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1 Review for Test 1

1.1 Dictionary of terms

Definition 1.1 A set is a well-defined collection of elements that does not contain

itself as an element.

Definition 1.2 The empty set is the set ∅ containing no elements.

Universal quantifier: ∀, “for all,” “for every”
Existential quantifier: ∃, “there exists”

Definition 1.3 Let X be a set. The cardinality of X is the amount of elements of

X .

Notation We often denote the cardinality of X by |X|.

Definition 1.4 LetA andB be sets. We say thatA is a subset ofB, denotedA ⊆ B

or A ⊂ B, provided that ∀ x ∈ A, x ∈ B.

Definition 1.5 Let A and B be sets. We say that A and B are equal, denoted

A = B, provided that A ⊆ B and B ⊆ A.

Definition 1.6 Let A and B be sets. We say that A is a proper subset of B provided

that A ⊆ B and A 6= B.

Notation We denote the statement “A is a proper subset of B” by “A ( B.”

Definition 1.7 Let A and B be sets. The union of A and B is the set

A ∪B =
{
x
∣∣x ∈ A or x ∈ B

}
. (1)

Definition 1.8 Let A and B be sets. The intersection of A and B is the set

A ∩B =
{
x
∣∣x ∈ A and x ∈ B

}
. (2)
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Definition 1.9 Let A and B be sets. We say that A and B are disjoint provided that

A ∩B = ∅.

Definition 1.10 Let A and B be sets. The complement of B in A is the set

A−B =
{
x ∈ A

∣∣x /∈ B} (3)

Notation A−B is also denoted A \B.

Definition 1.11 Let A be a set. The power set of A is the set

P (A) =
{
S
∣∣S ⊆ A

}
. (4)

Notation P(A) is also denoted 2A.

Definition 1.12 Let x and y be mathematical objects. The ordered pair of x and y

is the set (x, y) = {{x} , {x, y}}.

Definition 1.13 Let A and B be sets. The Cartesian product of A and B is the set

A×B =
{
(x, y)

∣∣x ∈ A and y ∈ B
}
. (5)

Definition 1.14 LetX and Y be sets. A graph of a function fromX to Y is a subset

f ⊆ X × Y satisfying the following conditions.

(i) ∀ x ∈ X , ∃ y ∈ Y such that (x, y) ∈ f .

(ii) Given x ∈ X and y1, y2 ∈ Y , if (x, y1) ∈ f and (x, y2) ∈ f , then y1 = y2.

Definition 1.15 Let X and Y be sets. A function or map from X to Y is an ordered

triple (X, Y, f), where f is the graph of a function from X to Y .

Notation
(1) We often write the statement “(X, Y, f) is a function” as “f : X → Y is a
function.”
(2) We often write the statement “(x, y) ∈ f” as “f(x) = y.”

Definition 1.16 Let f : X → Y be a function. The domain of f is the set X .
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Definition 1.17 Let f : X → Y be a function. The codomain of f is the set Y .

Definition 1.18 Let X , Y and Z be sets. Given some functions f : X → Y and

g : Y → Z, the composition of g with f is the function g ◦ f : X → Z defined via

the relationship g ◦ f (x) = g (f (x)).

Definition 1.19 Let f : X → Y be a function. Given A ⊆ X , the direct image of

A under f is the set

f(A) =
{
f(a)

∣∣a ∈ A} . (6)

Definition 1.20 Let f : X → Y be a function. The range or image of f is the direct

image f(X).

Definition 1.21 Let f : X → Y be a function. Given B ⊆ Y , the inverse image of

B under f is the set

f−1(B) =
{
x ∈ X

∣∣f(x) ∈ B} . (7)
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1.2 Things you should know for the test

1. ALL of the definitions. If you do not know the definition of a term used in a
problem, then it will be impossible for you to make any progress toward solving it!

2. Given a statement, you should be able to produce the negation.
3. Given an “if...then” statement, you should be able to produce the converse

and contrapositive of the statement.
4. You should be able to prove that one set is a subset of another. To show that

A ⊆ B, begin with the sentence “Let x0 ∈ A be arbitrary.” The rest of the proof
will involve showing that x0 ∈ B.

5. You should be able to prove that two sets are equal to each other. To show
that A = B, you need to show that A ⊆ B and that B ⊆ A.

6. You should be able to prove “if...then” statements. To prove p ⇒ q, begin
with the sentence “Assume p.” The rest of the proof will involve showing q.

7. You should be able to prove “if and only if” statements. To prove p⇔ q, you
need to prove that p⇒ q and q ⇒ p.

8. You should be able to prove that a set is empty. The easiest way to prove
that A = ∅ is to proceed by contradiction. The first sentence of such a proof would
be “Assume, with the expectation of a contradiction, that A 6= ∅.” The rest of the
proof will involve showing that this cannot be true.

9. You should be able to work with sets and prove things about them, including
operations on sets, such as union, intersection, and complement.

10. You should be able to work with power sets.
11. You should be able to work with Cartesian products.
12. You should be able to determine whether a given subset of X × Y is the

graph of a function from X to Y .
13. Given finite setsX and Y , you should be able to produce all of the functions

from X to Y .
14. Given a function f : X → Y and a subset A ⊆ X of the domain, you

should be able to describe the direct image f(A).
15. Given a function f : X → Y and a subset B ⊆ X of the codomain, you

should be able to describe the inverse image f−1(B).
16. You should be able to do ALL of the homework problems.

4



1.3 Sample problems

In order to be sure that you possess the requisite skills, you should be able to
prove all of the following theorems.

Theorem 1.22 Given sets A and B, A ∪B ⊆ A if and only if B ⊆ A.

Theorem 1.23 Given sets A and B,

(A \B) ∩ (B \ A) = ∅. (8)

Theorem 1.24 Let X be a set. Given subsets A,B ⊆ X , A ⊆ B if and only if

X \B ⊆ X \ A.

Theorem 1.25 Given sets A, B and C,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (9)

and

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) . (10)

Theorem 1.26 (de Morgan’s laws for sets) Let X be a set. Given A,B ⊆ X ,

X \ (A ∪B) = (X \ A) ∩ (X \B) (11)

and

X \ (A ∩B) = (X \ A) ∪ (X \B) . (12)

Theorem 1.27 (Fundamental property of ordered pairs) Given mathematical ob-

jects x, y, a, and b, (x, y) = (a, b) if and only if x = a and y = b.

Theorem 1.28 If A and B are non-empty sets, then A×B = B ×A if and only if

A = B.

Theorem 1.29 Given sets A, B and C,

A× (B ∪ C) = (A×B) ∪ (A× C) (13)
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and

A× (B ∩ C) = (A×B) ∩ (A× C) . (14)

Theorem 1.30 Let f : X → Y be a function. Given A ⊆ X , A ⊆ f−1 (f (A)).

Theorem 1.31 Let f : X → Y be a function. Given B ⊆ Y , f (f−1 (B)) ⊆ B.

Theorem 1.32 Let f : X → Y be a function. Given B ⊆ Y , B = f (f−1 (B)) if

and only if B ⊆ f(X).

Theorem 1.33 Let f : X → Y be a function. Given subsets A1, A2 ⊆ X ,

f (A1 ∪ A2) = f (A1) ∪ f (A2) (15)

and

f (A1 ∩ A2) ⊆ f (A1) ∩ f (A2) . (16)

Theorem 1.34 Let f : X → Y be a function. Given subsets B1, B2 ⊆ Y ,

f−1 (B1 ∪B2) = f−1 (B1) ∪ f−1 (B2) (17)

and

f−1 (B1 ∩B2) = f−1 (B1) ∩ f−1 (B2) . (18)
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1.4 Solutions to sample problems

Proof of Theorem 1.22 (⇒) Assume that A ∪ B ⊆ A. Let x0 ∈ B. In that
case, x0 ∈ A or x0 ∈ B. We deduce that x0 ∈ A ∪B = A.

(⇐) Assume that B ⊆ A. Let x0 ∈ A∪B. In that case, x0 ∈ A or x0 ∈ B. Yet
if x0 ∈ B, then x0 ∈ A, since B ⊆ A. Either way, x0 ∈ A. �

Proof of Theorem 1.23 Assume, with the expectation of a contradiction, that
(A \B) ∩ (B \ A) 6= ∅. This means that ∃ x0 ∈ (A \B) ∩ (B \ A). In that case,
x0 ∈ A \B and x0 ∈ B \A. In particular, we deduce that x0 ∈ A and x0 /∈ A. This
contradiction leads us to conclude that our assumption that (A \B)∩ (B \ A) 6= ∅
is false; (A \B) ∩ (B \ A) = ∅. �

Proof of Theorem 1.24 (⇒) Assume thatA ⊆ B. Let x0 ∈ X \B. In that case,
x0 /∈ B. By assumption, then, x0 /∈ A (for if x0 ∈ A, then x0 ∈ B, since A ⊆ B.)
Therefore, x0 ∈ X \ A.

(⇐) Assume that X \ B ⊆ X \ A. Let x0 ∈ A. In that case, x0 /∈ X \ A. By
assumption, then, x0 /∈ X \B. Thus, x0 ∈ B. �

Proof of Theorem 1.25 (i) (⊆) Let x0 ∈ A ∩ (B ∪ C). In that case, x0 ∈ A
and x0 ∈ B ∪ C. Therefore, x0 ∈ A, and either x0 ∈ B or x0 ∈ C. If x0 ∈ B, then
x0 ∈ A ∩B. If x0 ∈ C, then x0 ∈ A ∩ C. Either way, x0 ∈ (A ∩B) ∪ (A ∩ C).

(⊇) Let x0 ∈ (A ∩B) ∪ (A ∩ C). In that case, x0 ∈ A ∩ B or x0 ∈ A ∩ C.
Thus, x0 ∈ A, and either x0 ∈ B or x0 ∈ C. Ergo, x0 ∈ A and x0 ∈ B ∪ C, so
x0 ∈ A ∩ (B ∪ C).

