
Math 309: Introduction to Linear Algebra

Mark Sullivan

August 10, 2022

1



Contents
1 Systems of linear equations 4

1.1 Geometric view of systems of equations . . . . . . . . . . . . . . . 4
1.2 Algebraic view of systems of equations . . . . . . . . . . . . . . . 6
1.3 Elementary operations . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Gauss-Jordan elimination . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Uniqueness of the reduced echelon form . . . . . . . . . . . . . . . 13

2 Vectors in Rn 17
2.1 Points and vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Scalar multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Length of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 The dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Matrices 30
4.1 Definition and equality . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Scalar multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Matrix inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 The transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Spans, linear independence and bases in Rn 36
5.1 Spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Linear independence . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Subspaces of Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Basis and dimension . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Column space, row space and null space of a matrix . . . . . . . . . 47

6 Linear transformations in Rn 51
6.1 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 The matrix of a linear transformation . . . . . . . . . . . . . . . . . 52
6.4 Properties of linear transformations . . . . . . . . . . . . . . . . . . 55

2



9 Vector spaces 57
9.1 Definition of vector spaces . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Linear combinations, span, and linear independence . . . . . . . . . 59
9.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.4 Basis and dimension . . . . . . . . . . . . . . . . . . . . . . . . . 67

10 Linear transformations of vector spaces 68
10.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . 68
10.3 Linear transformations defined on a basis . . . . . . . . . . . . . . 68
10.4 The matrix of a linear transformation . . . . . . . . . . . . . . . . . 68

7 Determinants 75
7.1 Determinants of 2× 2- and 3× 3-matrices . . . . . . . . . . . . . . 75
7.2 Minors and cofactors . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 The determinant of a triangular matrix . . . . . . . . . . . . . . . . 79
7.4 Determinants and row operations . . . . . . . . . . . . . . . . . . . 80
7.5 Properties of determinants . . . . . . . . . . . . . . . . . . . . . . 83

8 Eigenvalues, eigenvectors and diagonalization 85
8.1 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . 85
8.2 Finding eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.9 Properties of eigenvectors and eigenvalues . . . . . . . . . . . . . . 96

11 Inner product spaces 98
11.1 Real inner product spaces . . . . . . . . . . . . . . . . . . . . . . . 98
11.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.3 The Gram-Schmidt orthogonalization procedure . . . . . . . . . . . 101
11.7 Diagonalization of symmetric matrices . . . . . . . . . . . . . . . . 103

3



1 Systems of linear equations

1.1 Geometric view of systems of equations

First, let’s introduce some notation. The set of real numbers is denoted by R:

R =
{
x
∣∣x is a real number

}
. (1)

You have dealt with this set before; you probably referred to it by the name “the
real line.”

Definition 1.1 A linear equation (over R) is any equation of the form

a1x1 + a2x2 + ...+ anxn = b, (2)

where x1, x2, ..., xn are real-valued variables, and a1, a2, ..., an, b ∈ R are con-

stants. (Here the symbol “∈” means “is an element of.”) The constants a1, a2, ..., an
are called the coefficients of the equation, while the constant b is called the constant

term of the equation.

We can understand a linear equation as corresponding to a set of points (known
as the “graph” of the equation) whose coordinates satisfy that equation. For exam-
ple, given the line L described by an equation y = 1

2
x− 2, we can understand L as

the set of points whose coordinates are real values and obey the equation:

L =

{
(x, y)

∣∣∣∣y =
1

2
x− 2

}
. (3)

This set can be drawn in the xy-plane as
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In general, linear equations represent certain shapes living in space:

a1x1 + a2x2 = b represents a line living in the x1x2-plane
a1x1 + a2x2 + a3x3 = b represents a plane living in 3-space

a1x1 + a2x2 + a3x3 + a4x4 = b represents a hyperplane (?) living in 4-space
(4)

As you can see, once the number of variables involved in the equation exceeds 3,
the equation becomes much harder to visualize as a shape in space. This is simply
a limitation of the human intellect.

The problem becomes even more pronounced when we consider systems of lin-
ear equations. The general setup of a system of linear equations is

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2
...

am1x1 + am2x2 + ...+ amnxn = bm

. (5)
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In these situations, we want to describe the set of points (x1, x2, ..., xn) that satisfy
all of these equations at the same time. Given a system of two lines, we want to
find the point of intersection, if any. Given a system of two planes, we can to find
the line of intersection, if any. But when given a system of two hyperplanes, the
problem of finding their plane of intersection becomes unreasonable from a purely
geometric point of view.

Linear algebra is a set of tools that allows us to study linear equations and their
systems without necessarily having a visual representation of the geometric objects
that they represent.

1.2 Algebraic view of systems of equations

Question: how many solutions does a system of linear equations have?
Answer: It depends on the system.

Example 1.2 Solve the system of linear equations

x1 + x2 = 1

x1 − x2 = 1
. (6)

There are many different ways of handling this; most of them you probably

learned in high school. Here’s just one: add the two equations together to get

2x1 = 2. (7)

This makes it clear that x1 = 1. Therefore, either equation can allow us to deduce

that x2 = 0. Therefore, there exists exactly one solution: (1, 0) . Geometrically,

we can graph the two equations as lines in 2-dimensional space. The solution is the

point of intersection of the lines. �

Example 1.3 Solve the system of linear equations

3x1 + 2x2 = 1

3x1 + 2x2 = 2
. (8)
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Any solution of this system would be a point (x1, x2) that satisfies both equa-

tions. This would lead to a contradiction, since then 3x1 + 2x2 would be both 1

and 2, leading us to conclude that 1 = 2. As this is an unacceptable conclusion, we

must admit that there exists no solution of this system. If we were to graph these

equations, we would find two lines that have no intersection point. �

Definition 1.4 We say that a system of linear equations is inconsistent provided

that it has no solution.

Example 1.5 Solve the system of linear equations

x1 + x2 = 1

2x1 + 2x2 = 2
. (9)

The fact of the matter is that the two equations are describing the same set of

points: points (x1, x2) in 2-dimensional space whose coordinates sum to 1. There

are infinitely many such points, so there are infinitely many solutions. Specifically,

for any value of x1, we can write (x1, 1− x1) as a solution. To describe the “solu-

tion set,” we write {
(t, 1− t)

∣∣t ∈ R
}
. (10)

�

As these examples illustrate, a system of linear equations could have one solu-
tion, no solution, or an infinite set of solutions. In fact, these are the only possibili-
ties, in any number of variables.

1.3 Elementary operations

Definition 1.6 Two systems of linear equations are called equivalent provided that

they have the same set of solutions.

Our main task for right now is as follows. Given a system of linear equations, we
would like to find an equivalent system whose solutions are more readily obvious.
It is most convenient to do this by performing “elementary row operations” on an
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augmented matrix.
Every system of linear equations can be re-written as an “augmented matrix.”

For example, the linear system

x1 + 2x2 − x3 = 1

5x1 + 2x2 + x3 = 2

x2 + 3x3 = 9

(11)

can be re-written as 1 2 −1
∣∣ 1

5 2 1
∣∣ 2

0 1 3
∣∣ 9

 (12)

Definition 1.7 Let A be a matrix. The elementary row operations on A are as

follows.

(i) Exchanging rows of A.

(ii) Multiplying a row of A by a nonzero number.

(iii) Adding a multiple of one row of A to another row of A.

Definition 1.8 Let A and B be matrices. We say that A and B are row-equivalent

provided that B can be obtained from A by a finite sequence of elementary row

operations.

Theorem 1.9 Let S1 and S2 be two systems of linear equations, and let A1 and A2

be their augmented matrices, respectively. If A2 is row-equivalent to A1, then S1

and S2 are equivalent systems.

Example 1.10 Find all points of intersection of the following planes in 3-space:

P1 =
{
(x, y, z)

∣∣x+ y + z = 6
}

P2 =
{
(x, y, z)

∣∣3x− 2y + 3z = 3
}

P3 =
{
(x, y, z)

∣∣2x− y + z = 4
} . (13)

This geometric question can be solved algebraically. Specifically, we need only find

those points (x, y, z) with real-valued coordinates which satisfy all three equations
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simultaneously. In other words, we seek to solve the following system of linear

equations:
x+ y + z = 6

3x− 2y + 3z = 3

2x− y + z = 4

. (14)

To this end, we set up an augmented matrix:1 1 1 | 6

3 −2 3 | 3

2 −1 1 | 4

 . (15)

We can do some elementary row operations to the augmented matrix without chang-

ing the solution set:

 1 1 1 | 6

3 −2 3 | 3

2 −1 1 | 4

 R2−3R1→R2−−−−−−−→

 1 1 1 | 6

0 −5 0 | −15
2 −1 1 | 4


R3−2R1→R3−−−−−−−→

 1 1 1 | 6

0 −5 0 | −15
0 −3 −1 | −8

 1
5
R2→R2−−−−−→

 1 1 1 | 6

0 −1 0 | −3
0 −3 −1 | −8


R3−3R2→R2−−−−−−−→

 1 1 1 | 6

0 −1 0 | −3
0 0 −1 | 1

 −1R2→R2−−−−−−→

 1 1 1 | 6

0 1 0 | 3

0 0 −1 | 1


−1R3→R3−−−−−−→

 1 1 1 | 6

0 1 0 | 3

0 0 1 | −1

 R1−R2→R1−−−−−−−→

 1 0 1 | 3

0 1 0 | 3

0 0 1 | −1


R1−R3→R1−−−−−−−→

 1 0 1 | 4

0 1 0 | 3

0 0 1 | −1

 (16)
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This final augmented matrix corresponds to the following system:

1x+ 0y + 0z = 4

0x+ 1y + 0z = 3

0x+ 0y + 1z = −1
, (17)

from which we deduce that the point (4, 3,−1) is the only point of intersection of

the three planes. �

1.4 Gaussian elimination

The previous example was our first example of the use of a method called
“Gauss-Jordan elimination,” or “row reduction.” This procedure has two steps:
“Gaussian elimination,” and then “Jordan elimination.” We’ll start with Gaussian
elimination.

The goal of Gaussian elimination is to find a “row echelon form” of the original
matrix. This is defined as follows:

Definition 1.11 Let A be a matrix. Given a row i of A, a pivot point of the ith row

of A is a nonzero entry of row i that has no nonzero entries to its left. A column

containing a pivot point of A is called a pivot column of A.

Definition 1.12 Let A be a matrix. Given a matrix B, B is a row echelon form of

A provided that the following statements are true.

(i) B is row-equivalent to A.

(ii) All zero-rows of B are below all nonzero-rows of B.

(iii) Each pivot point of B is in a column that is right of the pivot point of any row

above it.

Example 1.13 The following matrices are row echelon forms. The pivot points of

each matrix are highlighted. 2 0 0 1

0 −1 1 1

0 0 0 1

 ,

 −5 1 2

0 −1 4

0 0 0

 ,

 1 0 0

0 1 0

0 0 1

 . (18)
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The following matrices are not row echelon forms. The pivot points of each matrix

are highlighted. 1 0 0

1 0 0

0 1 0

 ,

 3 1
2

π 0

0 0 0 0

0 2 3 4

 ,

(
0 1 8 9 0

9 0 0 1 0

)
(19)

�

In Gaussian elimination, our only goal to to find a row echelon form of our
given (augmented) matrix.

