction hypothesis, that ak ∈ H
for some k ∈ Z+. Now ak+1 = aka ∈ H , since H is a group. This completes the
induction.

We know that e ∈ H , since H is a subgroup of G. Thus, a0 ∈ H . Further,
for each n ∈ Z+, a−n ∈ H , since a−n = (an)−1, and H is a group. Therefore,
〈a〉 =

{
an
∣∣n ∈ Z

}
⊆ H . �

Proposition 2.59 Let G be a group, and let a ∈ G. Suppose that e ∈ G is the

identity element of G. Given n ∈ Z, an = e if and only if |a| divides n.

Proof Let a ∈ G, and let n ∈ Z. Define k = |a|.
(⇒) Assume that an = e. We know from Theorem 1.8 that ∃ q, r ∈ Z such that

n = kq + r and 0 ≤ r < k. Therefore,

e = an = akq+r = akqar =
(
ak
)q
ar = eqar = ar. (24)

Since r < k, and k is the least element of Z+ such that ak = e, we must have that
r /∈ Z+; r = 0. Thus, n = kq, and so k|n.

(⇐) Assume that k|n. In that case, ∃ q ∈ Z such that n = kq. Thus,

an = akq =
(
ak
)q

= eq = e. (25)
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Proposition 2.60 Let G be a group. Given a ∈ G,
∣∣a−1

∣∣ = |a|.

Proof Let a ∈ G, and define |a| = k for some k ∈ Z+. Define l =
∣∣a−1

∣∣. Assume,
with the expectation of a contradiction, that l 6= k. We notice that

e = ek =
(
aa−1

)k
= ak

(
a−1
)k

= e
(
a−1
)k

=
(
a−1
)k
, (26)

where e ∈ G is the identity element of G. This shows that l ≤ k, so l < k. Now,
we notice that al 6= e, so

e = el =
(
a−1a

)l
=
(
a−1
)l
al = eal = al 6= e. (27)

This contradiction leads us to conclude that our assumption that l 6= k is false;
l = k. �

Proposition 2.61 Let G be a group, and let a ∈ G. If a has finite order in G, then

|a| =
∣∣ 〈a〉 ∣∣. If a has infinite order in G, then 〈a〉 is an infinite set.

Proof Let a ∈ G, and suppose that a has finite order in G. Define k = |a|. Let
S =

{
a, a2, ..., ak

}
.

We claim that S = 〈a〉. First, it is clear that S ⊆ 〈a〉, by definition. Now,
suppose that x ∈ 〈a〉. In that case, x = an for some n ∈ Z. We note that
n ≡ m (mod k) for some m ∈ {1, 2, ..., k}, since congruence modulo k is an
equivalence relation. In that case, k|n−m. We deduce that an−m = e, by Proposi-
tion 2.59. Ergo, x = an = am ∈ S.

Since 〈a〉 = S, and |S| = k,
∣∣ 〈a〉 ∣∣ = k = |a|. �

Proposition 2.62 Let G be a group, and let a ∈ G. Suppose that |a| = k for some

k ∈ Z+. Given l ∈ Z+,
〈
al
〉

=
〈
agcd(k,l)

〉
.

14



Proof Define d = gcd (k, l), and let l = qd for some q ∈ Z.
(⊆) Let x ∈

〈
al
〉
. In that case, x =

(
al
)r for some r ∈ Z. We deduce that

x =
(
aqd
)r

=
(
ad
)qr ∈ 〈ad〉 . (28)

This shows that
〈
al
〉
⊆
〈
ad
〉
.