(ii) (⊆) Let x0 ∈ A ∪ (B ∩ C). In that case, x0 ∈ A or x0 ∈ B ∩ C. Thus,
either x0 ∈ A or x0 ∈ B and x0 ∈ C. Either way, x0 ∈ A ∪ B and x0 ∈ A ∪ C.
Thus, x0 ∈ (A ∪B) ∩ (A ∪ C).

(⊇) Let x0 ∈ (A ∪B) ∩ (A ∪ C). In that case, x0 ∈ A ∪ B and x0 ∈ A ∪ C.
Therefore, x0 ∈ A or x0 ∈ B, and x0 ∈ A or x0 ∈ C. If x0 /∈ A, then x0 ∈ B and
x0 ∈ C. Thus, x0 ∈ A or x0 ∈ B ∩ C. We deduce that x0 ∈ A ∪ (B ∩ C). �
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Proof of Theorem 1.26 (i) (⊆) Let x0 ∈ X \ (A ∪B). In that case, x0 ∈ X
and x0 /∈ A ∪ B. We deduce that x0 /∈ A and x0 /∈ B. Ergo, x0 ∈ X \ A and
x0 ∈ X \B. Thus, x0 ∈ (X \ A) ∩ (X \B).

(⊇) Let x0 ∈ (X \ A) ∩ (X \B). In that case, x0 ∈ X \ A and x0 ∈ X \ B.
Therefore, x0 ∈ X , and x0 /∈ A and x0 /∈ B. Thus, x0 /∈ A ∪ B. We deduce that
x0 ∈ X \ (A ∪B).

(ii) (⊆) Let x0 ∈ X \ (A ∩B). In that case, x0 ∈ X and x0 /∈ A ∩ B. We
deduce that x0 /∈ A or x0 /∈ B. Thus, x0 ∈ X \A or x0 ∈ X \B. This implies that
x0 ∈ (X \ A) ∪ (X \B).

(⊇) Let x0 ∈ (X \ A) ∪ (X \B). This means that x0 ∈ X \ A or x0 ∈ X \B.
Either way, x0 ∈ X . At the same time, x0 /∈ A or x0 /∈ B, so x0 /∈ A ∩ B. Thus,
x0 ∈ X \ (A ∩B). �

Proof of Theorem 1.27 (⇒) Let (x, y) = (a, b). In that case,

{{x} , {x, y}} = {{a} , {a, b}} . (19)

We consider two cases: either x = y or x 6= y.
Consider the case that x = y. Now

{{x}} = {{a} , {a, b}} . (20)

We deduce that {x} = {a} and {x} = {a, b}. In particular, x = a. Further, we
deduce that {a} = {x} = {a, b}, and so b = a = x = y.

Consider the case that x 6= y. We know that {x} ∈ {{a} , {a, b}}. Therefore,
{x} = {a} or {x} = {a, b}. Ergo, x = a or x = b. However, if x = b, then
{b} ∈ {{a} , {a, b}}, which would mean that {b} = {a} or {b} = {a, b}. Either
way, we would have that b = a. To summarize: we have that either x = a or
x = b = a.

As for y, we know that {x, y} ∈ {{a} , {a, b}}. This means that {x, y} = {a}
or {x, y} = {a, b}. However, x = a, so we can write this as {x, y} = {x} or
{x, y} = {x, b}. The first case implies that x = y, contrary to our assumption in
this case. Therefore, {x, y} = {x, b}. Ergo, y ∈ {x, b}, which means that either
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y = x or y = b. Since y 6= x in this case, we have that y = b.
(⇐) Assume that x = a and y = b. In that case,

(x, y) = {{x} , {x, y}} = {{a} , {a, b}} = (a, b) . (21)

�

Proof of Theorem 1.28 (⇒) Assume that A×B = B ×A. Let x0 ∈ A. Since
B 6= ∅, we can say that ∃ y ∈ B. Thus, (x0, y) ∈ A × B = B × A. We deduce
that x0 ∈ B. This shows that A ⊆ B. Similar arguments show that B ⊆ A, and so
A = B.

(⇐) Assume that A = B. In that case, A×B = A× A = B × A. �

Proof of Theorem 1.29 (i) (⊆) Let (x0, y0) ∈ A×(B ∪ C). In that case, x0 ∈ A
and y0 ∈ B ∪ C. Thus, x0 ∈ A, and either y0 ∈ B or y0 ∈ C. We deduce that
(x0, y0) ∈ A×B or (x0, y0) ∈ A×C. Either way, (x0, y0) ∈ (A×B) ∪ (A× C).

(⊇) Let (x0, y0) ∈ (A×B) ∪ (A× C). In that case, (x0, y0) ∈ A × B or
(x0, y0) ∈ A × C. We deduce that x0 ∈ A and y0 ∈ B, or x0 ∈ A and y0 ∈ C.
Either way, x0 ∈ A. At the same time, y0 ∈ B ∪C. Thus, (x0, y0) ∈ A× (B ∪ C).

(ii) (⊆) Let (x0, y0) ∈ A × (B ∩ C). In that case, x0 ∈ A and y0 ∈ B ∩ C.
Thus, x0 ∈ A, y0 ∈ B, and y0 ∈ C. We deduce that (x0, y0) ∈ A × B and
(x0, y0) ∈ B × C. Therefore, (x0, y0) ∈ (A×B) ∩ (A× C).

(⊇) Let (x0, y0) ∈ (A×B) ∩ (A× C). In that case, (x0, y0) ∈ A × B and
(x0, y0) ∈ A × C. We deduce that x0 ∈ A, y0 ∈ B, and y0 ∈ C. In particular,
y0 ∈ B ∩ C. Therefore, (x0, y0) ∈ A× (B ∩ C). �

Proof of Theorem 1.30 Let x0 ∈ A. In that case, f (x0) ∈ f(A). Therefore,
x0 ∈ f−1 (f (A)). �

Proof of Theorem 1.31 Let y0 ∈ f (f−1 (B)). In that case, ∃ x0 ∈ f−1 (B)

such that y0 = f (x0). However, this means that y0 = f (x0) ∈ B. �
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Proof of Theorem 1.32 (⇒) Assume thatB = f (f−1 (B)). Let y0 ∈ B. By as-
sumption, y0 ∈ f (f−1 (B)). We deduce that ∃ x0 ∈ f−1 (B) such that y0 = f (x0).
Therefore, y0 = f (x0) ∈ f(X).

(⇐) Assume that B ⊆ f(X).
(⊆) Let y0 ∈ B. By assumption, ∃ x0 ∈ X such that y0 = f (x0). However,

this means that x0 ∈ f−1 (B). Thus, y0 = f (x0) ∈ f (f−1 (B)).
(⊇) Theorem 1.31 indicates that f (f−1 (B)) ⊆ B. �

Proof of Theorem 1.33 (i) (⊆) Let y0 ∈ f (A1 ∪ A2). In that case, y0 = f (x0)

for some x0 ∈ A1 ∪ A2. We note that x0 ∈ A1 or x0 ∈ A2. Thus, f (x0) ∈ f (A1)

or f (x0) ∈ f (A2). We deduce that y0 = f (x0) ∈ f (A1) ∪ f (A2).
(⊇) Let y0 ∈ f (A1) ∪ f (A2). In that case, y0 ∈ f (A1) or y0 ∈ f (A2). We de-

duce that y0 = f (x0) for some x0 ∈ A1 or y0 = f (x0) for some x0 ∈ A2. In other
words, ∃ x0 ∈ A1 ∪ A2 such that y0 = f (x0). Thus, y0 = f (x0) ∈ f (A1 ∪ A2).

(ii) Let y0 ∈ f (A1 ∩ A2). In that case, y0 = f (x0) for some x0 ∈ A1∩A2. We
deduce that x0 ∈ A1 and x0 ∈ A2, so f (x0) ∈ f (A1) and f (x0) ∈ f (A2). Ergo,
y0 = f (x0) ∈ f (A1) ∩ f (A2). �

Proof of Theorem 1.34 (i) (⊆) Let x0 ∈ f−1 (B1 ∪B2). In that case, we know
that f (x0) ∈ B1 ∪ B2. Therefore, f (x0) ∈ B1 or f (x0) ∈ B2. This means that
x0 ∈ f−1 (B1) or x0 ∈ f−1 (B2). Ergo, x0 ∈ f−1 (B1) ∪ f−1 (B2).

(⊇) Let x0 ∈ f−1 (B1) ∪ f−1 (B2). This means that either x0 ∈ f−1 (B1) or
x0 ∈ f−1 (B2). Thus, f (x0) ∈ B1 or f (x0) ∈ B2. Ergo, f (x0) ∈ B1 ∪ B2, and so
x0 ∈ f−1 (B1 ∪B2).

(ii) (⊆) Let x0 ∈ f−1 (B1 ∩B2). In that case, f (x0) ∈ B1 ∩ B2. This means
that f (x0) ∈ B1 and f (x0) ∈ B2. Thus, x0 ∈ f−1 (B1) and x0 ∈ f−1 (B2). We
deduce that x0 ∈ f−1 (B1) ∩ f−1 (B2).

(⊇) Let x0 ∈ f−1 (B1) ∩ f−1 (B2). Now x0 ∈ f−1 (B1) and x0 ∈ f−1 (B2).
We deduce that f (x0) ∈ B1 and f (x0) ∈ B2. Therefore, f (x0) ∈ B1 ∩ B2. This
implies that x0 ∈ f−1 (B1 ∩B2). �
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2 Review for Test 2

2.1 Dictionary of terms

Definition 2.1 Let f1 : X → Y and f2 : X → Y be functions. We say that f1 and

f2 are equal functions, denoted f1 = f2, provided that ∀ x ∈ X , f1(x) = f2(x).

Definition 2.2 Let X be a set. The identity function defined on X is the function

idX : X → X such that ∀ x ∈ X , idX(x) = x.

Definition 2.3 Let f : X → Y be a function. Given g : Y → X , we say that g is

an inverse function of f provided that g ◦ f = idX and f ◦ g = idY .

Notation The inverse function of f is denoted f−1.