Example 1.14 Find a row echelon form for the augmented matrix1 −1 1 | 0

2 −1 1 | 1

3 1 −3 | 2

 . (20)

We do some elementary row operations, with the intent to eventually get a row

echelon form:

 1 −1 1 | 0

2 −1 1 | 1

3 1 −3 | 2

 R2−2R1→R2−−−−−−−→

 1 −1 1 | 0

0 1 −1 | 1

3 1 −3 | 2


R3−3R1→R3−−−−−−−→

 1 −1 1 | 0

0 1 −1 | 1

0 4 −6 | 2

 R3−4R2→R3−−−−−−−→

 1 −1 1 | 0

0 1 −1 | 1

0 0 −2 | −2

 .

(21)

Note: this is not the only row echelon form associated to this augmented matrix. �

1.5 Gauss-Jordan elimination

The second step, Jordan elimination, involves taking an echelon form matrix
and finding an equivalent “reduced row echelon form:”
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Definition 1.15 Let A be a matrix. Given a matrix B, B is a reduced row echelon

form of A provided that the following statements are true.

(i) B is a row echelon form of A.

(ii) Each pivot point of B is 1.

(iii) All entries above a pivot point are 0.

Example 1.16 The following matrices are reduced row echelon forms. The pivot

points of each matrix are highlighted. 1 0 0

0 1 0

0 0 1

 ,

(
1 0 5 2

0 1 1 −1

)
,

0 1 0 0 5

0 0 1 0 −1
0 0 0 1 2

. (22)

The following matrices are row echelon forms that are not reduced row echelon

forms. The pivot points of each matrix are highlighted.

(
1 0

0 6

)
,

(
1 2 0

0 1 0

)
,

 1 0 0 1

0 1 0 0

0 0 0 1

 . (23)

Example 1.17 Find a reduced row echelon form for the following augmented ma-

trix: 1 1 −1 | 0

1 1 1 | 2

2 −1 0 | 1

 (24)

First, we implement Gaussian elimination, seeking a row echelon form:

 1 1 −1 | 0

1 1 1 | 2

2 −1 0 | 1

 R2−R1→R2−−−−−−−→

 1 1 −1 | 0

0 0 2 | 2

2 −1 0 | 1


R3−2R1→R3−−−−−−−→

 1 1 −1 | 0

0 0 2 | 2

0 −3 2 | 1

 R2↔R3−−−−→

 1 1 −1 | 0

0 −3 2 | 1

0 0 2 | 2

 . (25)
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Now we do Jordan elimination to get a reduced row echelon form:

 1 1 −1 | 0

0 −3 2 | 1

0 0 2 | 2

 R2−R3→R2−−−−−−−→

 1 1 −1 | 0

0 −3 0 | −1
0 0 2 | 2


1
2
R3→R3−−−−−→

 1 1 −1 | 0

0 −3 0 | −1
0 0 1 | 1

 R1+R3→R1−−−−−−−→

 1 1 0 | 1

0 −3 0 | −1
0 0 1 | 1


− 1

3
R2→R2−−−−−−→

 1 1 0 | 1

0 1 0 | 1
3

0 0 1 | 1

 R1−R2→R1−−−−−−−→

 1 0 0 | 2
3

0 1 0 | 1
3

0 0 1 | 1

 . (26)

�

Finding a reduced row echelon form of an augmented matrix allows one to
easily read off the solutions of the corresponding system. For this reason, Gauss-
Jordan elimination is a valuable computational tool.

1.7 Uniqueness of the reduced echelon form

Theorem 1.18 Let A be a matrix. If B1 and B2 are reduced row echelon forms of

A, then B1 = B2.

In other words, every matrix corresponds to a unique reduced row echelon form.

Definition 1.19 Let S be a system of m equations in the variables x1, x2, ..., xn,

and let A be its augmented matrix. (Note that A has m rows and n + 1 columns.)

Given i ∈ {1, 2, ..., n}, we say that xi is a pivot variable of S provided that the
reduced row echelon form of A has a pivot point in the ith column. We say that xi
is a free variable of S provided that it is not a pivot variable.

Example 1.20 Describe the set of solutions of the following system of linear equa-
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tions:

S :


3x− y + 5x = 8

y − 10z = 1

6x− y = 17

. (27)

First, we set up an augmented matrix for S:

A =

3 −1 5 | 8

0 1 −10 | 1

6 −1 0 | 17

 (28)

We proceed with Gauss-Jordan elimination:

 3 −1 5 | 8

0 1 −10 | 1

6 −1 0 | 17

 R3−2R1→R3−−−−−−−→

 3 −1 5 | 8

0 1 −10 | 1

0 1 −10 | 1


R3−R2→R3−−−−−−−→

 3 −1 5 | 8

0 1 −10 | 1

0 0 0 | 0

 R1+R2→R1−−−−−−−→

 3 0 −5 | 9

0 1 −10 | 1

0 0 0 | 0


1
3
R1→R1−−−−−→

 1 0 −5
3
| 3

0 1 −10 | 1

0 0 0 | 0

 . (29)

According to our definitions, x and y are pivot variables, while z is a free variable.

The system corresponding to our reduced row echelon form can be written as

x− 5
3
z = 3

y − 10z = 1
. (30)

Any (x, y, z) with coordinates in R that satisfies these two descriptions is a solution.

We consider z as a “parameter,” calling it t, so that

x = 3 + 5
3
t

y = 1 + 10t
. (31)
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Now, if t is any real number whatsoever, then the x and y described above will

determine the solution point (x, y, t). In other words, the set of solutions is the

infinite set {(
3 + 5

3
t, 1 + 10t, t

) ∣∣∣∣∣t ∈ R

}
. (32)

For example, (3, 1, 0) is a solution (letting t = 0), as is (8, 31, 3) (letting t = 3),

as well as
(
3 + 5

3
, 11, 1

)
(letting t = 1), and so on; there is a different solution for

each real value of t. �

Definition 1.21 Let A be a matrix, and let B be the reduced row echelon form of

A. The rank of A is the number of pivot points in B.

Example 1.22 Determine the rank of the following matrix:

A =

1 2 3

1 5 9

2 4 6

 (33)

To determine rank (A), we need to know the reduced row echelon form of A. We

proceed with Gauss-Jordan elimination:

 1 2 3

1 5 9

2 4 6

 R2−R1→R2−−−−−−−→

 1 2 3

0 3 6

2 4 6

 R3−2R1→R3−−−−−−−→

 1 2 3

0 3 6

0 0 0


1
3
R2→R3−−−−−→

 1 2 3

0 1 2

0 0 0

 R1−2R2→R1−−−−−−−→

 1 0 −1
0 1 2

0 0 0

 . (34)

This tells us that rank (A) = 2 , the number of pivot points in the reduced row

echelon form of A.

By definition, the rank of a matrix must be less than or equal to the number of
columns of that matrix. This motivates the following definition.
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Definition 1.23 Let A be a matrix with n many columns. We say that A has full

rank provided that rank (A) = n.

Theorem 1.24 Let S be a system of m equations in n variables, and let A be the
left side of its augmented matrix. The number of free variables of S is n−rank (A).

A system has a unique solution (that is, only one point as a solution) if and only
if it has no free variables. Therefore, the above theorem tells us that a system will
have a unique solution if and only if the left side of its augmented matrix has full
rank.

For applications of the techniques that we discussed in this section, read sections
1.9, 1.10, and/or 1.11 of the textbook.
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2 Vectors in Rn

2.1 Points and vectors

Definition 2.1 A vector [over R] is a line segment, together with a specific direc-

tion.

Just as a point has coordinates, which indicate how far it is from each of the
axes, a vector has “components,” which indicate how far along each axis it goes.
We denote a vector using a matrix with a single column. For instance, a vector that
extends from the point (1, 1) to (6,−2) has the representation

−→v =

(
5

−3

)
. (35)

Two vectors should be regarded as the same (equal) if they have the same length
and direction. This means that translating a vector from one location in space to a
different location in space without altering its length or direction has no effect. So,
for instance, the vector from (1, 1) to (6,−2) is the same as the vector from (0, 0)

to (5,−3). To summarize, two vectors are equal if and only if they have equal
corresponding components:

a1

a2
...
an

 =


b1

b2
...
bn

 if and only if

a1 = b1, and
a2 = b2, and

...
an = bn.

(36)

Definition 2.2 The zero vector in Rn is the vector in n-space whose components

are all zero:

−→
0 =


0

0
...

0

 . (37)

Definition 2.3 Let p = (x1, x2, ..., xn) be a point in n-space. The position vector
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of p is the vector that goes from the origin to p. In other words, the position vector
−→p is given by

−→p =


x1

x2
...

xn

 . (38)

Real-valued quantities that are not vectors will sometimes be called “scalars,”
in order to distinguish them.

Let’s introduce some notation. The set of vectors of real numbers with two
components is denoted R2:

R2 =

{(
x

y

)∣∣∣∣∣x, y ∈ R

}
(39)

Similarly, the set of vectors of real numbers with three components is denoted R3:

R3 =


xy
z

∣∣∣∣∣x, y, z ∈ R

 . (40)

We can extend this to any positive integer n:

Rn =




x1

x2
...
xn


∣∣∣∣∣x1, x2, ..., xn ∈ R

 . (41)

These sets are typically called “n-dimensional Euclidean space.”

2.2 Addition

Vectors in Rn can be added together. Geometrically, adding the vectors
−→
P and

−→
Q looks like this:
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Algebraically, vector addition just requires adding together the corresponding
components of each vector:

a1

a2
...
an

+


b1

b2
...
bn

 =


a1 + b1

a2 + b2
...

an + bn

 (42)

2.3 Scalar multiplication

Vectors in Rn can be multiplied by scalars. Geometrically, if the scalar is r > 0,
then r−→v refers to a vector in the same direction as −→v with a length that is r times
the length of −→v . If the scalar is r < 0, then r−→v refers to a vector in the opposite
direction as −→v with a length that is |r| times the length of −→v . If the scalar is r = 0,
then r−→v =

−→
0 , no matter what.

Algebraically, we can multiply a vector by a scalar by just multiplying each
component by that scalar:

r


a1

a2
...
an

 =


ra1

ra2
...
ran

 . (43)

Notice that the following properties are true for vectors in Rn:
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Theorem 2.4 The following statements are true.

(i) Given −→v1 ,−→v2 ,−→v3 ∈ Rn,

−→v1 + (−→v2 +−→v3) = (−→v1 +−→v2) +−→v3 (44)

(vector addition is associative).

(ii) There exists a vector
−→
0 ∈ Rn such that for any vector −→v ∈ Rn,

−→v +
−→
0 =

−→
0 +−→v = −→v (45)

(an additive identity exists for vector addition).

(iii) For each vector −→v ∈ Rn, there exists a vector −→u ∈ Rn such that

−→v +−→u = −→u +−→v =
−→
0 (46)

(each vector has an additive inverse).

(iv) Given vectors −→v1 ,−→v2 ∈ Rn,

−→v1 +−→v2 = −→v2 +−→v1 (47)

(vector addition is commutative).

(v) Given a vector −→v ∈ Rn and scalars s, t ∈ R,

s (t−→v ) = (st)−→v (48)

(scalar multiplication is associative).

(vi) Given vectors −→v1−→v2 ∈ Rn and a scalar s ∈ R,

s (−→v1 +−→v2) = s−→v1 + s−→v2 (49)

(scalar multiplication distributes over vector addition)

(vii) Given a vector −→v ∈ Rn and scalars s, t ∈ R,

(s+ t)−→v = s−→v + t−→v (50)
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(scalar multiplication distributes over scalar addition).

