Ordered pairs

Given two mathematical objects a and b, we want to define an "ordered pair," (a, b), so that $(a, b)=(x, y)$ if and only if $a=x$ and $b=y$. We need to do this in terms of sets. During class today, Professor Sikora asked for a possible definition of the object (a, b). There was one response to this question that was a rather good idea. At the time, neither Professor Sikora nor myself could see a problem with it. However, in this document, we will show that the proposed definition is not sufficient.

For clarity's sake, we will first make a distinction between the proposal and the actual definition.

Definition 0.1 Let a and b be mathematical objects. The Sikora bracket of a and b is the set $[a, b]=\{a,\{b\}\}$.

This is the proposed definition of ordered pair. Now, consider the situation that $a=\{5\}$ and $b=1$. We notice that

$$
\begin{equation*}
[\{5\}, 1]=\{\{5\},\{1\}\}=\{\{1\},\{5\}\}=[\{1\}, 5] . \tag{1}
\end{equation*}
$$

This shows that the Sikora bracket is not an adequate definition of ordered pair, since this would mean that $\{5\}=\{1\}$ and $1=5$, which is absurd.

The moral of the story: mathematical concepts (such as definitions) are phenomenally delicate, and require great carefulness to construct. (And, sometimes some jerk will come along and tell you that your idea doesn't work.)