Definition 2.4 Let f : X → Y be a function. We say that f is an invertible function

provided that there exists an inverse function f−1 of f .

Definition 2.5 Let f : X → Y be a function. We say that f is injective, or one-to-

one, provided that ∀ x1, x2 ∈ X , if f (x1) = f (x2), then x1 = x2.

Definition 2.6 Let f : X → Y be a function. We say that f is surjective, or onto,

provided that ∀ y ∈ Y , ∃ x ∈ X such that f(x) = y.

Definition 2.7 Let f : X → Y be a function. We say that f is bijective, or that f

is a bijection, provided that f is both injective and surjective.

Definition 2.8 One is the set 1 = {∅}.

Definition 2.9 Let A be a set. The successor of A is the set A′ = A ∪ {A}.

Definition 2.10 The set of natural numbers is the set N satisfying the following

conditions.

(i) 1 ∈ N.

(ii) ∀ n ∈ N, n′ ∈ N.

(iii) If X is any set such that 1 ∈ X and ∀ n ∈ X , n′ ∈ X , then N ⊆ X .
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The following are Peano’s axioms of the natural numbers.

Definition 2.11 The following statements are true.

(i) 1 is a natural number.

(ii) For each natural number n, there exists a unique successor, n′.

(iii) No successor of any natural number is equal to 1.

(iv) If m and n are natural numbers and m 6= n, then m′ 6= n′.

(v) (Mathematical induction) For each natural number n, let P (n) be a statement.

If P (1) is true and for every natural number k, P (k) implies P (k′), then P (n) is

true for every natural number n.

Definition 2.12 The addition of natural numbers is the function + : N × N → N
satisfying the following conditions.

(i) ∀ n ∈ N, n+ 1 = n′.

(ii) ∀m,n ∈ N, m+ n′ = (m+ n)′.

Definition 2.13 Let m,n ∈ N. We say that m is less than n, denoted m < n,

provided that ∃ k ∈ N such that n = m+ k.

Definition 2.14 Let m,n ∈ N. We say that m is less than or equal to n, denoted

m ≤ n, provided that either m < n or m = n.

Definition 2.15 Let m,n ∈ N. If m < n, then m minus n is the natural number

k ∈ N such that n = m+ k.

Notation We denoted m minus n by “m− n.”

Definition 2.16 Let X be a set. We say that X is a well-ordered set provided that

∀ S ⊆ X , ∃ t ∈ S such that ∀ s ∈ S, t ≤ s.

Definition 2.17 Define 0 = ∅. the set of integers is the set

Z = ({0, 1} × N) ∪ {(0, 0)} . (22)

Definition 2.18 The absolute value function is a function || : Z → Z defined via

the relationship
∣∣ (s, n) ∣∣ = (0, n).
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Notation
(i) We denote the integer (0, 0) by “0.”
(ii) Given n ∈ N, we denote the integer (0, n) by “n.”
(iii) Given n ∈ N, we denote the integer (1, n) by “−n.”

Definition 2.19 The multiplication of integers is the function · : Z× Z→ Z satis-

fying the following conditions.

(i) ∀ n ∈ Z, 1 · n = n.

(ii) ∀ a, b, c ∈ Z, a · (b+ c) = (a · b) + (a · c).

Definition 2.20 Let m,n ∈ Z. We say that m is less than n, denoted m < n,

provided that n−m ∈ N.

Definition 2.21 Let x ∈ Z. The exponential function with base x is the function

fx : N→ Z satisfying the following conditions.

(i) fx(1) = x.

(ii) ∀ n ∈ N, fx (n+ 1) = fx (n)x.

Notation Given n ∈ N, we denote the value of the exponential function with
base x at the argument n by “xn.”

Definition 2.22 Let X be a nonempty set. A[n] [infinite] sequence in X is a func-

tion s : N→ X .

Notation
(i) We denote the sequence s : N→ X by “(sn),” “(sn)

∞
n=1,” or “(sn)n∈N.”

(ii) Given a sequence s : N→ X and n ∈ N, we denote s(n) by “sn.”

Definition 2.23 Let X be a set, and let (sn)n∈N be a sequence in X . We say that

(sn) is a recursive sequence provided that ∃ m ∈ N such that ∀ n ∈ N, if m ≤ n,

then sn+1 = cnsn + cn−1sn−1 + ...+ cksk for some k ≤ n.

Definition 2.24 Letm,n ∈ Z. We say thatm divides n, thatm is a factor of n, that

m is a divisor of n, that n is divisible by m, or that n is a multiple of m provided

that ∃ q ∈ Z such that n = mq.
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Notation We denote the statement “m divides n” by “m|n.”

Definition 2.25 Let p ∈ Z. We say that p is a prime number provided that ∀m ∈ Z,

if m|p, then m = ±1 or m = ±p.

Definition 2.26 Let n ∈ Z. A prime factorization of n is a finite set {p1, p2, ..., pk}
of prime numbers such that n = p1p2...pk.

Definition 2.27 Let n ∈ Z. We say that n is a composite number provided that n is

not prime and n 6= 1.

Definition 2.28 Given a, b, n ∈ Z such that n 6= 0, we say that a and b are congru-

ent modulo n provided that n|a− b.

Notation We denote “a and b are congruent modulo n” by “a ≡ b (mod n)” or
“a = b mod n.”

Definition 2.29 Let a, b ∈ Z such that b 6= 0. An integral quotient of a by b is an

integer q ∈ Z such that a = qb+ r for some integer r ∈ Z such that 0 ≤ r < |b|.

Definition 2.30 Let a, b ∈ Z such that b 6= 0. A remainder when a is divided by b

is an integer r ∈ Z such that 0 ≤ r < |b| and a = qb+ r for some integer q ∈ Z.
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2.2 Things you should know for the test

1. ALL OF THE DEFINITIONS.
2. You should know how to prove that two functions are equal or not equal.
3. You should know how to prove that two functions are inverses of each other.
4. You should be able to recognize and prove whether a given function is in-

jective and/or surjective or not. You should also be able to produce examples of
injective and/or surjective functions.

5. You should know that a function is invertible if and only if the function is
bijective.

6. You should know how to use the pigeonhole principle, and you should know
its limitations.

7. YOU SHOULD BE AWARE THAT INVERSE IMAGES AND INVERSE
FUNCTIONS HAVE SIMILAR NOTATIONS, BUT ARE NOT RELATED.

8. You should know Peano’s axioms, and you should be able to use Peano’s
axioms to prove that two natural numbers are not equal.

9. You should be able to determine whether a set is well-ordered or not.
10. You should be able to state the principle of mathematical induction, both in

words and without words.
11. You should be able to detect and state the flaw in a false proof that uses

mathematical induction.
12. You should be able to prove statements about all natural numbers using

mathematical induction.
13. You should be able to determine the closed form of a recursive sequence,

and you should be able to prove such a formula by strong mathematical induction.
14. Given a closed formula for a recursive sequence, you should be able to find

a recursive relation that it satisfies.
15. You should know that all integers greater than one have unique prime fac-

torizations.
16. You should know how to find the remainder when a given large number is

divided by another number.
17. You should know how to find the integral quotient of one number by another.
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2.3 Theorems of importance

You should be able to state and apply the following theorems.

The following is known as the pigeonhole principle.

Theorem 2.31 Let X and Y be finite sets such that |X| = |Y |. Given a function

f : X → Y , f is injective if and only if f is surjective.

The following is known as the well-ordering principle.

Theorem 2.32 Given S ⊆ N, ∃ t ∈ S such that ∀ s ∈ S, t ≤ s.

The following is known as strong mathematical induction, or complete mathe-
matical induction.

Theorem 2.33 For each n ∈ N, let P (n) be a statement. If P (1) is true and

∀ k ∈ N, P (1), P (2), ..., P (k) implies P (k + 1), then ∀ n ∈ N, P (n) is true.

The following is known as the unique factorization theorem, or the fundamental
theorem of arithmetic.

Theorem 2.34 Let n ∈ N such that n 6= 1. There exists a unique prime factoriza-

tion of n into positive prime numbers.
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2.4 Sample problems

In order to be sure that you possess the requisite skills, you should be able to
prove all of the following theorems.

Theorem 2.35 Given a function f : X → Y , the following statements are true.

(i) There exists a function g : Y → X such that g ◦ f = idX if and only if f is

injective.

(ii) There exists a function g : Y → X such that f ◦ g = idY if and only if f is

surjective.

Theorem 2.36 Let f : X → Y be a function. The following statements are true.

(i) f is injective if and only if ∀ A ⊆ X , A = f−1 (f (A)).

(ii) f is surjective if and only if ∀ B ⊆ Y , B = f (f−1 (B)).

Theorem 2.37 Given a function f : X → Y , f is bijective if and only if f is

invertible.

Theorem 2.38 Let f : X → Y be an invertible function. Given g1 : Y → X and

g2 : Y → X , if g1 and g2 are both inverse functions of f , then g1 = g2.

Theorem 2.39 Let f : X → Y and g : Y → Z be functions. If f and g are

invertible, then (g ◦ f)−1 = f−1 ◦ g−1.

Theorem 2.40 Given n ∈ N, n 6= n′.

Theorem 2.41 Given m,n ∈ N, m+ n 6= m.

Theorem 2.42 Let m, k1, k2 ∈ N. If m+ k1 = m+ k2, then k1 = k2.

Theorem 2.43 The following statements are true.

(i) ∀ n ∈ Z, n0 = 0.

(ii) ∀m,n ∈ Z, (−m)n = − (mn).

(iii) ∀m,n ∈ Z, (−m) (−n) = mn.

(iv) ∀m,n, k ∈ Z, if mk = nk and k 6= 0, then m = n.
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Theorem 2.44 The following statements are true.

(i) ∀m,n, p ∈ Z, if m < n and n < p, then m < p.

(ii) ∀m,n, k ∈ Z, if m < n, then m+ k < n+ k.

(iii) ∀m,n, k ∈ Z, if m < n and 0 < k, then mk < nk.

(iv) ∀m,n, k ∈ Z, if m < n and k < 0, then nk < mk.

Theorem 2.45 The following statements are true.