(⊇) Let x ∈
〈
ad
〉
. This means that x =

(
ad
)r for some r ∈ Z. By Bézout’s

lemma (Theorem 1.9), ∃ s, t ∈ Z such that ks+ lt = d. We deduce that

x =
(
ad
)r

=
(
aks+lt

)r
=
(
aksalt

)r
=
((
ak
)s(

al
)t)r

. (29)

However, ak = e, where e ∈ G is the identity element of G, since k = |a|. Thus,

x =
((
ak
)s(

al
)t)r

=
(
es
(
al
)t)r

=
(
al
)tr ∈ 〈al〉 . (30)

This shows that
〈
ad
〉
⊆
〈
al
〉
. �

Proposition 2.63 Let G be a group, and let a ∈ G. Suppose that |a| = k for some

k ∈ Z+. Given l ∈ Z+,
∣∣al∣∣ = k

gcd(k,l)
.

Proof Define d = gcd (k, l), and let k = qd for some q ∈ Z.
We claim that

∣∣ad∣∣ = q. First, we notice that

(
ad
)q

= aqd = ak = e, (31)

where e ∈ G is the identity element of G. Therefore,
∣∣ad∣∣ ≤ q. Further, if r ∈ Z+

such that r < q, then ard 6= e, since rd < qd = k = |a|. Thus,
∣∣ad∣∣ = q.

By Proposition 2.61, we know that
∣∣al∣∣ =

∣∣ 〈al〉 ∣∣. Now, by Proposition 2.62,〈
al
〉

=
〈
ad
〉
. Thus,

∣∣al∣∣ =
∣∣ 〈ad〉 ∣∣ =

∣∣ad∣∣ = q, due to the claim. �

Proposition 2.64 Let G be a group. If H is a subgroup of G and K is a subgroup

of H , then K is a subgroup of G.
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Proof Let H ≤ G and K ≤ H . We will show that K ≤ G. Let a, b ∈ K. In that
case, since K is a group, b−1 ∈ K. Further, ab−1 ∈ K. Thus, by Proposition 2.57,
K ≤ G. �

Proposition 2.65 Let G be a group. The center Z(G) is a subgroup of G.

Proof Let a, b ∈ Z (G). Given x ∈ G, we notice that bx = xb. Thus, bxb−1 = x,
and so xb−1 = b−1x. Further,

x
(
ab−1

)
= axb−1 = ab−1x =

(
ab−1

)
x. (32)

Now, by Proposition 2.57, we find that Z (G) is a subgroup of G. �

Proposition 2.66 Let G be a group. Given a ∈ G, the centralizer C(a) is a sub-

group of G.

Proof Let a ∈ G. We will show that C (a) is a subgroup of G. Let x, y ∈ C (a).
In that case, ax = xa. Now, since ay = ya, we deduce that y−1ay = a, and so
y−1a = ay−1. Thus,

axy−1 = xay−1 = xy−1a, (33)

which shows that xy−1 ∈ C (a). By Proposition 2.57, this shows that C (a) is a
subgroup of G. �

Proposition 2.67 Let σ, τ ∈ SΩ. If σ and τ are disjoint cycles, then σ ◦ τ = τ ◦ σ.

Proof Let a ∈ Ω. Define S =
{
a ∈ Ω

∣∣σ(a) 6= a
}

and T =
{
a ∈ Ω

∣∣τ(a) 6= a
}

. As
σ and τ are disjoint, we know that S ∩ T = ∅. We consider three cases: a ∈ S,
a ∈ T , or a /∈ S ∪ T .

Consider the case that a ∈ S. Suppose that σ(a) = b. We know that a 6= b,
so since σ is bijective, σ(b) 6= σ(a) = b. Thus, b ∈ S. We deduce that b /∈ T , so
τ(b) = b. Thus,

τσ (a) = τ (b) = b = σ (a) = στ (a) . (34)
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Consider the case that a ∈ T . Suppose that τ(a) = c. We know that a 6= c,
so since τ is bijective, τ(c) 6= τ(a) = c. Thus, c ∈ T . We deduce that c /∈ S, so
σ(c) = c. Thus,

τσ (a) = τ (a) = c = σ (c) = στ (a) . (35)

Consider the case that a /∈ S ∪ T . This means that σ(a) = a and τ(a) = a.
Therefore,

τσ (a) = τ (a) = a = σ (a) = στ (a) . (36)

Whatever the case, we see that τσ(a) = στ(a), and so τσ = στ . �

Proposition 2.68 Let σ ∈ Sn be a permutation. Suppose that σ = αr ◦ ...◦α2 ◦α1,

where α1, α2, ..., αr ∈ Sn are disjoint cycles and for each i ∈ {1, 2, ..., r}, the

length of cycle αi is ki. In that case, |σ| = lcm (k1, k2, ..., kr).

