Mathematical induction

Mathematical induction is a technique of proving that a statement is true for all natural numbers. Here are some examples of such statements:
$" \forall n \in \mathbb{N}, 1+2+\ldots+n=\frac{n(n+1)}{2}$."
$" \forall n \in \mathbb{N}, 1+3+\ldots+(2 n-1)=n^{2}$."
$" \forall n \in \mathbb{N}, 9^{n}-5^{n}$ is divisible by 4 ."
$" \forall n \in \mathbb{N}$, if X is a set and $|X|=n$, then $|P(X)|=2^{n}$."

The principal of mathematical induction is as follows:

Axiom 5 For each $n \in \mathbb{N}$, let $P(n)$ be a statement. If both of the following conditions are true:
(1) $P(1)$ is true
(2) $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$, then $\forall n \in \mathbb{N}, P(n)$ is true.

From this, one can prove the principal of strong (or "complete") mathematical induction:

Theorem 9.5 For each $n \in \mathbb{N}$, let $P(n)$ be a statement. If both of the following conditions are true:
(1) $P(1)$ is true
(2) $\forall k \in \mathbb{N},(P(1), P(2), \ldots, P(k-1)$, and $P(k)) \Rightarrow P(k+1)$, then $\forall n \in \mathbb{N}, P(n)$ is true.

In order to use this fact to prove statements, we need to follow three steps:

1. Prove that $P(1)$ is true. This is called the basis for induction.
2. For weak induction, assume that for some $k \in \mathbb{N}, P(k)$ is true. For strong induction, assume that for some $k \in \mathbb{N}, P(1), P(2), \ldots, P(k-1)$ and $P(k)$ are all true. This is called the induction hypothesis.
3. Prove that $P(k+1)$ is true. This proof is called the induction step.

Therefore, proofs by induction will always take one of these two forms:

Weak mathematical induction: "We proceed by mathematical induction on n. We notice that [...proving $P(1) \ldots$...]. This establishes a basis for induction. As the induction hypothesis, assume that for some $k \in \mathbb{N},[\ldots P(k) \ldots]$. Now, [...proving $P(k+1) \ldots .$. ."

Strong mathematical induction: "We proceed by strong mathematical induction on n. We notice that [...proving $P(1) \ldots]$. This establishes a basis for induction. As the induction hypothesis, assume that for some $k \in \mathbb{N}, \forall n \in\{1,2, \ldots, k\}$, $[\ldots P(n) \ldots]$. Now, [...proving $P(k+1) \ldots]$."

Following are two examples of proofs by induction: one by weak induction and one by strong induction.

Theorem Given $n \in \mathbb{N}, \frac{\mathrm{~d}}{\mathrm{~d} x} x^{n}=n x^{n-1}$.
Proof We proceed by mathematical induction on n. We notice that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{1}=\lim _{h \rightarrow 0} \frac{(x+h)^{1}-x^{1}}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1 . \tag{1}
\end{equation*}
$$

This establishes a basis for induction. As the induction hypothesis, assume that for some $k \in \mathbb{N}$, $\frac{\mathrm{d}}{\mathrm{d} x} x^{k}=k x^{k-1}$. Now,

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} x} x^{k+1}=\lim _{h \rightarrow 0} \frac{(x+h)^{k+1}-x^{k+1}}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{k}(x+h)-x^{k+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{k} x+(x+h)^{k} h-x^{k+1}}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{k} x-x^{k} x+(x+h)^{k} h}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{k} x-x^{k} x}{h}+\lim _{h \rightarrow 0} \frac{(x+h)^{k} h}{h} \\
& =x\left(\lim _{h \rightarrow 0} \frac{(x+h)^{k}-x^{k}}{h}\right)+\lim _{h \rightarrow 0}(x+h)^{k} . \tag{2}
\end{align*}
$$

However, by our induction hypothesis, we know that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{(x+h)^{k}-x^{k}}{h}=\frac{\mathrm{d}}{\mathrm{~d} x} x^{k}=k x^{k-1} \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{k+1}=x\left(k x^{k-1}\right)+\lim _{h \rightarrow 0}(x+h)^{k}=k x^{k}+x^{k}=(k+1) x^{k} . \tag{4}
\end{equation*}
$$

This completes the induction.

Theorem Define a sequence $\left(s_{n}\right)$ such that $s_{1}=1, s_{2}=5$ and $s_{n+1}=s_{n}+2 s_{n-1}$. For each $n \in \mathbb{N}, s_{n}=(-1)^{n}+2^{n}$.
Proof We proceed by strong mathematical induction on n. We notice that

$$
\begin{align*}
& (-1)^{1}+2^{1}=1=s_{1} \\
& (-1)^{2}+2^{2}=5=s_{2} \tag{5}
\end{align*}
$$

This establishes a basis for induction. As the induction hypothesis, assume that for some $k \in \mathbb{N}, \forall n \in\{1,2, \ldots, k\}, s_{n}=(-1)^{n}+2^{n}$. Now, if $k=1$, then $s_{k+1}=s_{2}$, and we have already shown that that $s_{2}=(-1)^{2}+2^{2}$. Suppose, then, that $k>1$. By definition, $s_{k+1}=s_{k}+2 s_{k-1}$. By the induction hypothesis, $s_{k}=(-1)^{k}+2^{k}$ and $s_{k-1}=(-1)^{k-1}+2^{k-1}$. Therefore,

$$
\begin{gathered}
s_{k+1}=s_{k}+2 s_{k-1} \\
=\left((-1)^{k}+2^{k}\right)+2\left((-1)^{k-1}+2^{k-1}\right) \\
=(-1)^{k}+2(-1)^{k-1}+2^{k}+2\left(2^{k-1}\right) \\
=(-1)(-1)^{k-1}+2(-1)^{k-1}+2^{k}+2^{k} \\
=(-1+2)(-1)^{k-1}+2\left(2^{k}\right) \\
=(-1)^{k-1}+2^{k+1}
\end{gathered}
$$

$$
\begin{equation*}
=(-1)^{k+1}+2^{k+1} \tag{6}
\end{equation*}
$$

This completes the induction.