(i) ∀ x, y ∈ Z, ∀ n ∈ N, (xy)n = xnyn.

(ii) ∀ x ∈ Z, ∀m,n ∈ N, xmxn = xm+n.

(iii) ∀ x ∈ Z, ∀m,n ∈ N, (xm)n = xmn.

Theorem 2.46 The following statements are true.

(i) ∀ n ∈ N,

1 + 2 + 3 + ...+ n =
n(n+ 1)

2
. (23)

(ii) ∀ n ∈ N,

1 + 3 + 5 + ...+ (2n− 1) = n2. (24)

(iii) ∀n ∈ N,

12 + 22 + 32 + ...+ n2 =
n (n+ 1) (2n+ 1)

6
. (25)

(iv) ∀ n ∈ N,
1

1(2)
+

1

2(3)
+ ...+

1

n(n+ 1)
=

n

n+ 1
. (26)

Theorem 2.47 The following statements are true.

(i) Given the recursive sequence (sn) defined via

s1 = 1

s2 = 7

sn+1 = 2sn−1 − sn for n > 1

, (27)

the sequence can be written in closed form as

sn = 3 + (−2)n. (28)
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(ii) Given the recursive sequence (sn) defined via

s1 = −1
s2 = −5

sn+1 = 5sn − 6sn−1 for n > 1

, (29)

the sequence can be written in closed form as

sn = 2n − 3n. (30)

Theorem 2.48 There exist infinitely many prime numbers.

Theorem 2.49 Let a, b, c, d, n ∈ Z, and suppose a ≡ b (mod n) and c ≡ d (mod n).

The following statements are true.

(i) a+ c ≡ b+ d (mod n).

(ii) ab ≡ bd (mod n).

Theorem 2.50 Let a, b, n ∈ Z, and let m be a natural number. If a ≡ b (mod n),

then am ≡ bm (mod n).
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2.5 Solutions to sample problems

Proof of Theorem 2.35 (i) (⇒) Assume that g ◦ f = idX . Let x1, x2 ∈ X such
that f (x1) = f (x2). In that case,

x1 = g (f (x1)) = g (f (x2)) = x2, (31)

and thus f is injective.
(⇐) Assume that f is injective. Let x0 ∈ X be arbitrary. We define g : Y → X

via the following relationship. For each y ∈ Y , if y ∈ f(X), then select x ∈ X

such that f(x) = y. We define

g(y) =

x if y ∈ f(X)

x0 if y /∈ f(X)
. (32)

By construction, ∀ x ∈ X , g (f (x)) = x, and so g ◦ f = idX .
(ii) (⇒) Assume that f ◦ g = idY . Let y ∈ Y . In that case, f (g (y)) = y. This

shows that f is surjective.
(⇐) Assume that f is surjective. We define g : Y → X via the following

relationship. For each y ∈ Y , ∃ x ∈ X such that f(x) = y. Let g(y) = x. By
construction, ∀ y ∈ Y , f (g (y)) = f(x) = y, and so f ◦ g = idY . �

Proof of Theorem 2.36 (i) (⇒) Assume that f is injective. Let A ⊆ X . We know
that A ⊆ f−1 (f (A)) because of Theroem 1.30. We claim that f−1 (f (A)) ⊆ A.
Let x ∈ f−1 (f (A)). In that case, f(x) ∈ f(A). Therefore, ∃ a ∈ A such that
f(a) = f(x). As f is injective, we know that a = x, so x ∈ A.

(⇐) Assume that ∀ A ⊆ X , A = f−1 (f (A)). We will show that f is in-
jective. Let x1, x2 ∈ X such that f (x1) = f (x2). This means in particular that
x1 ∈ f−1 ({f (x2)}) = f−1 (f ({x2})). By assumption, f−1 (f ({x2})) = {x2}, so
x1 ∈ {x2}. Thus, x1 = x2. This shows that f is injective.

(ii) (⇒) Assume that f is surjective. Let B ⊆ Y . By Theorem 1.31, we
know that f (f−1 (B)) ⊆ B. Now we claim that B ⊆ f (f−1 (B)). Let y ∈ B.
Since f is surjective, y = f(x) for some x ∈ X . In particular, x ∈ f−1 (B), so
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y = f(x) ∈ f (f−1 (B)).
(⇐) Assume that ∀ B ⊆ Y , B = f (f−1 (B)). Let y ∈ Y . By assumption,

{y} = f (f−1 ({y})). Therefore, ∃ x ∈ f−1 ({y}), and thus y = f(x) for some
x ∈ X . This shows that f is surjective. �

Proof of Theorem 2.37 (⇒) Assume that f is bijective. We will show that f
is invertible. We define g : Y → X via the following relationship. Since f is
surjective, given y ∈ Y , ∃ x ∈ X such that f(x) = y. We define g(y) = x.

We claim that g is a well-defined function. Given y1, y2 ∈ Y , ∃ x1, x2 ∈ X

such that f (x1) = y1 and f (x2) = y2. If y1 = y2, then f (x1) = f (x2). Since f is
injective, this implies that x1 = x2, and thus g (y1) = g (y2). This shows that g is
well-defined.

We claim that g is an inverse function of f . Let x ∈ X . In that case, by definition
of g, g (f (x)) = x0 for some x0 such that f (x0) = f (x). As f is injective, x0 = x.
This shows that g ◦ f = idX . Let y ∈ Y . As f is surjective, we know that ∃ x1 ∈ X
such that f (x1) = y. Therefore, g (y) = x1, and so f (g (y)) = f (x1) = y. This
shows that f ◦ g = idY . We deduce that g is an inverse function of f .

(⇐) Assume that f is invertible. We will show that f is bijective. Suppose that
g : Y → X be an inverse function of f . Let x1, x2 ∈ X such that f (x1) = f (x2).
As g ◦ f = idX , we note that

x1 = g (f (x1)) = g (f (x2)) = x2. (33)

This shows that f is injective. Now, let y ∈ Y . We know that f ◦ g = idY , and
so f (g (y)) = y. Yet we notice that g(y) ∈ X , so f (g (y)) = y shows that f is
surjective. We deduce that f is bijective. �

Proof of Theorem 2.38 Let g1 and g2 be inverse functions of f . This means in
particular that f ◦ g1 = idY and f ◦ g2 = idY . Given y ∈ Y , we know that

f (g1 (y)) = y = f (g2 (y)) . (34)

By Theorem 2.37, we know that f is injective. Therefore, g1(y) = g2(y), and so
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g1 = g2. �

Proof of Theorem 2.39 Let f : X → Y and g : Y → Z be invertible functions.
We will show that (g ◦ f)−1 = f−1 ◦ g−1.

First, we claim that g ◦ f is invertible. We know that f and g are both injective,
due to Theorem 2.37. Thus, given x1, x2 ∈ X , if g (f (x1)) = g (f (x2)), then
f (x1) = f (x2), and so x1 = x2. This shows that g ◦ f is injective. Now, given
z ∈ Z, ∃ y ∈ Y such that g(y) = z, since g is surjective. Further, ∃ x ∈ X such
that f(x) = y, since f is surjective. Therefore, ∃ x ∈ X such that g (f (x)) = z,
and so g ◦ f is surjective. As g ◦ f is bijective, Theorem 2.37 implies that g ◦ f is
invertible.

Let h = f−1 ◦ g−1. We claim that h is the inverse function of g ◦ f . Given
x ∈ X , we notice that

h ◦ (g ◦ f) (x) = f−1
(
g−1 (g (f (x)))

)
= f−1 (f (x)) = x. (35)

This shows that h ◦ (g ◦ f) = idX . Given z ∈ Z, we notice that

(g ◦ f) ◦ h (z) = g (f (h (z))) = g
(
f
(
f−1

(
g−1 (z)

)))
= g

(
g−1 (z)

)
= z. (36)

This shows that (g ◦ f) ◦ h = idZ . We deduce that h = (g ◦ f)−1. �

Proof of Theorem 2.40 We proceed by mathematical induction on n. First, we note
that 1 6= 1′, since by Peano’s axioms, no successor can be equal to 1. This estab-
lishes a basis for induction. As the induction hypothesis, assume, for some k ∈ N,
that k 6= k′. By Peano’s axioms, this indicates that k′ 6= (k′)′. This completes the
induction. �

Proof of Theorem 2.41 We proceed by mathematical induction on n. First, we note
that m + 1 6= m, since, by Theorem 2.40, m′ 6= m. This establishes a basis for
induction. As the induction hypothesis, assume that, for some k ∈ N, m+ k 6= m.
By definition of addition, we know that m + k′ = (m+ k)′ 6= m + k, which com-
pletes the induction. �
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Proof of Theorem 2.42 Assume, with the expectation of a contradiction, k1 6= k2.
Suppose, with the understanding that the other choice is similar, that k1 < k2. In
that case, ∃ r ∈ N such that k2 = k1 + r, and so

m+ k1 = m+ k2 = (m+ k1) + r, (37)

despite that Theorem 2.41 indicates thatm+k1 6= (m+ k1)+r. This contradiction
leads us to conclude that our assumption that k1 6= k2 is false; k1 = k2. �

Proof of Theorem 2.43 (i) We note that

n0 + 0 = n0 = n (0 + 0) = n0 + n0, (38)

which indicates that 0 = n0, by Theorem 2.42.
(ii) We note that

0 = n0 = n (m−m) = mn+ (−m)n, (39)

and so (−m)n = −mn.
(iii) We note that

0 = (−m) 0 = (−m) (n− n) = (−m)n+ (−m) (−n) . (40)

Therefore, (−m) (−n) = − (−m)n = − (−mn) = mn.
(iv) Let mk = nk with k 6= 0. In that case,

0 = mk − nk = (m− n) k. (41)

Since k 6= 0, we must have that m− n = 0, and so m = n. �

Proof of Theorem 2.44 (i) Suppose that m < n and n < p. In that case, ∃ k, l ∈ N
such that n = m+ k and p = n+ l. This means that p = m+ k+ l, and so m < p.