(viii) There exists a scalar 1 ∈ R such that for any vector −→v ∈ Rn,

1−→v = −→v (51)

(a multiplicative identity exists for scalar multiplication).

Later we will see that any set that satisfies the above properties is called a “vector
space over R,” so for now, we’ll just say that Rn is a vector space over R (whatever
that means).

2.4 Linear combinations

Definition 2.5 Let −→v1 ,−→v2 , ...,−→vk be some vectors in Rn for some positive integer n.

Given any scalars s1, s2, ..., sk ∈ R, the vector

−→u = s1
−→v1 + s2

−→v2 + ...+ sk
−→vk (52)

is called a linear combination of v1, v2, ..., vk over R.

Example 2.6 The vector

−→u =

−1−2
−2

 (53)

is a linear combination of the vectors

−→v1 =

1

1

1

 , −→v2 =

2

0

0

 , −→v3 =

 0

−1
−1

, (54)

because −→u = 3−→v1 − 2−→v2 + 5−→v3 . �

Example 2.7 The vector

−→u =

1

1

1

 (55)
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is not a linear combination of the vectors

−→v1 =

1

0

0

 , −→v2 =

2

2

0

, (56)

because for any scalars s1, s2 ∈ R, −→u 6= s1
−→v1 + s2

−→v2 . �

Question: given vectors −→v1 ,−→v2 , ...,−→vk and −→u in Rn, how can we tell whether −→u
can be expressed as a linear combination of the vectors −→v1 ,−→v2 , ...,−→vk over R?

This same question can be understood as a problem about systems of equations.
Suppose that

−→v1 =


a11

a21
...
an1

 , −→v2 =


a12

a22
...
an2

 , ..., −→vk =


a1k

a2k
...
ank

 , −→u =


b1

b2
...
bn

. (57)

We are asking whether there exist scalars s1, s2, ..., sk ∈ R such that

s1
−→v1 + s2

−→v2 + ...+ sk
−→vk = −→u . (58)

In other words, we want to know whether there exist scalars s1, s2, ..., sk ∈ R such
that

s1


a11

a21
...
an1

+ s2


a12

a22
...
an2

+ ...+ sk


a1k

a2k
...
ank

 =


b1

b2
...
bn

 . (59)

This equation can be written as
s1a11 + s2a12 + ...+ ska1k

s1a21 + s2a22 + ...+ ska2k
...

s1an1 + s2an2 + ...+ skank

 =


b1

b2
...
bn

 . (60)

22



As mentioned, these two vectors are equal if and only if their corresponding com-
ponents are equal. Thus, the scalars exist if and only if there exists a solution to the
system of equations

S :



s1a11 + s2a12 + ...+ ska1k = b1

s1a21 + s2a22 + ...+ ska2k = b2
...

s1an1 + s2an2 + ...+ skank = bn

. (61)

Example 2.8 Express the vector

−→u =

3

4

3

 (62)

as a linear combination of the vectors

−→v1 =

1

1

1

 , −→v2 =

1

2

1

 −→v3 =

0

1

1

, (63)

or prove that no such expression is possible.

We seek scalars s1, s2, s3 ∈ R such that

s1

1

1

1

+ s2

1

2

1

+ s3

0

1

1

 =

3

4

3

 . (64)

This is tantamount to asking for a solution to the system

S :


s1 + s2 = 3

s1 + 2s2 + s3 = 4

s1 + s2 + s3 = 3

. (65)
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To determine whether such solutions exist, we set up an augmented matrix:1 1 0 | 3

1 2 1 | 4

1 1 1 | 3

 . (66)

We now apply Gauss-Jordan elimination to find the reduced row echelon form:

 1 1 0 | 3

1 2 1 | 4

1 1 1 | 3

 R2−R1→R2−−−−−−−→

 1 1 0 | 3

0 1 1 | 1

1 1 1 | 3


R3−R1→R3−−−−−−−→

 1 1 0 | 3

0 1 1 | 1

0 0 1 | 0

 R2−R3→R2−−−−−−−→

 1 1 0 | 3

0 1 0 | 1

0 0 1 | 0


R1−R2→R1−−−−−−−→

 1 0 0 | 2

0 1 0 | 1

0 0 1 | 0

 (67)

The reduced row echelon form corresponds to the system
1s1 + 0s2 + 0s3 = 2

0s1 + 1s2 + 0s3 = 1

0s1 + 0s2 + 1s3 = 0

. (68)

In other words, if we let s1 = 2, s2 = 1, and s3 = 0, then we can write the linear

combination −→u = s1
−→v1 + s2

−→v2 + s3
−→v3 :

3

4

3

 = 2

1

1

1

+ 1

1

2

1

+ 0

0

1

1

 . (69)

�
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Example 2.9 Express the vector

−→u =


−1
−2
−4
−10

 (70)

as a linear combination of the vectors

−→v1 =


1

1

0

1

 , −→v2 =


0

1

2

3

 , −→v3 =


1

1

1

1

, (71)

or prove that no such expression is possible.

We seek scalars s1, s2, s3 ∈ R such that

s1


1

1

0

1

+ s2


0

1

2

3

+ s3


1

1

1

1

 =


−1
−2
−4
−10

 . (72)

This is the same as looking for solutions to the system

S :



s1 + 0s1 + s3 = −1

s1 + s2 + s3 = −2

0s1 + 2s2 + s3 = −4

s1 + 3s2 + s3 = −10

, (73)
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which can be rephrased using an augmented matrix:
1 0 1 | −1
1 1 1 | −2
0 2 1 | −4
1 3 1 | −10

 . (74)

We proceed with Gauss-Jordan elimination:
1 0 1 | −1
1 1 1 | −2
0 2 1 | −4
1 3 1 | −10

 R2−R1→R2−−−−−−−→


1 0 1 | −1
0 1 0 | −1
0 2 1 | −4
1 3 1 | −10



R3−2R2→R3−−−−−−−→


1 0 1 | −1
0 1 0 | −1
0 0 1 | −2
1 3 1 | −10

 R4−R1→R4−−−−−−−→


1 0 1 | −1
0 1 0 | −1
0 0 1 | −2
0 3 0 | −9



R4−3R2→R4−−−−−−−→


1 0 1 | −1
0 1 0 | −1
0 0 1 | −2
0 0 0 | −6

 . (75)

This is not the reduced row echelon form, but we need go no further. It is already

clear that this system has no solution; the last equation of the last form would

imply that 0s1 + 0s2 + 0s3 = −6. Regardless of the values of s1, s2 and s3, this is

impossible, so no solution exists. Therefore:

−→u cannot be expressed as a linear combination of −→v1 ,−→v2 ,−→v3 over R.

�
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2.5 Length of a vector

Definition 2.10 Let

−→v =


a1

a2
...

an

 (76)

be a vector in Rn. The magnitude (also called the norm) of −→v is the value

∣∣∣∣−→v ∣∣∣∣ =√a12 + a22 + ...+ an2. (77)

Geometrically, the magnitude of a vector corresponds exactly to its length as a
line segment.

Example 2.11 Find the magnitude of the following vector in R4:

−→v =


1

2

0

2

 (78)

This is just an application of the definition of magnitude:

∣∣∣∣−→v ∣∣∣∣ = √12 + 22 + 02 + 22 =
√
9 = 3 . (79)

�

The fact that a notion of magnitude exists in Rn allows us to define the dis-
tance between two points (or two vectors) as the magnitude of the vector that goes
between them.
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2.6 The dot product

Definition 2.12 Let

−→u =


a1

a2
...

an

 and −→v =


b1

b2
...

bn

 (80)

be vectors in Rn. The dot product of −→u and −→v is the scalar value

−→u · −→v = a1b1 + a2b2 + ...+ anbn. (81)

Notice that for any vector −→v in Rn, −→v · −→v =
∣∣∣∣−→v ∣∣∣∣2.

The dot product is significant because it allows us to define a notion of perpen-
dicularity in Rn.

Definition 2.13 (Different from the textbook) Let −→u and −→v be nonzero vectors in

Rn. We say that −→u and −→v are orthogonal provided that −→u · −→v = 0.

Geometrically, orthogonality is like this: there exists a plane P which contains both
−→u and−→v (later, we will say that this plane is “spanned” by the vectors). The vectors
−→u and −→v are orthogonal if and only if the angle between them in P is π

2
radians.

In other words, “orthogonal” is just a generalization of “perpendicular.”

Theorem 2.14 (The Cauchy-Schwarz inequality for Rn) Let −→u and −→v be vectors

in Rn. In that case, ∣∣−→u · −→v ∣∣ ≤ ∣∣∣∣−→u ∣∣∣∣∣∣∣∣−→v ∣∣∣∣. (82)

This theorem implies another theorem:

Theorem 2.15 (The triangle inequality for Rn) Let −→u and −→v be vectors in Rn. In

that case, ∣∣∣∣−→u +−→v
∣∣∣∣ ≤ ∣∣∣∣−→u ∣∣∣∣+ ∣∣∣∣−→v ∣∣∣∣ (83)
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The proofs of these theorems can be found in the textbook. You will not be
expected to be able to reproduce them in this class. However, we will use the
techniques of this chapter to showcase a proof of the Pythagorean theorem:

Theorem 2.16 (The Pythagorean theorem for R2) Let 4ABC be a right triangle

in R2. Let a be the length of the side opposite to vertex A, let b be the length of the

side opposite to vertex B, and let c be the side opposite to vertex C. If the right

angle of4ABC exists at the vertex c, then

a2 + b2 = c2. (84)

Proof Define the vectors −→w =
−→
BA, −→u =

−−→
BC and −→v =

−→
CA. We notice that∣∣∣∣−→w ∣∣∣∣ = c,

∣∣∣∣−→u ∣∣∣∣ = a, and
∣∣∣∣−→v ∣∣∣∣ = b. Additionally,

−→w = −→u +−→v . (85)

We compute the dot product of each side of the above equation with itself:

−→w · −→w = (−→u +−→v ) · (−→u +−→v ) . (86)

The dot product distributes over vector addition, so we can re-write this as

−→w · −→w = (−→u · −→u ) + (−→v · −→u ) + (−→u · −→v ) + (−→v · −→v ) . (87)

However, −→u and −→v are perpendicular, so −→u · −→v = −→v · −→u = 0. Thus, the above
equation becomes

∣∣∣∣−→w ∣∣∣∣2 = −→w · −→w = (−→u · −→u ) + (−→v · −→v ) =
∣∣∣∣−→u ∣∣∣∣2 + ∣∣∣∣−→v ∣∣∣∣2. (88)

In other words, c2 = a2 + b2. �
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4 Matrices

We would like to be able to write any linear system of equations as a single
equation consisting of some operations on some mathematical objects. Then, we
could study the system by studying the mathematical objects involved in that single
equation. This brings us to the topic of matrices.

4.1 Definition and equality

Definition 4.1 An m× n matrix is a rectangular array of mathematical objects

with m rows and n columns:

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

am1 am2 ... amn

 . (89)

Two m×n matrices are equal provided that they have equal corresponding entries.

Definition 4.2 LetA be anm×nmatrix. We say thatA is a square matrix provided

that m = n.

Definition 4.3 A matrix of size 1×n is called a row vector. A matrix of size m× 1

is called a column vector.
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4.2 Addition

To add two matrices (of the same size) together, just add their corresponding
entries:

a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn

+


b11 b12 ... b1n

b21 b22 ... b2n
...