Proof

Proposition 2.69 Let G be a group. The quotient space G /H is a group under

coset multiplication if and only if H / G.

Proof

Proposition 2.70 Let ϕ : G1 → G2 be a homomorphism. Suppose that e1 ∈ G1 is

the identity element of G1 and e2 ∈ G2 is the identity element of G2. In that case,

ϕ (e1) = e2.

Proof

Proposition 2.71 Let ϕ : G1 → G2 be a homomorphism. Given any element

a ∈ G1, ϕ (a−1) = ϕ (a)−1.

Proof
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Proposition 2.72 Letϕ : G1 → G2 be a homomorphism. The mapϕ is a monomor-

phism if and only if kerϕ = {e1}, where e1 ∈ G1 is the identity element of G1.

Proof

Proposition 2.73 Let ϕ : G1 → G2 be a group homomorphism. If ϕ is bijective,

then ϕ−1 is also a group homomorphism.

Proof

Proposition 2.74 Let ϕ : G1 → G2 be a homomorphism. In that case, kerϕ / G1.

Proof

Proposition 2.75 Let G be a group, and let N / G. There exists a homomorphism

ϕ : G→ G /N such that kerϕ = N .

Proof

18



2.3.1 Important theorems

Theorem 2.76 Let G be a group, and let H be a subgroup of G. If G is cyclic, then

H is cyclic.

Proof Let G be a cyclic group, and let H ≤ G. In that case, ∃ a ∈ G such that
G = 〈a〉. If H = {e}, where e ∈ G is the identity element of G, then H is cyclic.
Assume, therefore, that H 6= {e}. We define

S =
{
n ∈ Z+

∣∣an ∈ H} . (37)

We claim that S 6= ∅. Since H 6= {e}, ∃ b ∈ H such that b 6= e. Now, since
H ⊆ G, b = at for some t ∈ Z \ {0}. If t > 0, then b ∈ S. If t < 0, then we notice
that a−t = b−1 ∈ H , since H is a group. In that case, b−1 ∈ S. Either way, S 6= ∅.

By the well-ordering principle (Theorem 1.7), our claim implies that S contains
a least element. Let m ∈ S be the least element of S. In that case, am ∈ H , which
indicates that 〈am〉 ⊆ H .

We claim that H ⊆ 〈am〉. Let b ∈ H . Since H ⊆ G, b = ak for some k ∈ Z.
Now, by the division algorithm (Theorem 1.8), ∃ q, r ∈ Z such that k = qm + r

and 0 ≤ r < m. We notice that

b = ak = aqm+r = aqmar. (38)

We deduce that ar = a−qmb ∈ H . However, m is the least positive integer such
that am ∈ H , so if ar ∈ H , then r cannot be a positive integer; r = 0. Thus,
b = aqm = (am)q ∈ 〈am〉.

Our claim implies that H = 〈am〉, and so H is a cyclic group. �

Theorem 2.77 Let σ ∈ Sn. There exist disjoint cycles α1, α2, ..., αr ∈ Sn such that

σ = αr ◦ ... ◦ α2 ◦ α1.

Proof
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Theorem 2.78 Let σ ∈ Sn. If n > 1, then there exist 2-cycles τ1, τ2, ..., τs ∈ Sn

such that σ = τs ◦ ... ◦ τ2 ◦ τ1.