(ii) Suppose that m < n. In that case, n −m = r for some r ∈ N. We notice
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that
(n+ k)− (m+ k) = n−m = r, (42)

and so m+ k < n+ k.
(iii) Suppose that m < n and 0 < k. We know that k ∈ N, and ∃ r ∈ N such

that n−m = r. We deduce that

nk −mk = (n−m) k − rk ∈ N, (43)

which means that mk < nk.
(iv) Suppose that m < n and k < 0. In that case, −k ∈ N and ∃ r ∈ N such

that n−m = r. We notice that

mk − nk = (m− n) k = (−r) k = r (−k) ∈ N, (44)

and so nk < mk. �

Proof of Theorem 2.45 We proceed by mathematical induction on n. First, we
notice that (xy)1 = xy = x1y1. This establishes a basis for induction. Now, as the
induction hypothesis, assume, for some k ∈ N, that (xy)k = xkyk. We notice that

(xy)k+1 = (xy)k (xy) = xkykxy = xk+1yk+1. (45)

This completes the induction.
(ii) We proceed by mathematical induction on n. We notice that xmx1 = xm+1.

This establishes a basis for induction. As the induction hypothesis, assume, for
some k ∈ N, that xmxk = xm+k. Now,

xmxk+1 = xmxkx = xm+kx = xm+k+1, (46)

which completes the induction.
(iii) We proceed by mathematical induction on n. First of all, we notice that

(xm)1 = xm = xm1. This establishes a basis for induction. As the induction
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hypothesis, assume, for some k ∈ N, that (xm)k = xmk. Now,

(xm)k+1 = (xm)kxm = xmkxm = xmk+m = xm(k+1). (47)

This completes the induction. �

Proof of Theorem 2.46 (i) We proceed by mathematical induction on n. First,
we note that 1 = 1(1+1)

2
. This establishes a basis for induction. As the induction

hypothesis, assume that 1 + 2 + ...+ k = k(k+1)
2

, for some k ∈ N. We notice that

1 + 2 + ...+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2
=

(k + 1)(k + 2)

2
. (48)

This completes the induction.
(ii) We proceed by mathematical induction on n. First, we note that 1 = 12.

This establishes a basis for induction. As the induction hypothesis, assume that
1 + 3 + ...+ (2k − 1) = k2 for some k ∈ N. We notice that

1 + 3 + ...+ (2k − 1) + (2 (k + 1)− 1) = k2 + 2k + 1 = (k + 1)2. (49)

This completes the induction.
(iii) We proceed by mathematical induction on n. First, 12 = 1(1+1)(2(1)+1)

6
.

This establishes a basis for induction. As the induction hypothesis, assume that, for
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some k ∈ N, 12 + 22 + ...+ k2 = k(k+1)(2k+1)
6

. Now,

12 + 22 + ...+ k2 + (k + 1)2 =
k (k + 1) (2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1)

6
+

6(k + 1)(k + 1)

6

=
(k + 1) (2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)(k + 2)(2(k + 1) + 1)

6
. (50)

This completes the induction.
(iv) We proceed by mathematical induction on n. First, we note that 1

1(2)
= 1

1+1
.

This establishes a basis for induction. As the induction hypothesis, assume that for
some k ∈ N,

1

1(2)
+

1

2(3)
+ ...+

1

k(k + 1)
=

k

k + 1
. (51)

We note that

1

1(2)
+

1

2(3)
+ ...+

1

k(k + 1)
+

1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2)

(k + 1)(k + 2)
+

1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)(k + 1)

(k + 1)(k + 2)

=
(k + 1)

(k + 1) + 1
. (52)

This completes the induction. �

Proof of Theorem 2.47 (i) We proceed by strong mathematical induction on n.
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First, we note that 1 = s1 = 3 + (−2)1 and 7 = s2 = 3 + (−2)2. This establishes
a basis for induction. As the induction hypothesis, assume, for some k ∈ N, that
∀ n ∈ {1, 2, ..., k}, sn = 3+ (−2)n. We know that sk+1 = 2sk−1 − sk if k > 1. By
the induction hypothesis, we also know that

sk−1 = 3 + (−2)k−1

sk = 3 + (−2)k
. (53)

Thus,

sk+1 = 2sk−1 − sk = 2
(
3 + (−2)k−1

)
−
(
3 + (−2)k

)
= 6 + (−1)k−12k − 3− (−1)k2k

= 3 + (−1)k−12k + (−1)k+12k

= 3 + (−1)k+12k + (−1)k+12k

= 3 + 2(−1)k+12k

= 3 + (−1)k+12k+1 = 3 + (−2)k+1. (54)

This completes the induction.
(ii) We proceed by strong mathematical induction on n. First, we note that

−1 = 21 − 31, and that −5 = 22 − 32. This establishes a basis for induction.
As the induction hypothesis, assume, for some k ∈ N, that ∀ n ∈ {1, 2, ..., k},
sn = 2n − 3n. We know that sk+1 = 5sk − 6sk−1 if k > 1. By the induction
hypothesis, we also know that

sk−1 = 2k−1 − 3k−1

sk = 2k − 3k
. (55)
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Thus,

sk+1 = 5sk − 6sk−1 = 5
(
2k − 3k

)
− 6

(
2k−1 − 3k−1

)
= (5)2k − (5)3k − (6)2k−1 + (6)3k−1

= (5)2k − (5)3k − (3)2k + (2)3k

= (2)2k − (3)3k = 2k+1 − 3k+1. (56)

This completes the induction. �

Proof of Theorem 2.48 Assume, with the expectation of a contradiction, that there
exist finitely many prime numbers. Suppose that the prime numbers are p1, p2, ..., pn.
We define N = p1p2...pn + 1. Since N is larger than any prime number, N
must be composite. By Theorem 2.34, N has a prime factorization. Therefore,
∃ i ∈ {1, 2, ..., n} such that pi|N . Thus, N = qpi for some q ∈ Z. However,

1 = N − p1p2...pn = qpi − p1p2...pn = pi (q − p1p2...pi−1pi+1...pn) . (57)

This shows that 1 is composite. This contradiction leads us to conclude that our
assumption that there are finitely many prime numbers is false; there exist infinitely
many prime numbers. �

Proof of Theorem 2.49 (i) Suppose that a ≡ b (mod n) and c ≡ d (mod n). This
means that ∃ q1, q2 ∈ Z such that a− b = q1n and c− d = q2n. Therefore,

(a+ c)− (b+ d) = a− b+ c− d = q1n+ q2n = (q1 + q2)n. (58)

This shows that n|(a+ c)− (b+ d), and so a+ c ≡ b+ d (mod n).
(ii) Suppose that a ≡ b (mod n) and c ≡ d (mod n). In that case, ∃ q1, q2 ∈ Z

such that a − b = q1n and c − d = q2n. Therefore, a = b + q1n and c = d + q2n.
We deduce that

ac = (b+ q1n) (d+ q2n) = bd+bq2n+dq1n+q1q2n
2 = bd+(bq2 + dq1 + q1q2n)n.

(59)
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This shows that n|ac− bd, and so ac ≡ bd (mod n). �

Proof of Theorem 2.50 We proceed by mathematical induction on m. First, we
know that a1 ≡ b1 (mod n), by assumption. This establishes a basis for induction.
As the induction hypothesis, assume that for some k ∈ N, ak ≡ bk (mod n). By
Theorem 2.49, since a ≡ b (mod n), we have that

ak+1 ≡ aka ≡ bkb ≡ bk+1 (mod n) . (60)

This completes the induction. �
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3 Review for Test 3

3.1 Dictionary of terms

Definition 3.1 Let m,n ∈ Z. The greatest common divisor of m and n is the

integer d ∈ Z satisfying the following conditions.

(i) d|m and d|n.

(ii) Given k ∈ Z, if k|m and k|n, then k ≤ d.

Notation We denote the greatest common divisor of m and n by “gcd (m,n).”

Definition 3.2 Letm,n ∈ Z. We say thatm and n are relatively prime, or coprime,

provided that gcd (m,n) = 1.

Definition 3.3 The factorial is the function f : N ∪ {0} → N such that f(0) = 1

and ∀ n ∈ N, f(n) = nf (n− 1).

Notation We denote the factorial of a number n ∈ N ∪ {0} by “n!.”

Definition 3.4 Let n, k ∈ N ∪ {0} such that k ≤ n. The binomial coefficient n

choose k is the value (
n

k

)
=

n!

k! (n− k)!
. (61)

Definition 3.5 The Euler totient function is the function φ : N→ N defined via the

following relationship: for each n ∈ N,

φ(n) =

∣∣∣∣ {m ∈ N
∣∣∣m ≤ n and gcd (m,n) = 1

} ∣∣∣∣. (62)

Definition 3.6 Let X be a set. A [binary] relation on X is a subset R ⊆ X ×X .

Notation Given a binary relation R on a set X , we often denote the statement
“(x, y) ∈ R” by “xRy.”

Definition 3.7 Let R be a binary relation on a set X . We say that R is reflexive

provided that ∀ x ∈ X , xRx.
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Definition 3.8 Let R be a binary relation on a set X . We say that R is symmetric

provided that ∀ x, y ∈ X , if xRy, then yRx.

Definition 3.9 Let R be a binary relation on a set X . We say that R is transitive

provided that ∀ x, y, z ∈ X , if xRy and yRz, then xRz.

Definition 3.10 Let R be a binary relation on a set X . We say that R is an equiva-

lence relation provided that R is reflexive, symmetric, and transitive.

Definition 3.11 Let ∼ be an equivalence relation on a set X . Given x0 ∈ X , the

equivalence class of x0 is the set

[x0] =
{
y ∈ X

∣∣y ∼ x0
}
. (63)

Definition 3.12 Let ∼ be an equivalence relation on a set X . The quotient set of

X by ∼ is the set
X /∼ =

{
[x0]

∣∣∣x0 ∈ X} . (64)

Definition 3.13 Let X be a set. A partition of X is a set S ⊆ P(X) such that⋃
S = X and ∀ A,B ∈ S, either A = B or A ∩B = ∅.