... . . . ...
bm1 bm2 ... bmn



=


a11 + b11 a12 + b12 ... a1n + b1n

a21 + b21 a22 + b22 ... a2n + b2n
...

... . . . ...
am1 + bm1 am2 + bm2 ... amn + bmn

 . (90)

Definition 4.4 The m× n zero matrix is the matrix of size m×n whose entries are

all 0.

4.3 Scalar multiplication

To multiply a scalar by a matrix, just multiply each entry by that scalar:

s


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn

 =


sa11 sa12 ... sa1n

sa21 sa22 ... sa2n
...

... . . . ...
sam1 sam2 ... samn

 . (91)

4.4 Matrix multiplication

Multiplying two matrices together is a bit more complicated. The motivation is
as follows: we would like to define multiplication of matrices so that an augmented
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matrix like 
a11 a12 ... a1n | b1

a21 a22 ... a2n | b2
...

... . . . ... | ...
am1 am2 ... amn | bm

 (92)

can be written as an equation involving a matrix and vectors, like
a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn



x1

x2
...
xn

 =


b1

b2
...
bm

 . (93)

To accomplish this, we need to define matrix multiplication in a very particular
way:

Definition 4.5 LetM be anm×nmatrix, and letN be an n×pmatrix. The matrix

product MN is the m× p matrix

MN =


c11 c12 ... c1p

c21 c22 ... c2p
...

... . . . ...

cm1 cm2 ... cmp

 , (94)

where for each i ∈ {1, 2, ...,m} and for each j ∈ {1, 2, ..., p}, cij is the dot product

of the ith row of M with the jth column of N .

Example 4.6 Given the matrices

A =

(
1 1 0

−1 0 −1

)
and B =

 2 4 −1 2

1 0 2 1

−1 1 −2 1

, (95)

compute the matrix product AB.
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We apply the definition of the matrix product to get

(
1 1 0

−1 0 −1

) 2 4 −1 2

1 0 2 1

−1 1 −2 1

 =

(
3 4 1 3

−1 −5 3 −3

)
. (96)

�

Definition 4.7 The n× n identity matrix is the n×nmatrix In whose entries along

its main diagonal are 1, and whose other entries are 0.

Example 4.8 The 2× 2, 3× 3 and 4× 4 identity matrices are shown below.

I2 =

(
1 0

0 1

)
, I3 =

1 0 0

0 1 0

0 0 1

 , I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. (97)

�

The identity matrix In has the property that for any m × n matrix M , MIn = M ,
and for any n×m matrix N , InN = N .

4.5 Matrix inverses

Definition 4.9 Let A be an n×n matrix. An inverse matrix of A is an n×n matrix

B such that AB = BA = In. If such a matrix exists, we say that A is an invertible

matrix.

Theorem 4.10 If A is an invertible n × n matrix, then there exists exactly one

inverse matrix, called A−1.

Given a square matrix A, how can we either find A−1, or prove that A is not
invertible?

Theorem 4.11 Let A be an n × n matrix. The matrix A is invertible if and only if

A is row-equivalent to In.
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The procedure for finding the inverse is as follows. Augment the original matrix
with the identity matrix on the right. Then, do Gauss-Jordan elimination. If the left
side’s reduced row echelon form is the identity matrix, then the inverse matrix is on
the right side. If it is not the identity matrix, then the matrix is not invertible.

Example 4.12 Find the inverse matrix of

A =

(
1 2

2 3

)
, (98)

or prove that A is not invertible.

We set up an augmented matrix with I2 on the right:(
1 2 | 1 0

2 3 | 0 1

)
, (99)

and proceed with Gauss-Jordan elimination:(
1 2 | 1 0

2 3 | 0 1

)
R2−2R1→R2−−−−−−−→

(
1 2 | 1 0

0 −1 | −2 1

)
−R2→R2−−−−−→

(
1 2 | 1 0

0 1 | 2 −1

)
R1−2R2→R1−−−−−−−→

(
1 0 | −3 2

0 1 | 2 −1

)
. (100)

Therefore, the inverse matrix is

A−1 =

(
−3 2

2 −1

)
. (101)

�

Example 4.13 Find the inverse matrix of

A =

(
−4 −2
2 1

)
, (102)

or prove that A is not invertible.
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We set up an augmented matrix with I2 on the right:(
−4 −2 | 1 0

2 1 | 0 1

)
, (103)

and proceed with Gauss-Jordan elimination:(
−4 −2 | 1 0

2 1 | 0 1

)
R1+2R2→R1−−−−−−−→

(
0 0 | 1 2

2 1 | 0 1

)
R1↔R2−−−−→

(
2 1 | 0 1

0 0 | 1 2

)
1
2
R1→R1−−−−−→

(
1 1

2
| 0 1

2

0 0 | 1 2

)
. (104)

This is the reduced row echelon form. However, the left side is not the identity

matrix I2. Therefore, the matrix A is not invertible. �

4.7 The transpose

Definition 4.14 Let A be an m×n matrix. The transpose of A is the n×m matrix

AT such that for all i ∈ {1, 2, ..., n} and for all j ∈ {1, 2, ...,m}, the (i, j)-entry of

AT is the (j, i) entry of A.

Example 4.15 Find the transpose of the following matrix:

A =

(
1 2 3 4

5 6 7 8

)
. (105)

The transpose is

AT =


1 5

2 6

3 7

4 8

 . (106)

�

Definition 4.16 Let A be an n × n matrix. We say that A is a symmetric matrix

provided that AT = A.
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5 Spans, linear independence and bases in Rn

5.1 Spans

Definition 5.1 Let−→v1 ,−→v2 , ...,−→vk ∈ Rn. The span of−→v1 ,−→v2 , ...,−→vk is the set of linear

combinations of −→v1 ,−→v2 , ...,−→vk :

span (−→v1 ,−→v2 , ...,−→vk) =
{
s1
−→v1 + s2

−→v2 + ...+ sk
−→vk
∣∣∣∣s1, s2, ..., sk ∈ R

}
. (107)

In light of this definition, −→u is a linear combination of −→v1 ,−→v2 , ...,−→vk if and only
if −→u ∈ span (−→v1 ,−→v2 , ...,−→vk).

Example 5.2 Describe span (−→v1 ,−→v2), where

−→v1 =


1

2

0

1

 and −→v2 =


−1
1

−1
1

. (108)

By definition,

span (−→v1 ,−→v2) =

s

1

2

0

1

+ t


−1
1

−1
1


∣∣∣∣∣s, t ∈ R

 =




s− t
2s+ t

−t
s+ t


∣∣∣∣∣s, t ∈ R

 .

(109)
�

Definition 5.3 Let −→v1 ,−→v2 , ...,−→vk ∈ Rn. We say that −→v1 ,−→v2 , ...,−→vk is redundant pro-

vided that there exists some i ∈ {1, 2, ..., k} such that

span (v1, v2, ..., vi−1, vi+1, ..., vk) = span (v1, v2, ..., vi−1, vi, vi+1, ..., vk) . (110)
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Example 5.4 Determine whether −→v1 ,−→v2 ,−→v3 is redundant, where

−→v1 =

(
1

1

)
, −→v2 =

(
0

1

)
, −→v3 =

(
1

0

)
. (111)

We notice that

span (−→v1 ,−→v2 ,−→v3) =

{
r

(
1

1

)
+ s

(
0

1

)
+ t

(
1

0

)∣∣∣∣∣r, s, t ∈ R

}

=

{(
r + t

r + s

)∣∣∣∣∣r, s, t ∈ R

}
(112)

However, this is the same set as{(
u

v

)∣∣∣∣∣u, v ∈ R

}
=

{
u

(
1

0

)
+ v

(
0

1

)∣∣∣∣∣u, v ∈ R

}
= span (−→v2 ,−→v3) . (113)

Therefore span (−→v1 ,−→v2 ,−→v3) = span (−→v2 ,−→v3), and so −→v1 ,−→v2 ,−→v3 is redundant . �

5.2 Linear independence

Under what circumstances is a finite sequence of vectors redundant? Suppose
that −→v1 ,−→v2 , ...,−→vk is a redundant finite sequence of vectors. This means that

span (−→v1 ,−→v2 , ...,−→vk) = span (−→v1 ,−→v2 , ...,−−→vi−1,−−→vi+1,
−→vk) , (114)

for some i ∈ {1, 2, ..., k}. We notice that

−→vi ∈ span (−→v1 ,−→v2 , ...,−→vk) , (115)

so this means that

−→vi ∈ span (−→v1 ,−→v2 , ...,−−→vi−1,−−→vi+1,
−→vk) . (116)
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In other words, −→v1 ,−→v2 , ...,−→vk is redundant if and only if some one of the vectors is
a linear combination of the others.

Definition 5.5 Let−→v1 ,−→v2 , ...,−→vk ∈ Rn. We say that this finite sequence of vectors is

linearly dependent (over R) provided that some one of them is a linear combination

of the others. Otherwise, we say that the finite sequence is linearly independent

(over R).

Suppose that −→v1 ,−→v2 , ...,−→vk ∈ Rn is a linearly dependent finite sequence of vec-
tors. This is the case if and only if, for some i ∈ {1, 2, ..., k}, −→vi is a linear com-
bination of −→v1 ,−→v2 , ...,−−→vi−1,−−→vi+1, ...,

−→vk . This means that there exists some finite
sequence of scalars s1, s2, ..., si−1, si+1..., sk ∈ R such that

−→vi = s1
−→v1 + s2

−→v2 + ...+ si−1
−−→vi−1 + si+1

−−→vi+1 + ...+ sk
−→vk . (117)

In other words,

s1
−→v1 + s2

−→v2 + ...+ si−1
−−→vi−1 + (−1)−→vi + si+1

−−→vi+1 + ...+ sk
−→vk =

−→
0 . (118)

Thus, there exists a finite sequence of scalars s1, s2, ..., sk ∈ R which are not all
zero such that s1−→v1 + s2

−→v2 + ... + sk
−→vk =

−→
0 . In fact, we can rephrase linear

dependence to mean exactly this.

Theorem 5.6 Let −→v1 ,−→v2 , ...,−→vk ∈ Rn. The finite sequence −→v1 ,−→v2 , ...,−→vk is linearly

independent if and only if the equation

s1
−→v1 + s2

−→v2 + ...+ sk
−→vk =

−→
0 (119)

has only the trivial solution: s1 = s2 = ... = sk = 0.

Example 5.7 The vectors

−→v1 =

1

0

0

 and −→v2 =

0

0

1

 (120)
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are linearly independent. We know this because if

s1
−→v1 + s2

−→v2 =
−→
0 , (121)

then

s1

1

0

0

+ s2

0

0

1

 =

0

0

0

 , (122)

which is equivalent to saying thats10
s2

 =

0

0

0

 , (123)

or in other words, s1 = s2 = 0. �

Example 5.8 Determine whether the vectors

−→v1 =

1

0

1

 , −→v2 =

0

1

1

 −→v3 =

−23
1

 (124)

are linearly independent.