Proof

Theorem 2.79 Let n ∈ Z such that n > 1. Given α1, α2, ..., αr, β1, β2, ..., βs ∈ Sn

which are transpositions, if
∏r

i=1 αi =
∏s

j=1 βj , then r ≡ s (mod 2).

Proof

The following is known as Lagrange’s theorem.

Theorem 2.80 Let G be a finite group. If H is a subgroup of G, then the order of

H divides the order of G.

Proof

The following is known as Cauchy’s theorem.

Theorem 2.81 Let G be a finite group. If p ∈ Z+ is a prime number and p divides

the order |G|, then ∃ a ∈ G such that the order of a is p.

Proof

The following is known as Cayley’s theorem.

Theorem 2.82 Let G be a group. There exists a subgroup H of the symmetric

group SG such that G ' H .

Proof
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3 Ring theory

3.1 Dictionary of terms and notations

Definition 3.1 Let R be a nonempty set, and let + and · be binary operations on

R. We say that (R,+, ·) is a ring provided that the following statements are true.

(i) (R,+) is an abelian group.

(ii) · is associative.

(iii) ∀ a, b, c ∈ R,

a · (b+ c) = (a · b) + (a · c) (39)

and

(a+ b) · c = (a · c) + (b · c) . (40)

Notation Given a ring R and a, b ∈ R, we will often denote a · b by “ab.”

Definition 3.2 Let (R,+, ·) be a ring. The zero, or additive identity of R is the

element 0 ∈ R such that ∀ a ∈ R, a+ 0 = 0 + a = a.

Definition 3.3 Let (R,+, ·) be a ring. We say thatR is a commutative ring provided

that · is commutative.

Definition 3.4 Let (R,+, ·) be a ring. A one, or multiplicative identity of R is an

element 1 ∈ R such that ∀ a ∈ R, 1a = a1 = a.

Definition 3.5 Let R be a ring. We say that R is a ring with unity provided that

there exists a multiplicative identity of R.

Definition 3.6 Let R be a ring with unity. Given a, b ∈ R, we say that b is a

multiplicative inverse of a provided that ab = ba = 1.

Definition 3.7 Let R be a commutative ring with unity. A polynomial with coeffi-

cients in R is a sequence (an)∞n=0 satisfying the following condition: ∃ n ∈ N such

that ∀m ∈ N, if m > n, then am = 0.
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Definition 3.8 Let R be a commutative ring with unity, and let f = (an)∞n=0 be

a nonzero polynomial with coefficients in R. The degree of f is the non-negative

number deg f = max
{
n ∈ N

∣∣an 6= 0
}

.

Definition 3.9 Let R be a commutative ring with unity, and let f = (an)∞n=0 be a

polynomial with coefficients in R. The leading coefficient of f is the element adeg f .

Definition 3.10 Let R be a commutative ring with unity, and let f = (an)∞n=0 be a

polynomial with coefficients in R. We say that f is monic provided that the leading

coefficient of f is 1.

Definition 3.11 Let R be a commutative ring with unity, and let f = (an)n∈N be a

polynomial with coefficients in R. We say that f is a constant polynomial provided

that ∀ n ∈ Z+, an = 0.

Definition 3.12 Let R be a commutative ring with unity. The ring of polynomials

with coefficients in R is the ring R [X] whose elements are the polynomials with

coefficients in R and with + defined via

(an)∞n=0 + (bn)∞n=0 = (an + bn)∞n=0

and with · defined via

(an)∞n=0 · (bn)∞n=0 =

(∑
i+j=n

aibj

)∞
n=0

.

Notation Given a commutative ring R with unity, we will often refer to the
subring

{
(r, 0, 0, ...) ∈ R [X]

∣∣∣r ∈ R} of R [X] as R.

Definition 3.13 Let R be a commutative ring with unity. The indeterminate over R

is the polynomial X = (0, 1, 0, 0, ...).