Definition 3.14 Let n ∈ Z such that n 6= 0. The set of integers modulo n is the

quotient set
Z /n = Z

/
≡ (mod n) . (65)

Definition 3.15 Let X be a nonempty set. A binary operation on X is a function

∗ : X ×X → X .

Notation Given a binary operation ∗, we commonly denote ∗(x, y) by “x ∗ y.”

Definition 3.16 Let n ∈ Z such that n 6= 0. The addition of integers modulo n is

the binary operation + on Z /n defined via [a] + [b] = [a+ b].

Definition 3.17 Let n ∈ Z such that n 6= 0. The multiplication of integers modulo

n is the binary operation · on Z /n defined via [a] · [b] = [ab].
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Definition 3.18 Let ∼ be the equivalence relation on Z × (Z \ {0}) defined via

(a, b) ∼ (c, d) if and only if ad = bc. The set of rational numbers is the quotient set

Q = (Z× (Z \ {0})) /∼ . (66)

Notation We commonly denote an element [(a, b)] ∈ Q by “a
b
.”

Definition 3.19 The addition of rational numbers is the binary operation + on Q
defined such that ∀ a

b
, c
d
∈ Q,

a

b
+
c

d
=
ad+ bc

bd
. (67)

Definition 3.20 The multiplication of rational numbers is the binary operation · on

Q defined such that ∀ a
b
, c
d
∈ Q,

a

b
· c
d
=
ac

bd
. (68)

Definition 3.21 The ordering of rational numbers is the binary relation < on Q
such that ∀ a

b
, c
d
∈ Q, a

b
< c

d
if and only if either bd > 0 and ad < bc or bd < 0 and

ad > bc.

Definition 3.22 Let R be a nonempty set, and let + and · be binary operations on

R. We say that (R,+, ·) is a ring [with unity] provided that the following statements

are true.

(i) + is associative; ∀ a, b, c ∈ R, a+ (b+ c) = (a+ b) + c.

(ii) ∃ 0 ∈ R such that ∀ a ∈ R, a+ 0 = 0 + a = a.

(iii) ∀ a ∈ R, ∃ b ∈ R such that a+ b = b+ a = 0.

(iv) + is commutative; ∀ a, b ∈ R, a+ b = b+ a.

(v) · is associative; ∀ a, b, c ∈ R, a · (b · c) = (a · b) · c.
(vi) · distributes over +; ∀ a, b, c ∈ R,

a · (b+ c) = (a · b) + (a · c)
(a+ b) · c = (a · c) + (b · c) .

(69)

(vii) ∃ 1 ∈ R such that ∀ a ∈ R, 1 · a = a · 1 = a.
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Notation We often write the statement “(R,+, ·) is a ring with unity” as “R is
a ring with unity,” or as “R is a ring with unity under + and ·.”

Definition 3.23 Let R be a ring. Given a ∈ R, we say that a is a zero divisor of R

provided that a 6= 0 and ∃ b ∈ R \ {0} such that ab = 0.

Definition 3.24 Let R be a ring. We say that R is a commutative ring provided that

· is commutative; ∀ a, b ∈ R, a · b = b · a.

Definition 3.25 Let R be a ring with unity. We say that R is a field provided that R

is a commutative ring and ∀ a ∈ R, ∃ b ∈ R such that ab = 1.

Definition 3.26 Let n ∈ Z+. The ring of n× n matrices over R is the ring

Mn (R) =




a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

an1 an2 ... ann


∣∣∣∣∣a11, a12, ..., ann ∈ R

 . (70)

Definition 3.27 Let d ∈ Z. The ring of integers adjoin
√
d is the ring

Z
[√

d
]
=

{
a+ b

√
d

∣∣∣∣a, b ∈ Z
}
. (71)

Definition 3.28 Let d ∈ Z. The ring of rational numbers adjoin
√
d is the ring

Q
[√

d
]
=

{
a+ b

√
d

∣∣∣∣a, b ∈ Q
}
. (72)

Definition 3.29 Let S be a set. A [linear] ordering on S is a transitive binary

relation < on S such that ∀ x, y ∈ S, exactly one of the following conditions is

true: x = y, x < y, or y < x.

Definition 3.30 Let S be a set, and let < be a linear ordering on S. We say that

(S,<) is an ordered set.
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Definition 3.31 Let (X,<X) and (Y,<Y ) be ordered sets. The lexicographic or-

dering on X × Y is the ordering < on X × Y defined such that (x1, y1) < (x2, y2)

if and only if either x1 < x2 or x1 = x2 and y1 < y2.

Definition 3.32 Let (S,<) be an ordered set. Given x ∈ S, we say that x is a

maximal element of S provided that ∀ s ∈ S, s ≤ x.

Definition 3.33 Let (S,<) be an ordered set. Given x ∈ S, we say that x is a

minimal element of S provided that ∀ s ∈ S, x ≤ s.

Definition 3.34 Let (S,<) be an ordered set, and let T ⊆ S. Given s1 ∈ S, we say

that s1 is an upper bound of T provided that ∀ t ∈ T , t ≤ s1.

Definition 3.35 Let (S,<) be an ordered set, and let T ⊆ S. Given s0 ∈ S, we say

that s0 is a lower bound of T provided that ∀ t ∈ T , s0 ≤ t.

Definition 3.36 Let (S,<) be an ordered set, and let T ⊆ S. We say that T is

bounded above in S provided that there exists an upper bound of T in S.

Definition 3.37 Let (S,<) be an ordered set, and let T ⊆ S. We say that T is

bounded below in S provided that there exists a lower bound of T in S.

Definition 3.38 Let (S,<) be an ordered set, and let T ⊆ S. Given s1 ∈ S, we say

that s1 is a least upper bound of T provided that the following statements are true.

(i) s1 is an upper bound of T .

(ii) If s is any upper bound of T , then s1 ≤ s.

Definition 3.39 Let (S,<) be an ordered set, and let T ⊆ S. Given s0 ∈ S, we say

that s0 is a greatest lower bound of T provided that the following statements are

true.

(i) s0 is a lower bound of T .

(ii) If s is any lower bound of T , then s ≤ s0.

Definition 3.40 Let R be a commutative ring, and let < be an ordering on R. We

say that (R,<) is an ordered ring provided that the following statements are true.

(i) ∀ x, y, z ∈ R, if x < y, then x+ z < y + z.

(ii) ∀ x, y, z ∈ R, if x < y and 0 < z, then xz < yz.
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Definition 3.41 Let (S,<) be an ordered set. We say that (S,<) satisfies the least

upper bound property, or that (S,<) is Dedekind complete, provided that ∀ T ⊆ S,

if T 6= ∅ and T is bounded above in S, then ∃ t ∈ S that is a least upper bound of

T .

Definition 3.42 The field of real numbers is the ordered ring (R, <) satisfying the

following conditions.

(i) Q ⊆ R.

(ii) R is a field.

(iii) (R, <) satisfies the least upper bound property.

Definition 3.43 Let (X,<) be an ordered set. Given a nonempty S ⊆ X , we say

that S is dense in X provided that ∀ x1, x2 ∈ X , if x1 < x2, then ∃ s ∈ S such that

x1 < s < x2.

Definition 3.44 Let X and Y be sets. A one-to-one correspondence between X

and Y is a bijection f : X → Y .

Definition 3.45 Let X and Y be sets. We say that X and Y are equivalent or have

the same cardinality provided that there exists a bijection f : X → Y .

Notation We denote the statement “X and Y have the same cardinality” by
“X ∼ Y ” or “|X| = |Y |.”

Definition 3.46 Let X be a set. We say that X has a cardinality of 0 provided that

X = ∅.

Notation We denote the statement “X has a cardinality of zero” by “|X| = 0.”

Definition 3.47 Let X be a set. Given n ∈ N, we say that X has a cardinality of n

provided that X ∼ {1, 2, ..., n}.

Notation We denote the statement “X has a cardinality of n” by “|X| = n.”

Definition 3.48 Let X be a set. We say that X is finite provided that |X| = 0 or

|X| = n for some n ∈ N.
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Definition 3.49 Let X be a set. We say that X is infinite provided that X is not

finite.

Definition 3.50 Let X be a set. We say that X is countable provided that either X

is finite or |X| = |N|.

Definition 3.51 Let X be a set. We say that X is countably infinite provided that

|X| = |N|.

Definition 3.52 Let X be a set. We say that X is uncountable provided that X is

not countable.

Definition 3.53 Aleph naught is the cardinality ℵ0 = |N|.

Definition 3.54 LetX and Y be sets. We say that |X| ≤ |Y | provided that ∃ S ⊆ Y

such that |X| = |S|.
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3.2 Things you should know for the test

1. ALL OF THE DEFINITIONS.
2. You should know how to convert a given number from decimal notation to a

different base notation.
3. You should know Bézout’s lemma, and how to use it.
4. You should know how to determine the number of k-element subsets of a set

of n elements.
5. You should know the binomial theorem and how to use it.
6. You should know how to calculate the values of the Euler totient function.
7. You should know Euler’s generalization of Fermat’s Little Theorem and how

to use it.
8. You should know the statements of Goldbach’s Conjecture and the Twin

Primes Conjecture, and that at present, no one can either prove or disprove them.
9. You should be able to recognize whether a given binary relation is reflexive,

symmetric, and/or transitive.
10. You should be able to produce binary relations that have a given property.
11. Given an equivalence relation on a set and an element of the set, you should

be able to describe the equivalence class of the element.
12. You should be able to define and describe a given integer modulo n, based

on the definition of the set of integers modulo n.
13. You should be able to define and describe a given rational number, based on

the definition of the set of rational numbers.
14. You should be able to prove that a set with a given addition and multiplica-

tion is not a ring.
15. You should be able to identify zero divisors of a ring that possesses zero

divisors.
16. You should be able to determine whether a given ring is a field.
17. You should understand the notion of lexicographic orderings, and you

should be able to describe the lexicographic ordering on a given set.
18. You should be able to determine whether a maximal or minimal element

of a given ordered set exists, and you should be able to identify the maximal or
minimal element of an ordered set that has a maximal or minimal element.
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19. You should know the difference between a minimal element and a lower
bound, and the difference between a maximal element and an upper bound.