We want to know whether there exist scalars s1, s2, s3 ∈ R such that

s1

1

0

1

+ s2

0

1

1

+ s3

−23
1

 =

0

0

0

 , (125)

and not all of s1, s2, s3 are zero. In other words, we want to learn about the solutions

of the following system of equations:

s1 + 0s2 − 2s3 = 0

0s1 + s2 + 3s3 = 0

s1 + s2 + s3 = 0

(126)
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To this end, we set up an augmented matrix:1 0 −2 | 0

0 1 3 | 0

1 1 1 | 0

 , (127)

and proceed with Gauss-Jordan elimination:

 1 0 −2 | 0

0 1 3 | 0

1 1 1 | 0

 R3−R1→R3−−−−−−−→

 1 0 −2 | 0

0 1 3 | 0

0 1 3 | 0


R3−R2→R3−−−−−−−→

 1 0 −2 | 0

0 1 3 | 0

0 0 0 | 0

 . (128)

Since a non-pivot column exists, we will have a free variable, s3. This indicates that

there will be infinitely many solutions to the system. Ergo, more solutions exist than

just the trivial solution, and so the vectors −→v1 , −→v2 and −→v3 are linearly dependent .

�

The following theorem summarizes a few of our results so far.

Theorem 5.9 Let −→v1 ,−→v2 , ...,−→vk ∈ Rn. Let A be the matrix whose columns are
−→v1 ,−→v2 , ...,−→vk . The following statements are equivalent.

(i) A has full rank.

(ii) The system A−→x =
−→
0 has no free variables.

(iii) The system A−→x =
−→
0 has a unique solution: −→x =

−→
0 .

(iv) −→v1 ,−→v2 , ...,−→vk are linearly independent.

(v) The columns of A are linearly independent.

We observe the following consequence of this theorem: given a finite sequence
of vectors −→v1 ,−→v2 , ...,−→vk ∈ Rn, if k > n, then the matrix A whose columns are
−→v1 ,−→v2 , ...,−→vk cannot possibly have full rank. Therefore:

Corollary 5.10 Let −→v1 ,−→v2 , ...,−→vk ∈ Rn. If k > n, then −→v1 ,−→v2 , ...,−→vk are linearly

dependent.
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5.3 Subspaces of Rn

Definition 5.11 Let S1 and S2 be sets. We say that S1 is a subset of S2 provided

that every element of S1 is also an element of S2.

Notation The symbol ⊆ means “is a subset of.”

Definition 5.12 Let V ⊆ Rn. We say that V is a vector subspace of Rn provided

that the following statements are true.

(i)
−→
0 ∈ V .

(ii) For any −→u ,−→v ∈ V , −→u +−→v ∈ V . (“V is closed under addition.”)

(iii) For any −→v ∈ V and any s ∈ R, s−→v ∈ V . (“V is closed under scalar

multiplication.”)

Example 5.13 The following sets are vector subspaces of R3:

V1 =


xy
0

∣∣∣∣∣x, y ∈ R

 , V2 =


0

0

z

∣∣∣∣∣z ∈ R

 , V3 =
{−→
0
}
, V4 = R3.

(129)
The following subsets of R3 are not vector subspaces of R3:
xy
1

∣∣∣∣∣x, y ∈ R

 ,


0

0

0

 ,

0

0

1


 ,


xy
0

∣∣∣∣∣xy = 0

 ,. (130)

�

Question: let −→v1 ,−→v2 , ...,−→vk ∈ Rn. Is span (−→v1 ,−→v2 , ...,−→vk) always a vector sub-
space of Rn?

Yes. Check each condition of the definition of a vector subspace of Rn.

5.4 Basis and dimension

As previously mentioned, all spans are vector subspaces of Rn. Conversely,
every vector subspace of Rn is the span of some finite sequence of vectors. In fact,
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by deleting any redundancies, we can find a linearly independent set of vectors
whose span is the given vector subspace.

Theorem 5.14 Let V be a vector subspace of Rn. In that case, there exist linearly

independent vectors −→v1 ,−→v2 , ...,−→vk ∈ V such that span (−→v1 ,−→v2 , ...,−→vk) = V .

Definition 5.15 Let V be a vector subspace of Rn. A basis of V is a finite sequence

(−→v1 ,−→v2 , ...,−→vk) of vectors in V such that the following statements are true.

(i) −→v1 ,−→v2 , ...,−→vk is linearly independent.

(ii) span (−→v1 ,−→v2 , ...,−→vk) = V .

Example 5.16 Determine whether the vectors

−→v1 =

2

2

1

 , −→v2 =

1

2

0

 , −→v3 =

1

1

1

 (131)

form a basis for R3.

We need to determine whether the vectors are linearly independent and span

R3. Let

−→u =

xy
z

 ∈ R3 (132)

be arbitrary. We want to know whether there is a solution to the equation

s1

2

2

1

+ s2

1

2

0

+ s3

1

1

1

 =

xy
z

 . (133)

To this end, we set up an augmented matrix and proceed with Gauss-Jordan elimi-
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nation: 2 1 1 | x

2 2 1 | y

1 0 1 | z

 R1−R3→R1−−−−−−−→

 1 1 0 | x− z
2 2 1 | y

1 0 1 | z


R2−2R1→R2−−−−−−−→

 1 1 0 | x− z
0 0 1 | −2x+ y + 2z

1 0 1 | z


R3−R2→R3−−−−−−−→

 1 1 0 | x− z
0 0 1 | −2x+ y + 2z

1 0 0 | 2x− y − z


R1−R3→R1−−−−−−−→

 0 1 0 | −x+ y

0 0 1 | −2x+ y + 2z

1 0 0 | 2x− y − z


R1↔R2−−−−→

 0 0 1 | −2x+ y + 2z

0 1 0 | −x+ y

1 0 0 | 2x− y − z


R1↔R3−−−−→

 1 0 0 | 2x− y − z
0 1 0 | −x+ y

0 0 1 | −2x+ y + 2z

 . (134)

This shows that a solution exists: (2x− y − z,−x+ y,−2x+ y + 2z). Therefore,
−→u ∈ span (−→v1 ,−→v2 ,−→v3). Since−→u is arbitrary, this shows that R3 ⊆ span (−→v1 ,−→v2 ,−→v3),
hence R3 = span (−→v1 ,−→v2 ,−→v3).

Additionally, the left side of the augmented matrix has full rank, so according

to Theorem 5.9, −→v1 ,−→v2 ,−→v3 must be linearly independent.

Now, by definition, the vectors form a basis for R3 . �

The previous example illustrates a general fact about bases.

Theorem 5.17 Let A be an n× n matrix. The columns of A form a basis for Rn if

and only if A is row-equivalent to In.
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Definition 5.18 The standard basis for Rn is the finite sequence (−→e1 ,−→e2 , ...,−→en),
where

−→e1 =



1

0

0
...

0


, −→e2 =



0

1

0
...

0


, −→e3 =



0

0

1
...

0


, ..., −→en =



0

0

0
...

1


. (135)

What if the matrix is not row-equivalent to the identity matrix? In that case, just
delete any vectors corresponding to non-pivot columns of the reduced row echelon
form. The remaining vectors will have the same span as the original sequence, and
will be linearly independent.

Example 5.19 Find a basis for the following vector subspace of R3:

V = span


 2

0

−2

 ,

−10
1

 ,

1

3

5

 ,

3

5

7

 ,

−11
3


 (136)

We consider the matrix A, whose columns are the vectors that span V :

A =

 2 −1 1 3 −1
0 0 3 5 1

−2 1 5 7 3

 . (137)
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We proceed with Gauss-Jordan elimination:

 2 −1 1 3 −1
0 0 3 5 1

−2 1 5 7 3

 R3+R1→R3−−−−−−−→

 2 −1 1 3 −1
0 0 3 5 1

0 0 6 10 2


R3−2R2−−−−→

 2 −1 1 3 −1
0 0 3 5 1

0 0 0 0 0

 1
3
R2→R2−−−−−→

 2 −1 1 3 −1
0 0 1 5

3
1
3

0 0 0 0 0


R1−R2→R1−−−−−−−→

 2 −1 0 4
3
−4

3

0 0 1 5
3

1
3

0 0 0 0 0

 1
2
R1→R1−−−−−→

 1 −1
2

0 2
3
−2

3

0 0 1 5
3

1
3

0 0 0 0 0

 .

(138)

Deleting the second, fourth and fifth vectors gives us

V = span


2

0

2

 ,

1

3

5


 . (139)

Moreover, these vectors are linearly independent, and so the following is a basis

for V : 
 2

0

−2

 ,

1

3

5


 . (140)

�

Theorem 5.20 Let V be a vector subspace of Rn. A sequence (−→v1 ,−→v2 , ...,−→vk) of

vectors in V is a basis for V if and only if every vector −→u ∈ V can be uniquely
expressed as a linear combination

−→u = s1
−→v1 + s2

−→v2 + ...+ sk
−→vk . (141)

Definition 5.21 Let V be a vector subspace of Rn. Given a basisB = (−→v1 ,−→v2 , ...,−→vk)
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of V and a vector −→u ∈ V , the coordinates of −→u with respect to B is the sequence

(s1, s2, ..., sk), where −→u = s1
−→v1 + s2

−→v2 + ...+ sk
−→vk .

Example 5.22 Consider the basis

B =


1

2

1

 ,

0

1

0

 ,

−10
1


 (142)

of R3. Suppose that −→u ∈ R3 can be represented with respect to the standard basis

of R3 as

−→u =

4

2

0

 . (143)

Find the coordinates of −→u with respect to the basis B.

We seek scalars s1, s2, s3 ∈ R such that

s1

1

2

1

+ s2

0

1

0

+ s3

−10
1

 =

4

2

0

 . (144)

To this end, we set up an augmented matrix:1 0 −1 | 4

2 1 0 | 2

1 0 1 | 0

 , (145)
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and proceed with Gauss-Jordan elimination:

 1 0 −1 | 4

2 1 0 | 2

1 0 1 | 0

 R2−2R1→R2−−−−−−−→

 1 0 −1 | 4

0 1 2 | −6
1 0 1 | 0


R3−R1→R3−−−−−−−→

 1 0 −1 | 4

0 1 2 | −6
0 0 2 | −4

 R2−R3→R2−−−−−−−→

 1 0 −1 | 4

0 1 0 | −2
0 0 2 | −4


1
2
R3→R3−−−−−→

 1 0 −1 | 4

0 1 0 | −2
0 0 1 | −2

 R1+R3→R1−−−−−−−→

 1 0 0 | 2

0 1 0 | −2
0 0 1 | −2

 (146)

This gives us the coordinates s1 = 2, s2 = −2, and s3 = −2. Our notation for this

is

[−→u ]B =

 2

−2
−2

 . (147)

�

Theorem 5.23 Let V be a vector subspace of Rn. Given bases B1 and B2 of Rn,

B1 and B2 have the same number of distinct vectors.

Definition 5.24 Let V be a vector subspace of Rn.

(i) If V =
{−→
0
}

, we say that the dimension of V is zero.

(ii) Assume that V 6=
{−→
0
}

. The dimension of V is the number of vectors in any

basis of V .

5.5 Column space, row space and null space of a matrix

Definition 5.25 Let A be an m × n matrix. The columnspace of A is the vector

subspace of Rm spanned by the columns of A. The nullspace of A is the vector

subspace

null (A) =
{−→v ∈ Rn

∣∣A−→v =
−→
0
}

(148)
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of Rn.