Notation Given a polynomial f = (a0, a1, ..., an, 0, 0, ...), we will often write
f as a linear combination of powers of the indeterminate: anXn + ... + a1X + a0.
When doing so, we will write f(X) instead of f .
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Definition 3.14 Let R be a commutative ring. Given n ∈ Z+, the matrix ring of

degree n over R is the ring of n× n matrices over R.

Definition 3.15 Let D be a commutative ring with unity. We say that the ring D is

an integral domain provided that ∀ a, b ∈ D, if ab = 0, then a = 0 or b = 0.

Definition 3.16 LetD be an integral domain. Given a, b ∈ D, we say that a divides

b, that a is a factor of b, or that b is divisible by a in D provided that ∃ q ∈ D such

that b = qa.

Definition 3.17 Let (R,+, ·) be a ring. Given a nonempty S ⊆ R, we say that S is

a subring of R provided that ∀ a, b ∈ S, a+ b, ab ∈ S and S is a ring under +
∣∣
S×S

and ·
∣∣
S×S .

Definition 3.18 Let R be a ring. Given a subring I of R, we say that I is a left

ideal of R provided that ∀ r ∈ R and ∀ a ∈ I , ra ∈ I .

Definition 3.19 Let R be a ring. Given a subring I of R, we say that I is a right

ideal of R provided that ∀ r ∈ R and ∀ a ∈ I , ar ∈ I .

Definition 3.20 Let R be a ring. Given a subring I of R, we say that I is a two-

sided ideal of R provided that ∀ r ∈ R and ∀ a ∈ I , ra, ar ∈ I .

Notation If R is a commutative ring, then we will often write the statement “I
is an ideal of R” as “I / R.”

Definition 3.21 Let R be a commutative ring with unity. Given an ideal P of R,

we say that P is a prime ideal of R provided that ∀ a, b ∈ R, if ab ∈ P , then either

a ∈ P or b ∈ P .

Definition 3.22 Let R be a commutative ring. Given an ideal M of R, we say that

M is a maximal ideal of R provided that ∀ I / R, if M ⊆ I ⊆ R, then M = I or

I = R.

Definition 3.23 Let R be a commutative ring, and let S ⊆ R be a nonempty set.

The ideal generated by S in R is the ideal I / R such that S ⊆ I and, ∀ J / R, if

S ⊆ J , then I ⊆ J .
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Notation Given a ring R and a nonempty S ⊆ R,
1. We will often denote the ideal generated by S by “(S).”
2. When S = {a1, a2, ..., an}, we may denote the ideal generated by S by

“(a1, a2, ..., an).”

Definition 3.24 Let R be a commutative ring, and let I be an ideal of R. We say

that I is a principal ideal provided that ∃ a ∈ R such that I = (a).
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3.2 Examples

Example 3.25 The following are examples of rings.

(i) Z, with its usual addition and multiplication.

(ii) Q, R, and C, with their usual additions and multiplications, are all rings.

(iii) {0} is a trivial ring.

(iv) The rings above are all commutative. Given a ring R and n ∈ Z such that

n ≥ 2, the matrix ring Mn(R) is a non-commutative ring.
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3.3 Propositions, and their proofs

Proposition 3.26 Let R be a ring. Given a ∈ R, a0 = 0a = 0.

Proof

Proposition 3.27 Let R be a ring with unity. Given a, b ∈ R, if a and b are both

multiplicative identities of R, then a = b.

Proof

Proposition 3.28 Let R be a ring. Given a, b, c ∈ R, if ab = 1 and ac = 1, then

b = c.

Proof

Proposition 3.29 Let R be a commutative ring. The ring R is an integral domain

if and only if the following condition is true: ∀ a, b, c ∈ R, if ab = ac, then b = c.

Proof
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3.3.1 Important theorems
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4 Field theory

4.1 Dictionary of terms and notations

Definition 4.1 Let K be a commutative ring with unity. We say that K is a field

provided that ∀ a ∈ K, ∃ b ∈ K such that ab = 1.

28



4.2 Examples
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