20. You should be able to determine the least upper bound of a given set of real
numbers that is bounded above, and you should be able to determine the greatest
lower bound of a given set of real numbers that is bounded below.

21. You should be able to prove or disprove that two given sets have the same
cardinality, and to prove or disprove that a set is countable.

22. You should know the statement of the continuum hypothesis, and that it can
be neither proven nor disproven.
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3.3 Theorems of importance

The following is known as Bézout’s lemma.

Theorem 3.55 Given m,n ∈ Z, ∃ x, y ∈ Z such that mx+ ny = gcd (m,n).

The following is known as Euclid’s lemma.

Theorem 3.56 Let a, b, p ∈ Z. If p is prime and p|ab, then p|a or p|b.

The following is known as the binomial theorem.

Theorem 3.57 Let x, y ∈ R. Given n ∈ N,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk. (73)

The following is known as Fermat’s little theorem.

Theorem 3.58 Let p ∈ Z be a prime number. Given n ∈ Z, np ≡ n (mod p).

The following is known as Euler’s generalization of Fermat’s little theorem.

Theorem 3.59 Given a, n ∈ Z, if a and n are coprime, then aϕ(n) ≡ 1 (mod n).

The following is known as Fermat’s last theorem.

Theorem 3.60 Let x, y, z, n ∈ Z. If n > 2, then xn + yn 6= zn.

Theorem 3.61 Let X and Y be sets. If X and Y are countable, then X ∪ Y is

countable.

Theorem 3.62 Let X ⊆ Y . If Y is countable, then X is countable.

Theorem 3.63 Let X and Y be sets. If X and Y are countable, then X × Y is

countable.

The following is known as the Gödel incompleteness theorem.

Theorem 3.64 No finite systems of axioms can imply all of the facts about the nat-

ural numbers.
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3.4 Sample problems

In order to be sure that you possess the requisite skills, you should be able to
prove all of the following theorems.

Theorem 3.65 (Euclid’s Lemma) Let a, b, p ∈ Z. If p is prime and p|ab, then p|a
or p|b.

Theorem 3.66 Let a1, a2, ..., an, p ∈ Z. If p is prime and p|a1a2...an, then there

exists i ∈ {1, 2, ..., n} such that p|ai.

Theorem 3.67 Let a, b, n ∈ Z. If gcd (a, n) = 1 and n|ab, then n|b.

Theorem 3.68 Let p ∈ Z+ be a prime number. If k ∈ {1, 2, ..., p− 1}, then
(
p
k

)
is

divisible by p.

Theorem 3.69 Let a, b, p ∈ Z. If p is prime, then

(a+ b)p ≡ ap + bp (mod p) . (74)

Theorem 3.70 Let n ∈ Z. The relation on Z defined via a ≡ b (mod n) is an

equivalence relation.

Theorem 3.71 Let ∼ be an equivalence relation on a set X . The set X /∼ is a

partition of X .

Theorem 3.72 Let ∼ be the binary relation on Z × (Z \ {0}) defined such that

∀ (a, b), (c, d) ∈ Z × (Z \ {0}), (a, b) ∼ (c, d) if and only if ad = bc. The binary

relation ∼ is an equivalence relation.

Theorem 3.73 Let n ∈ Z such that n 6= 0. The ring Z /n has zero divisors if and

only if n is not prime.

Theorem 3.74 Let R be a commutative ring with unity. If R has zero divisors, then

R is not a field.
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Theorem 3.75 Let (S,<) be an ordered set, and let T ⊆ S. If s1, s2 ∈ S are least

upper bounds of T , then s1 = s2.

Theorem 3.76 Let n ∈ Z such that n 6= 0 and n 6= ±1. There exists no ordering

< on Z /n such that
(Z /n,<

)
is an ordered ring.

Theorem 3.77 There exists no x ∈ Q such that x2 = 2.

Theorem 3.78 Let (R,<) be an ordered ring. If (R,<) satisfies the least upper

bound property, then ∀ T ⊆ R, if T 6= ∅ and T is bounded below in R, then

∃ t ∈ R that is a greatest lower bound of T .

Theorem 3.79 The set Z is countable.

Theorem 3.80 The set Q is countable.

Theorem 3.81 The interval (0, 1) is uncountable.

Theorem 3.82 Let a, b, c, d ∈ R such that a < b and c < d. The interval (a, b) has

the same cardinality as the interval (c, d).

Theorem 3.83 There exists a bijection f : (−1, 1)→ R.

Theorem 3.84 The set R \Q is uncountable.

Theorem 3.85 Let X and Y be sets. The following statements are equivalent.

(i) |X| ≤ |Y |.
(ii) There exists an injective function f : X → Y .

(iii) There exists a surjective function g : Y → X .

Theorem 3.86 Given a set X , |X| < |P(X)|.
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3.5 Solutions to sample problems

Proof of Theorem 3.65 Assume that p ∈ Z is prime and that p|ab. Suppose
that ab = qp for some q ∈ Z. We consider two cases: either p|a or p - a. If p|a,
then the proof is complete. Consider the case that p - a. In that case, since p is a
prime number, gcd (p, a) = 1. Therefore, Bézout’s lemma (Theorem 3.55) implies
that ∃ x, y ∈ Z such that

px+ ay = 1. (75)

Therefore,
bpx+ aby = b. (76)

As ab = qp, this implies that

p (bx+ qy) = bpx+ qpy = b. (77)

We deduce that p|b. �

Proof of Theorem 3.66 We proceed by mathematical induction on n. First, if
p|a1, then p|a1. This establishes a basis for induction.

Assume, as the induction hypothesis, that if p|a1a2...ak, then p|ai for some
i ∈ {1, 2, ..., k}. Suppose that p|a1a2...akak+1. By Euclid’s Lemma (Theorem
3.65), we know that p|a1a2...ak or p|ak+1. If p|a1a2...ak, then the induction hy-
pothesis implies that p|ai for some i ∈ {1, 2, ..., k}. Either way, p|ai for some
i ∈ {1, 2, ..., k, k + 1}, which completes the induction. �

Proof of Theorem 3.67 Assume that gcd (a, n) = 1 and n|ab. In that case,
ab = qn for some q ∈ Z. By Bézout’s Lemma (Theorem 3.55), we know that
∃ x, y ∈ Z such that ax+ ny = 1. Therefore,

n (qx+ by) = nqx+ nby = abx+ nby = b. (78)

This shows that n|b. �
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Proof of Theorem 3.68 Define N =
(
p
k

)
. Assume, with the expectation of a

contradiction, that p - N . By definition, N = p!
k!(p−k)! . Since p|p!, we know that

p|N (k!) ((p− k)!). By Euclid’s Lemma (Theorem 3.65), this implies that p|N or
p|k! (p− k)!. Since p - N , we must have that p|k!(p− k)!. Using Euclid’s Lemma
again, we see that p|k! or p|(p − k)!. If p|k!, then p|(k)(k − 1)(k − 2)...(3)(2)(1).
By Theorem 3.66, this means that p|k, p|k − 1, ..., p|3 or p|2, despite that k < p. If
p|(p− k)!, then similar arguments show that p|(p− k), p|(p− k− 1), ..., p|3 or p|2,
despite that p− k < p. This contradiction leads us to conclude that our assumption
that p - N is false; p|N . �

Proof of Theorem 3.69 By the binomial theorem (Theorem 3.57), we know
that

(a+ b)p =

p∑
k=0

(
p

k

)
ap−kbk = ap +

(
p

1

)
ap−1b+ ...+

(
p

p− 1

)
abp−1 + bp. (79)

However, Theorem 3.68 indicates that
(
p
k

)
≡ 0 (mod p) when 0 < k < p. There-

fore,

ap +

(
p

1

)
ap−1b+ ...+

(
p

p− 1

)
abp−1 + bp ≡ ap + bp (mod p) . (80)

�

Proof of Theorem 3.70 We note that ∀ a ∈ Z, n|a − a. Thus, a ≡ a (mod n),
and so ≡ (mod n) is reflexive. We note that ∀ a, b ∈ Z, if a ≡ b (mod n), then
n|a− b. This means that a− b = qn for some q ∈ Z. In that case, b− a = (−q)n,
and so b ≡ a (mod n). This shows that ≡ (mod n) is symmetric. Finally, given
a, b, c ∈ Z, assume that a ≡ b (mod n) and b ≡ c (mod n). This means that n|a− b
and n|b − c. In other words, ∃ q1, q2 ∈ Z such that a − b = q1n and b − c = q2n.
By adding these, we deduce that a − c = (q1 + q2)n. Therefore, n|a − c, and so
a ≡ c (mod n). This shows that ≡ (mod n) is transitive. �
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Proof of Theorem 3.71 First, we claim that
⋃
X /∼ = X . Given x ∈ X ,

we know that [x] ∈ X /∼ . Since x ∈ [x], we deduce that x ∈
⋃
X /∼ . This

shows that X ⊆
⋃
X /∼ . Now, given x ∈

⋃
X /∼ , we know that x ∈ [y] for

some y ∈ X . This means (by definition) that x ∼ y, and so x ∈ X . Therefore,⋃
X /∼ ⊆ X .
Next we claim that ∀ [x], [y] ∈ X /∼ , either [x] = [y] or [x]∩ [y] = ∅. Assume

that [x]∩ [y] 6= ∅. We will show that [x] ⊆ [y]. Let z ∈ [x]. This means that z ∼ x.
Since [x] ∩ [y] 6= ∅, we know that ∃ w ∈ [x] ∩ [y]. We deduce that w ∈ [x] and
w ∈ [y], hence w ∼ x and w ∼ y. Ergo, since ∼ is symmetric, x ∼ w and w ∼ y.
As ∼ is transitive, this implies that x ∼ y. Thus, since z ∼ x, z ∼ y. This implies
that z ∈ [y]. This shows that [x] ⊆ [y]. Similar arguments can show that [y] ⊆ [x].
We deduce that [x] = [y]. �

Proof of Theorem 3.72 Given an element (a, b) ∈ Z × (Z \ {0}), we know
that ab = ba. Therefore, (a, b) ∼ (a, b). This shows that ∼ is reflexive. Given
elements (a, b), (c, d) ∈ Z × (Z \ {0}), suppose that (a, b) ∼ (c, d). This means
that ad = bc. Therefore, cb = da, and so (c, d) ∼ (a, b). This shows that ∼
is symmetric. Finally, given (a, b), (c, d), (e, f) ∈ Z × (Z \ {0}), suppose that
(a, b) ∼ (c, d) and (c, d) ∼ (e, f). This means that ad = bc and cf = de. We
deduce that adf = bcf = bde, hence afd = bed. Since (c, d) ∈ Z× (Z \ {0}), we
know that d 6= 0, thus af = be. This means that (a, b) ∼ (e, f). This shows that ∼
is transitive. �

Proof of Theorem 3.73 (⇒) Assume that Z /n has zero divisors. Assume,
with the expectation of a contradiction, that n is prime. Let [a], [b] ∈ Z /n such that
[a] 6= [0], [b] 6= [0], and [a][b] = [0]. This means that [ab] = [0], and so n|ab. By
Euclid’s Lemma (Theorem 3.65), this means that n|a or n|b. However, this implies
that [a] = [0] or [b] = [0], despite that [a] 6= [0] and [b] 6= [0]. This contradiction
leads us to conclude that our assumption that n is prime is false; n is not prime.