Example 5.26 Find bases for the columnspace and nullspace of the following ma-

trix:

A =

(
1 −1 −1 3

2 −2 0 4

)
. (149)

By definition, we know that

col (A) = span

((
1

2

)
,

(
−1
−2

)
,

(
−1
0

)
,

(
3

4

))
. (150)

However, this does not tell us a basis for col (A), because the vectors above are

not linearly independent. In order to find a linearly independent sequence with the

same span, we proceed with Gauss-Jordan elimination:(
1 −1 −1 3

2 −2 0 4

)
R2−2R1−−−−→

(
1 −1 −1 3

0 0 2 −2

)
1
2
R2→R2−−−−−→

(
1 −1 −1 3

0 0 1 −1

)
R1+R2→R1−−−−−−−→

(
1 −1 0 2

0 0 1 −1

)
(151)

A basis for col (A) can be found by taking the vectors corresponding to the pivot

columns of the reduced row echelon form:((
1

2

)
,

(
−1
0

))
(152)

To find a basis for null (A), we first recognize that by definition, null (A) is the
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set

null (A) =

{
−→v ∈ R4

∣∣∣∣∣A−→v =
−→
0

}

=




w

x

y

z

 ∈ R4

∣∣∣∣∣
(
1 −1 −1 3

2 −2 0 4

)
w

x

y

z

 =

(
0

0

) . (153)

In other words, we need to solve the matrix equation

(
1 −1 0 2

0 0 1 −1

)
w

x

y

z

 =

(
0

0

)
. (154)

This corresponds to the system

w − x+ 2z = 0

y − z = 0
. (155)

Here x and z are free variables. We give them the names s and t to get

null (A) =




s− 2t

s

t

t


∣∣∣∣∣s, t ∈ R


=

s

1

1

0

0

+ t


−2
0

1

1


∣∣∣∣∣s, t ∈ R

 = span



1

1

0

0

 ,


−2
0

1

1


 . (156)
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in fact, the vectors above are linearly independent, so they form a basis for null (A):



1

1

0

0

 ,


−2
0

1

1


 . (157)

�

Theorem 5.27 If A and B are row-equivalent matrices, then col (A) = col (B).

Theorem 5.28 (Rank-nullity theorem) Let A be an m× n matrix. In that case,

dim (col (A)) = rank (A)

dim (row (A)) = rank (A)

dim (null (A)) = n− rank (A)

. (158)
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6 Linear transformations in Rn

6.1 Linear transformations

Definition 6.1 Let X and Y be sets. A function from X to Y is a rule which asso-

ciates each element x ∈ X to some element f (x) ∈ Y .

Notation f : X → Y .

In single variable calculus, you always dealt with functions f : R→ R, like the
following:

f : R→ R g : R→ R h : R→ R
f (x) = x2 g (x) = sinx h (x) = e2x

. (159)

In multivariable calculus, you deal with more general notions of functions, some-
times considering f : Rn → Rm, such as the following:

f : R→ R3 g : R2 → R h : R2 → R3

f (t) =

t
2 − 1

t+ 1

et

 g

(
x

y

)
= x2 + y2 h

(
x

y

)
=

 x

y

cos (xy)

. (160)

In general, though, a function can be defined between any two sets.
In this class, we will be particularly interested in a certain kind of function.

Definition 6.2 Let T : Rn → Rm be a function. We say that T is a linear transfor-

mation or linear map provided that the following two conditions are true.

(i) For any −→u ,−→v ∈ Rn, T (−→u +−→v ) = T (−→u )+T (−→v ). (“T preserves addition.”)

(ii) For any s ∈ R and any −→v ∈ Rn, T (s−→v ) = sT (−→v ). (“T preserves scalar

multiplication.”)

Example 6.3 The following functions are linear transformations.

f : R3 → R3 g : R3 → R3 h : R2 → R

f

xy
z

 =

 x+ y

x+ y + z

0

 , g

xy
z

 =

 2x+ y

x− 2y

−x− y

 , h

(
x

y

)
= x

. (161)
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The following functions are not linear transformations.

f : R→ R g : R3 → R3 h : R→ R2

f (x) = x2, g

xy
z

 =

x+ 1

y + 1

z + 1

 , h (x) =

(
cosx

sinx

)
. (162)

6.2 The matrix of a linear transformation

Example 6.4 Let

A =

(
3 1 4

2 0 1

)
. (163)

Define a function TA : R3 → R2 via TA (−→v ) = A−→v . Determine whether TA is a

linear transformation.

First, let −→v1 ,−→v2 ∈ R3 be arbitrary. In that case, for some appropriate scalars

x1, y1, z1 ∈ R and x2, y2, z2 ∈ R,

−→v1 =

x1y1
z1

 , −→v2 =

x2y2
z2

. (164)
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Now,

TA (
−→v1 +−→v2) = TA

x1 + x2

y1 + y2

z1 + z2

 =

(
3 1 4

2 0 1

)x1 + x2

y1 + y2

z1 + z2


=

(
3 (x1 + x2) + (y1 + y2) + 4 (z1 + z2)

2 (x1 + x2) + (z1 + z2)

)

=

(
3x1 + y1 + 4z1

2x1 + z1

)
+

(
3x2 + y2 + 4z2

2x2 + z2

)

=

(
3 1 4

2 0 1

)x1y1
z1

+

(
3 1 4

2 0 1

)x2y2
z2



= TA

x1y1
z1

+ TA

x2y2
z2

 = TA (
−→v1) + TA (

−→v2) . (165)

This shows that TA preserves addition. Next, let s ∈ R and −→v ∈ R3 be arbitrary.

In that case, for some appropriate scalars x, y, z ∈ R,

−→v =

xy
z

 . (166)
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Now,

TA (s
−→v ) = TA

sxsy
sz

 =

(
3 1 4

2 0 1

)sxsy
sz

 =

(
3sx+ sy + 4sz

2sx+ sz

)

=

(
s (3x+ y + 4z)

s (2x+ z)

)
= s

(
3x+ y + 4z

2x+ z

)

= s

(
3 1 4

2 0 1

)xy
z

 = sTA

xy
z

 = sTA (
−→v ) . (167)

This shows that TA preserves scalar multiplication. Thus, TA is a linear transfor-

mation. �

The previous example illustrates a more general fact about matrices and linear
transformations.

Proposition 6.5 Let A be an m × n matrix. Define a function TA : Rn → Rm via

TA (
−→v ) = A−→v . The function TA is a linear transformation.

A more surprising and interesting fact is that every linear transformation actually
corresponds to some matrix multiplication:

Theorem 6.6 Let T : Rn → Rm be a linear transformation. There exists an m×n
matrix A such that for all −→v ∈ Rn, T (−→v ) = A−→v .

To construct the matrix corresponding to a linear transformation, find the im-
ages of the standard basis vectors under T : T (−→e1 ) , T (−→e2 ) , ..., T (−→en). Construct a
matrix whose columns are these vectors.

Example 6.7 Find the matrix corresponding to the linear map T : R3 → R2 de-

fined by

T

xy
z

 =

(
x+ 2y + 3z

2y − 3x+ z

)
. (168)
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To do this, we notice that

T

1

0

0

 =

(
1

−3

)
, T

0

1

0

 =

(
2

2

)
, T

0

0

1

 =

(
3

1

)
. (169)

The matrix corresponding to this linear transformation is:

MT =

(
1 2 3

−3 2 1

)
. (170)

To check our work, we examine the multiplication of this matrix by an arbitrary

vector in R3:

MT

xy
z

 =

(
1 2 3

−3 2 1

)xy
z

 =

(
x+ 2y + 3z

−3x+ 2y + z

)
= T

xy
z

 (171)

�

6.4 Properties of linear transformations

Definition 6.8 Let f : X → Y and g : Y → Z be functions. The composition of f

and g is the function g ◦ f : X → Z defined such that (g ◦ f) (x) = g (f (x)).

Suppose that T1 : Rk → Rn and T2 : Rn → Rm are linear transformations. In
that case, they correspond to some matrices; call these M1 and M2, respectively.
We should notice that for any vector −→v ∈ Rk,

(T2 ◦ T1) (−→v ) = T2 (T1 (
−→v )) = T2 (M1

−→v ) =M2 (M1
−→v ) = (M2M1)

−→v . (172)

Thus, we have the following theorem.

Theorem 6.9 Let T1 : Rk → Rn and T2 : Rn → Rm be linear transformations

with matrix representations M1 and M2, respectively. In that case, T2 ◦ T1 is also a

linear transformation, and its matrix representation is the product M2M1.
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Definition 6.10 Let f : X → Y and g : Y → X be functions. We say that f and g

are inverse functions provided that for all x ∈ X , g (f (x)) = x and for all y ∈ Y ,

f (g (y)) = y.

Example 6.11 The following pair of functions are inverse functions.

f : R→ R g : R→ R
f (x) = ex, g (x) = ln x

. (173)

�

Theorem 6.12 Let T : Rn → Rm be a linear transformation, and let M be the

matrix representation of T . The function T has an inverse function if and only if

M is an invertible matrix. In that case, the matrix representation of the inverse

function is M−1.
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9 Vector spaces

9.1 Definition of vector spaces

Definition 9.1 The field of complex numbers is the set

C =
{
a+ bi

∣∣∣a, b ∈ R
}
, (174)

where i2 = −1.

Definition 9.2 Let K be a “field.” (For this class, usually K = R or K = C.) A

vector space overK is a nonempty set V together with two operations called + and

· satisfying the following conditions.

(i) For any a, b ∈ V , a+ b ∈ V . (“V is closed under addition.”)

(ii) For any a, b, c ∈ V ,

a+ (b+ c) = (a+ b) + c. (175)

(“Addition is associative.”)

(iii) There exists an element 0 ∈ V such that for any a ∈ V ,

a+ 0 = 0 + a = a. (176)

(“V contains an additive identity.”)

(iv) For any a ∈ V , there exists a b ∈ V such that

a+ b = b+ a = 0. (177)

(“Additive inverses exist in V .”)

(v) For any a, b ∈ V ,

a+ b = b+ a. (178)

(“Addition is commutative.”)

(vi) For any s ∈ K and a ∈ V , s · a ∈ V . (“V is closed under scalar multiplica-

tion.”)
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(vii) For any r, s ∈ K and a ∈ V ,

r · (s · a) = (rs) · a. (179)

(“Scalar multiplication is associative.”)

(viii) For any s ∈ K and a, b ∈ V ,

s · (a+ b) = (s · a) + (s · b) . (180)

(“Scalar multiplication distributes over vector addition.”)

(ix) For any r, s ∈ K and a ∈ V ,

(r + s) · a = (r · a) + (s · a) . (181)

(“Scalar multiplication distributes over scalar addition.”)

(x) For any a ∈ V ,

1 · a = a. (182)

Example 9.3 The following sets are vector spaces over R.

1. Given any positive integer n,

Rn =




x1

x2
...

xn


∣∣∣∣∣x1, x2, ..., xn ∈ R

 . (183)

2. Given any positive integer n,

Pn (R) =

{
a0 + a1x+ a2x

2 + ...+ anx
n

∣∣∣∣∣a0, a1, a2, ..., an ∈ R

}
. (184)

3.

R [X] =
{
f : R→ R

∣∣∣f is a polynomial with real coefficients
}

(185)
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4. Given any positive integers m and n,

Mm×n (R) =




a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

am1 am2 ... amn


∣∣∣∣∣a11, a12, ..., amn ∈ R

 . (186)

5. The set

Func (R,R) =
{
f : R→ R

∣∣∣f is a function
}

(187)

is a vector space.

6. Given any non-negative integer n,

Cn (R,R) =
{
f : R→ R

∣∣∣f (n) is continuous
}
. (188)

7.

C∞ (R,R) =
{
f : R→ R

∣∣∣ for every non-negative integer n, f (n) is continuous
}
.

(189)
8.

Seq (R) =
{
(a1, a2, a3, ...)

∣∣∣a1, a2, a3, ... ∈ R
}
. (190)

9.2 Linear combinations, span, and linear independence

Definition 9.4 Let V be a vector space over a field K. Let −→v1 ,−→v2 , ...,−→vk ∈ V . A

vector −→u ∈ V is a linear combination of −→v1 ,−→v2 , ...,−→vk provided that there exist

scalars s1, s2, ..., sk ∈ K such that

−→u = s1
−→v1 + s2

−→v2 + ...+ sk
−→vk . (191)

Example 9.5 Determine whether the matrix

A =

(
1 3

−1 2

)
(192)
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can be written as a linear combination of the matrices

−→v1 =

(
1 0

0 1

)
, −→v2 =

(
1 0

0 −1

)
, −→v3 =

(
0 1

1 0

)
, −→v4 =

(
0 −1
1 0

)
(193)

over R.

We seek scalars s1, s2, s3, s4 ∈ R such that(
1 3

−1 2

)
= s1

(
1 0

0 1

)
+ s2

(
1 0

0 −1

)
+ s3

(
0 1

1 0

)
+ s4

(
0 −1
1 0

)

=

(
s1 + s2 s3 − s4
s3 + s4 s1 − s2

)
(194)

This gives us a system of four linear equations:

s1 + s2 = 1

s3 − s4 = 3

s3 + s4 = −1
s1 − s2 = 2

. (195)

We set up an augmented matrix corresponding to the system:
1 1 0 0 | 1

0 0 1 −1 | 3

0 0 1 1 | −1
1 −1 0 0 | 2

 . (196)
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We proceed with Gauss-Jordan elimination:
1 1 0 0 | 1

0 0 1 −1 | 3

0 0 1 1 | −1
1 −1 0 0 | 2

 R4−R1→R4−−−−−−−→


1 1 0 0 | 1

0 0 1 −1 | 3

0 0 1 1 | −1
0 −2 0 0 | 1



R3−R2→R3−−−−−−−→


1 1 0 0 | 1

0 0 1 −1 | 3

0 0 0 2 | −4
0 −2 0 0 | 1


1
2
R3→R3−−−−−→


1 1 0 0 | 1

0 0 1 −1 | 3

0 0 0 1 | −2
0 −2 0 0 | 1



R2+R3→R2−−−−−−−→


1 1 0 0 | 1

0 0 1 0 | 1

0 0 0 1 | −2
0 −2 0 0 | 1


− 1

2
R4→R4−−−−−−→


1 1 0 0 | 1

0 0 1 0 | 1

0 0 0 1 | −2
0 1 0 0 | −1

2



R1−R4→R1−−−−−−−→


1 0 0 0 | 3

2

0 0 1 0 | 1

0 0 0 1 | −2
0 1 0 0 | −1

2

 R2↔R3−−−−→


1 0 0 0 | 3

2

0 0 0 1 | −2
0 0 1 0 | 1

0 1 0 0 | −1
2



R2↔R4−−−−→


1 0 0 0 | 3

2

0 1 0 0 | −1
2

0 0 1 0 | 1

0 0 0 1 | −2

 (197)
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From this we deduce that a single solution exists: s1 = 3
2
, s2 = −1

2
, s3 = 1 and

s4 = −2. Thus,(
1 3

−1 2

)
= 3

2

(
1 0

0 1

)
− 1

2

(
1 0

0 −1

)
+ 1

(
0 1

1 0

)
− 2

(
0 −1
1 0

)
. (198)

�

Example 9.6 Determine whether p (x) = 7x2 + 4x− 3 can be written as a linear

combination of

q1 (x) = x2, q2 (x) = (x+ 1)2, q3 (x) = (x+ 2)2. (199)

We seek scalars s1, s2, s3 ∈ R which satisfy the equation

s1q1 + s2q2 + s3q3 = p. (200)

In other words, we need scalars such that

s1
(
x2
)
+ s2(x+ 1)2 + s3(x+ 2)2 = 7x2 + 4x− 3 (201)

for all values of x. To find them, we first distribute:

s1x
2 + s2x

2 + 2s2x+ s2 + s3x
2 + 4s3x+ 4s3 = 7x2 + 4x− 3. (202)

Now collect like terms in powers of x to get

(s1 + s2 + s3)x
2 + (2s2 + 4s3)x+ (s2 + 4s3) = 7x2 + 4x− 3. (203)

We have that these two polynomials must be equal for all values of x. Therefore,

they must be the same polynomial, with the same coefficients. This gives us the
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following system of equations:

s1 + s2 + s3 = 7

2s2 + 4s3 = 4

s2 + 4s3 = −3
. (204)

We convert this to an augmented matrix:1 1 1 | 7

0 2 4 | 4

0 1 4 | −3

 , (205)

and proceed with Gauss-Jordan elimination:

 1 1 1 | 7

0 2 4 | 4

0 1 4 | −3

 R2−R3→R2−−−−−−−→

 1 1 1 | 7

0 1 0 | 7

0 1 4 | −3


R3−R2→R3−−−−−−−→

 1 1 1 | 7

0 1 0 | 7

0 0 4 | −10

 1
4
R3→R3−−−−−→

 1 1 1 | 7

0 1 0 | 7

0 0 1 | −5
2


R1−R2→R1−−−−−−−→

 1 0 1 | 0

0 1 0 | 7

0 0 1 | −5
2

 R1−R3→R1−−−−−−−→

 1 0 0 | 5
2

0 1 0 | 7

0 0 1 | −5
2

 .

(206)

This reveals that s1 = 5
2
, s2 = 7 and s3 = −5

2
. Thus,

7x2 + 4x− 3 = 5
2
x2 + 7(x+ 1)2 − 5

2
(x+ 2)2 . (207)

�

Definition 9.7 Let V be a vector space over a field K. Given a subset S ⊆ V , the
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span of S is the set of linear combinations of elements of S:

span (S) =
{
s1
−→v1 + s2

−→v2 + ...+ sk
−→vk
∣∣∣s1, s2, ..., s+k ∈ K and −→v1 ,−→v2 , ...,−→vk ∈ S

}
.

(208)

Definition 9.8 Let V be a vector space over a field K. A finite sequence of vectors

(−→v1 ,−→v2 , ...,−→vk) in V is linearly independent (over K) provided that the equation

s1
−→v1 + s2

−→v2 + ...+ sk
−→vk = 0 (209)

has only the trivial solution: s1 = s2 = ... = sk = 0. An infinite sequence of vectors

is called linearly independent (over R) provided that every finite subsequence is

linearly independent.

Example 9.9 Determine whether the following polynomials are linearly indepen-

dent over R:

p1 (x) = x2, p2 (x) = x2 + 2x− 1, p3 (x) = 2x2 − x+ 3. (210)

We seek scalars s1, s2, s3 ∈ R satisfying the equation

s1p1 + s2p2 + s3p3 = 0, (211)

or in other words,

s1x
2 + s2

(
x2 + 2x− 1

)
+ s3

(
2x2 − x+ 3

)
= 0 (212)

for all values of x. We distribute:

s1x
2 + s2x

2 + 2s2x− s2 + 2s3x
2 − s3x+ 3s3 = 0, (213)

and collect like terms in powers of x:

(s1 + s2 + 2s3)x
2 + (2s2 − s3)x+ (3s3 − s2) = 0x2 + 0x+ 0. (214)

Since these two polynomials are equal for all values of x, they must be the same
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polynomial, with the same coefficients. This gives us the system of equations

s1 + s2 + 2s3 = 0

2s2 − s3 = 0

−s2 + 3s3 = 0

. (215)

We convert to an augmented matrix:1 1 2 | 0

0 2 −1 | 0

0 −1 3 | 0

 , (216)

and proceed with Gauss-Jordan elimination:

 1 1 2 | 0

0 2 −1 | 0

0 −1 3 | 0

 R2+2R3→R2−−−−−−−→

 1 1 2 | 0

0 0 5 | 0

0 −1 3 | 0


R2↔R3−−−−→

 1 1 2 | 0

0 −1 3 | 0

0 0 5 | 0

 1
5
R3→R3−−−−−→

 1 1 2 | 0

0 −1 3 | 0

0 0 1 | 0


−R2→R2−−−−−→

 1 1 2 | 0

0 1 −3 | 0

0 0 1 | 0

 R2+3R3→R2−−−−−−−→

 1 1 2 | 0

0 1 0 | 0

0 0 1 | 0


R1−R2→R1−−−−−−−→

 1 0 2 | 0

0 1 0 | 0

0 0 1 | 0

 R1−2R3→R1−−−−−−−→

 1 0 0 | 0

0 1 0 | 0

0 0 1 | 0

 . (217)

This gives us the unique solution s1 = s2 = s3 = 0. By definition of linear

independence, this shows that p1, p2 and p3 are linearly independent . �

Example 9.10 In the vector space Func (R,R), determine whether the following

vectors are linearly independent:

f (x) = sinx g (x) = cos x. (218)
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We seek scalars s1, s2 ∈ R such that

s1f + s2g = 0, (219)

or in other words,

s1 sinx+ s2 cosx = 0 (220)

for all values of x. In particular, if x = π
2
, then the equation must hold:

s1 sin
(
π
2

)
+ s2 cos

(
π
2

)
= 0

s1 (1) + s2 (0) = 0

s1 = 0

. (221)

On the other hand, if x = 0, then the equation must hold:

s1 sin (0) + s2 cos (0) = 0

s1 (0) + s2 (1) = 0

s2 = 0

. (222)

In this way, we’ve shown that both s1 = s2 = 0. By definition, f and g are

linearly independent . �

9.3 Subspaces

Definition 9.11 Let V be a vector space over a field K, and let W ⊆ V . We say

that W is a vector subspace of V provided that the following statements are true.

(i)
−→
0 ∈ W .

(ii) For any −→u ,−→v ∈ W , −→u +−→v ∈ W .

(iii) For any s ∈ K and −→v ∈ W , s−→v ∈ W .

Example 9.12 The following are examples of vector subspaces.

1. Given any non-negative integer n,Cn (R,R) is a vector subspace of Func (R,R).
Further, C∞ (R,R) is a vector subspace of Cn (R,R).
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2. The set

S =

{(
a b

0 d

)∣∣∣∣∣a, b, d ∈ R

}
(223)

is a vector subspace of M2×2 (R).
3. Any vector space is a vector subspace of itself.

4. Given a vector space V whose additive identity is denoted
−→
0 , the set

{−→
0
}

is a

vector subspace of V .

9.4 Basis and dimension

Definition 9.13 Let V be a vector space over a fieldK, and letB = (−→v1 ,−→v2 ,−→v3 , ...)
be a sequence of vectors in V . We say that B is a basis for V provided that the

following statements are true.

(i) span (B) = V .

(ii) B is linearly independent.

Theorem 9.14 Given any vector space V over a field K, there exists a basis for V .

Theorem 9.15 Let V be a vector space over a field K. Given bases B1 and B2 of

V , B1 and B2 have the same number of elements.

Definition 9.16 Let V be a vector space over a field K. The dimension of V is the

number of elements in a basis of V .
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10 Linear transformations of vector spaces

10.1 Definition and examples

Definition 10.1 Let V andW be vector spaces over a field of scalarsK. A function

T : V → W is called a linear transformation from V to W provided that the

following two statements are true.

(i) For all v1, v2 ∈ V , T (v1 + v2) = T (v1) + T (v2).

(ii) For all v ∈ V and for all s ∈ K, sT (v) = T (sv).