(⇐) Assume that n is not prime. In that case, ∃ a, b ∈ Z such that n = ab,
0 < a < n and 0 < b < n. We deduce that [0] = [n] = [ab] = [a][b]. However,
0 < a < n and 0 < b < n, so [a] 6= [0] and [b] 6= [0]. Thus, [a] and [b] are zero
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divisors of Z /n . �

Proof of Theorem 3.74 Assume that R has zero divisors. Assume, with the
expectation of a contradiction, that R is a field. Let x, y ∈ R \ {0} such that
xy = 0. Since x 6= 0 and R is a field, ∃ z ∈ R such that zx = 1. Therefore,

y = 1y = zxy = z0 = 0, (81)

despite that y 6= 0. This contradiction leads us to conclude that our assumption that
R is a field is false; R is not a field. �

Proof of Theorem 3.75 Let s1 and s2 be least upper bounds of T . In that case,
s1 is a least upper bound of T and s2 is an upper bound of T . This implies that
s1 ≤ s2. By similar arguments, one can show that s2 ≤ s1. Thus, s1 = s2. �

Proof of Theorem 3.76 Assume, with the expectation of a contradiction, that
Z /n is an ordered ring. Since Z /n is finite, we know that there exists a maximal
element of Z /n . Call this element [t]. Take [m] ∈ Z /n such that [m] 6= [t]. We
note that [m] < [t]. Since Z /n is an ordered ring, this means that

[t] = [m] + [t−m] < [t] + [t−m] = [2t−m], (82)

despite that [t] is the maximal element. This contradiction leads us to conclude that
our assumption that Z /n is an ordered ring is false; Z /n is not an ordered ring. �

Proof of Theorem 3.77 Assume, with the expectation of a contradiction, that
x ∈ Q and x2 = 2. We know that x = m

n
for some m,n ∈ Z such that n 6= 0.

Assume that gcd (m,n) = 1. We have that 2 = m2

n2 . Therefore, m2 = 2n2, and so
m2 is an even number.

We claim that m is an even number. Assume, with the expectation of a contra-
diction, that m is not an even number. In that case, m = 2k + 1 for some k ∈ Z.
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We deduce that

m2 = (2k + 1)2 = 4k2 + 4k + 1 = 2
(
2k2 + 2k

)
+ 1. (83)

This is an odd number, despite that m2 is an even number. This contradiction leads
us to conclude that our assumption that m is odd is false; m is an even number.

Since m is even, we know that ∃ r ∈ Z such that m = 2r. Therefore, m2 = 4r.
We deduce that 2n2 = m2 = 4r, and so n2 = 2r. This implies that n2 is an even
number. By the claim, we deduce that n is also an even number. Ergo, 2|m and
2|n, despite that gcd(m,n) = 1. This contradiction leads us to conclude that our
assumption that x2 = 2 is false; x2 6= 2 for any x ∈ Q. �

Proof of Theorem 3.78 Assume that (R,<) satisfies the least upper bound
property. Let T ⊆ R be nonempty and bounded below in R. This means that
∃ α ∈ R such that ∀ t ∈ T , α ≤ t. We define the set −T =

{
−t ∈ R

∣∣t ∈ T}.
Since R is an ordered ring, we know that ∀ t ∈ T , −t ≤ −α. Therefore, −T is
bounded above. By the least upper bound property, −T has a least upper bound,
call it µ ∈ R. We have that ∀ t ∈ T , −t ≤ µ, and so −µ ≤ t. This shows that −µ
is a lower bound for T .

Suppose that β ∈ R is a lower bound for T . In that case, ∀ t ∈ T , β ≤ t. As R
is an ordered ring, we deduce that −t ≤ −β, ∀ t ∈ T . However, this implies that
−β is an upper bound for −T , so since µ is the least upper bound of −T , we must
have that µ ≤ −β. Therefore, β ≤ −µ. This shows that −µ is the greatest lower
bound of T . �

Proof of Theorem 3.79 We produce f : N→ Z via

f(n) =

n
2

if n is even

−n−1
2

if n is odd
. (84)

Since f is a bijection, |N| = |Z|. �
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Proof of Theorem 3.80 We define f : Q → Z × N via the following relation-
ship. For each x ∈ Q, we can write x = m

n
for some m ∈ Z and n ∈ N such that

gcd(m,n) = 1. We define f(x) = (m,n).
We claim that f is injective. Let x1, x2 ∈ Q such that f (x1) = f (x2). In

that case, (m1, n1) = (m2, n2) for some m1,m2 ∈ Z and n1, n2 ∈ N such that
gcd (m1, n1) = 1 and gcd (m2, n2) = 1. We deduce that m1 = m2 and n1 = n2.
Ergo, x1 = m1

n1
= m2

n2
= x2.

By the claim, |Q| ≤ |Z×N|. We know that |Z| = |N| by Theorem 3.79. There-
fore, |Z× N| = |N× N|, and so |Q| ≤ |N× N| = |N|. �

Proof of Theorem 3.81 (This is called the Cantor diagonalization argument)
Assume, with the expectation of a contradiction, that (0, 1) is countable. In that
case, there exists a bijection f : N → (0, 1). For each n ∈ N, we write f(n) in a
binary expansion as

f(n) = 0.xn1xn2xn3..., (85)

where for each i ∈ N, xni ∈ {0, 1}. For each n ∈ N and i ∈ N, if we define yni = 0

if xni = 1 and yni = 1 if xni = 0. We define y ∈ (0, 1) via the binary expansion

y = 0.y11y22y33.... (86)

We notice that for each y 6= f(1), since y11 6= x11. At the same time, y 6= f(2),
since y22 6= x22. Moreover, for each n ∈ N, y 6= f(n), since ynn 6= xnn. Therefore,
f is not surjective, despite that f is a bijection. This contradiction leads us to con-
clude that our assumption that (0, 1) is countable is false; (0, 1) is not countable. �

Proof of Theorem 3.82 Define f : (0, 1) → (a, b) via f(x) = (b− a)x + a.
One can show that f is a bijection. Similarly, define g : (0, 1) → (c, d). One can
show that g is a bijection. Thus, | (a, b) | = | (0, 1) | = | (c, d) |. �

Proof of Theorem 3.83 One can show that f : (−1, 1) → R via f(x) = x
1−x2

is a bijection. �
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Proof of Theorem 3.84 Assume, with the expectation of a contradiction, that
R \ Q is countable. In that case, we can say that R = (R \Q) ∪ Q is countable,
contradicting Theorem 3.83. This contradiction leads us to conclude that our as-
sumption that R \Q is countable is false; R \Q is uncountable. �

Proof of Theorem 3.85 (i⇒ ii) Assume that |X| ≤ |Y |. In that case, ∃ S ⊆ Y

such that X ∼ S. We deduce that there exists a bijection f0 : X → S. Now, we
define the function ι : S → Y via ι(x) = x. Since ι is injective, the composition
ι ◦ f0 is also injective.

(ii⇒ iii) Assume that there exists an injective function f : X → Y . Let
x0 ∈ X be arbitrary. Define g : Y → X via the following relationship. Given
y ∈ Y , either y ∈ f(X) or y /∈ f(X). If y ∈ f(X), then there exists a unique
x ∈ X such that f(x) = y. In that case, define g(y) = x. If y /∈ f(X), then define
g(y) = x0. Now g is a surjective function.

(iii⇒ i) Assume that there exists a surjective function g : Y → X . For
each x ∈ X , define a particular yx ∈ Y such that g (yx) = x. Consider the set
S =

{
yx ∈ Y

∣∣x ∈ X}. Now the function h1 : X → S via h1(x) = yx and the
function h2 : S → X via h2 (yx) = x are inverse functions. We deduce that
X ∼ S, and so |X| ≤ |Y |. �

Proof of Theorem 3.86 Assume, with the expectation of a contradiction, that
the cardinality |P(X)| ≤ |X|. In that case, by Theorem 3.85, there exists a surjec-
tive function g : X → P(X). Define the set

S =
{
x ∈ X

∣∣x /∈ g(x)} . (87)

Since S ⊆ X , we know that S ∈ P(X). As g is surjective, we can find some
x0 ∈ X such that g (x0) = S. We consider two cases: either x0 ∈ S or x0 /∈ S. In
the case that x0 ∈ S, this means that x0 /∈ g (x0) = S. In the case that x0 /∈ S, this
means that x0 ∈ g (x0) = S. Either way, x0 ∈ S and x0 /∈ S. This contradiction
leads us to conclude that our assumption that |P(X)| ≤ |X| is false; |P(X)| > |X|.
�
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