In the case that V = W , we say that T is a linear operator on V .

Examples (and/or nonexamples) of linear transformations can be found on your
Homework 03.

10.3 Linear transformations defined on a basis

Proposition 10.2 Let V and W be vector spaces over a field K, and suppose that

T1, T2 : V → W are linear transformations. Given a set S ⊆ V , suppose that

span (S) = V . If, for all v ∈ S, T1 (v) = T2 (v), then T1 = T2.

Theorem 10.3 Let V and W be vector spaces over a field K. Let (v1, v2, ..., vn) be

a basis for V . Given any vectors w1, w2, ..., wn ∈ W , there exists a unique linear

transformation T : V → W such that T (vi) = wi for each i ∈ {1, 2, ..., n}.

To summarize, every linear transformation is completely defined by what it does
to basis elements.

10.4 The matrix of a linear transformation

Just as with Euclidean spaces, every linear transformation can be fully described
by a matrix, provided that some bases are chosen for the two vector spaces in ques-
tion.

Proposition 10.4 Let V and W be finite-dimensional vector spaces over a field

K. Suppose that B is a basis for V and C is a basis for W . Given a linear
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transformation T : V → W , there exists a unique matrix A such that for any

v ∈ V , A[v]B = [T (v)]C .

To write the matrix representation of a linear transformation, find T (vi) for each
i, and write its coordinates in terms of C. This will become the ith column of the
matrix representation.

Example 10.5 Let T : R2 → R3 be the linear transformation defined via

T

(
a

b

)
=

a+ b

b

a

 . (224)

Consider the bases

B =

((
1

0

)
,

(
−1
1

))

C =


1

1

0

 ,

0

1

1

 ,

1

0

1


. (225)

Find the matrix representation of T with respect to the bases B and C.

First, we need to find the values of T on the elements of B:

T

(
1

0

)
=

1

0

1

 , T

(
−1
1

)
=

 0

1

−1

. (226)

Next, we need to find the coordinates of these vectors with respect to the basis C.

In other words, we seek scalars s1, s2, s3 ∈ R such that1

0

1

 = s1

1

1

0

+ s2

0

1

1

+ s3

1

0

1

 (227)
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and scalars t1, t2, t3 ∈ R such that 0

1

−1

 = t1

1

1

0

+ t2

0

1

1

+ t3

1

0

1

 . (228)

For the first problem, we can take s1 = s2 = 0 and s3 = 1. Thus, we get the

coordinate representation

[
T

(
1

0

)]
C

=


1

0

1



C

=

0

0

1

 . (229)

The second problem is less obvious; for this we set up an augmented matrix1 0 1 | 0

1 1 0 | 1

0 1 1 | −1

 (230)

and proceed with Gauss-Jordan elimination:

 1 0 1 | 0

1 1 0 | 1

0 1 1 | −1

 R2−R1→R2−−−−−−−→

 1 0 1 | 0

0 1 −1 | 1

0 1 1 | −1


R3−R2→R3−−−−−−−→

 1 0 1 | 0

0 1 −1 | 1

0 0 2 | −2

 1
2
R3→R3−−−−−→

 1 0 1 | 0

0 1 −1 | 1

0 0 1 | −1


R2+R3→R2−−−−−−−→

 1 0 1 | 0

0 1 0 | 0

0 0 1 | −1

 R1−R3→R1−−−−−−−→

 1 0 0 | 1

0 1 0 | 0

0 0 1 | −1

 (231)
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This gives us t1 = 1, t2 = 0, and t3 = −1. Thus,

[
T

(
−1
1

)]
C

=


 0

1

−1



C

=

 1

0

−1

 . (232)

Now the matrix representation of T with respect to the bases B and C is

MT =

0 1

0 0

1 −1

 . (233)

�

Example 10.6 Let T : P3 (R) → M2×2 (R) be the linear transformation defined

via

T
(
ax3 + bx2 + cx+ d

)
=

(
a+ d b− c
b+ c a− d

)
. (234)

Consider the bases B = (1, x, x2, x3) and

C =

((
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

))
(235)

of P3 (R) and M2×2 (R), respectively. Find the matrix representation of T with

respect to the bases B and C.

First, we need to know what T does to the elements of B:

T (1) =

(
1 0

0 −1

)
, T (x) =

(
0 −1
1 0

)
,

T (x2) =

(
0 1

1 0

)
, T (x3) =

(
1 0

0 1

) . (236)

Next, we need to write each of these as a linear combination of the elements of the
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basis C. In this case, the basis C is simple enough that this is easy to do:

T (1) =

(
1 0

0 −1

)
= 1

(
1 0

0 0

)
+ 0

(
0 1

0 0

)
+ 0

(
0 0

1 0

)
− 1

(
0 0

0 1

)

T (x) =

(
0 −1
1 0

)
= 0

(
1 0

0 0

)
− 1

(
0 1

0 0

)
+ 1

(
0 0

1 0

)
+ 0

(
0 0

0 1

)

T (x2) =

(
0 1

1 0

)
= 0

(
1 0

0 0

)
+ 1

(
0 1

0 0

)
+ 1

(
0 0

1 0

)
+ 0

(
0 0

0 1

)

T (x3) =

(
1 0

0 1

)
= 1

(
1 0

0 0

)
+ 0

(
0 1

0 0

)
+ 0

(
0 0

1 0

)
+ 1

(
0 0

0 1

)
. (237)

Now the coordinates are

[T (1)]C =


1

0

0

−1

 , [T (x)]C =


0

−1
1

0

 ,

[T (x2)]C =


0

1

1

0

 , [T (x3)]C =


1

0

0

1


. (238)

Thus, the matrix representation of T with respect to the bases B and C is

MT =


1 0 0 1

0 −1 1 0

0 1 1 0

−1 0 0 1

 . (239)

�

Example 10.7 Let

M =

(
1 2

−2 1

)
, (240)
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and consider the linear operator T : M2×2 (R) → M2×2 (R) defined via the rela-

tionship T (A) = MAM . Find the matrix representation of T with respect to the

following basis:

B =

((
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

))
. (241)

As usual, we need to find what T does to the elements of B:

T

(
1 0

0 0

)
=

(
1 2

−2 1

)(
1 0

0 0

)(
1 2

−2 1

)
=

(
1 2

−2 −4

)

T

(
0 1

0 0

)
=

(
1 2

−2 1

)(
0 1

0 0

)(
1 2

−2 1

)
=

(
−2 1

4 −2

)

T

(
0 0

1 0

)
=

(
1 2

−2 1

)(
0 0

2 0

)(
1 2

−2 1

)
=

(
2 4

1 2

)

T

(
0 0

0 1

)
=

(
1 2

−2 1

)(
0 0

0 1

)(
1 2

−2 1

)
=

(
−4 2

−2 1

)
. (242)

Next, we need to write the coordinates of each of these with respect to the basis B:

[
T

(
1 0

0 0

)]
C

=


1

2

−2
−4


[
T

(
1 0

0 0

)]
C

=


−2
1

4

−2


[
T

(
0 0

1 0

)]
C

=


2

4

1

2


[
T

(
0 0

0 1

)]
C

=


−4
2

−2
1


. (243)

Now the matrix representation of the linear transformation with respect to the basis
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B is

MT =


1 −2 2 −4
2 1 4 2

−2 4 1 −2
−4 −2 2 1

 . (244)

�
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7 Determinants

We now turn our attention to figuring out under what conditions a matrix (and
therefore, a linear transformation) is invertible. To this end, we define a value called
the “determinant” of a matrix. Since no non-square matrix can have a two-sided
inverse matrix, we will restrict our attention to square matrices in this chapter.

7.1 Determinants of 2× 2- and 3× 3-matrices

Definition 7.1 Let

A =

(
a b

c d

)
(245)

be a 2× 2 matrix. The determinant of A is the value det (A) = ad− bc.

Example 7.2 Find the determinant of

A =

(
1 7

2 6

)
. (246)

Directly from the definition,

det (A) = (1) (6)− (7) (2) = 6− 14 = −8 . (247)

�

7.2 Minors and cofactors

Determinants of larger matrices can all be expressed in terms of determinants
of small matrices.

Definition 7.3 Let A be an n×n matrix. Given i, j ∈ {1, 2, ..., n}, the (i, j)-minor

ofA is the determinantMij of the (n− 1)×(n− 1)-submatrix obtained by deleting

the ith row and jth column of A.
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Example 7.4 Let

A =

1 2 0

0 0 2

3 2 1

 . (248)

Determine the minors M12 and M33.

By definition,

M12 =

∣∣∣∣∣0 2

3 1

∣∣∣∣∣ = −6 (249)

and

M33 =

∣∣∣∣∣1 2

0 0

∣∣∣∣∣ = 0 . (250)

�

Definition 7.5 Let A be an n × n matrix. Given i, j ∈ {1, 2, ..., n}, the (i, j)-co-

factor of A is the value

Cij = (−1)i+jMij, (251)

where Mij is the (i, j)-minor of A.

Example 7.6 Let

A =

1 2 0

0 0 2

3 2 1

 . (252)

Determine the cofactors C12 and C33.

This is the same matrix as in the previous example. Thus,

C12 = (−1)1+2M12 = (−1) (−6) = 6 (253)

and

C33 = (−1)3+3M33 = (1) (0) = 0 . (254)

�
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Definition 7.7 Let A be the following n× n matrix:

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

an1 an2 ... ann

 . (255)

(i) Given i ∈ {1, 2, ..., n}, the cofactor expansion of A along row i is the value

Di = ai1Ci1 + ai2Ci2 + ...+ ainCin. (256)

(ii) Given j ∈ {1, 2, ..., n}, the cofactor expansion of A along row j is the value

Ej = a1jC1j + a2jC2j + ...+ anjCnj. (257)

Example 7.8 Let

A =

1 2 0

0 0 2

3 2 1

 . (258)

Find the cofactor expansions D2 and E1.

By definition of the cofactor expansion along row 2,

D2 = 0C21 + 0C22 + 2C23. (259)

Now,

C23 = (−1)2+3M23 = −

(
1 2

3 2

)
= 4. (260)

Thus,

D2 = 2C23 = 2 (4) = 8 . (261)

By definition of cofactor expansion along column 1,

E1 = 1C11 + 0C21 + 3C31. (262)
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Now,

C11 = (−1)1+1M11 =

(
0 2

2 1

)
= −4

C31 = (−1)3+1M31 =

(
2 0

0 2

)
= 4

. (263)

Thus,

E1 = 1 (−4) + 3 (4) = 8 . (264)

�

The fact that the cofactor expansions in the previous example are equal is not un-
usual. In fact, this is always the case.

Theorem 7.9 Let A be an n × n matrix. Every cofactor expansion of A along a

given row is equal to every cofactor expansion of A along a given column.

Definition 7.10 Let A be an n × n matrix. The determinant of A is the cofactor

expansion of A along any row or column.

Example 7.11 Find the determinant of the following matrix:

A =


1 0 0 0

2 1 −1 0

1 2 0 1

−1 0 2 1

 . (265)

We compute det (A) by doing a cofactor expansion along the first row:

det (A) = 1C11 + 0C12 + 0C13 + 0C14 = C11. (266)

Now,

C11 = (−1)1+1M11 =

∣∣∣∣∣∣∣
1 −1 0

2 0 1

0 2 1

∣∣∣∣∣∣∣ . (267)
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This reduces the problem to finding the determinant of the above 3 × 3 matrix. In

turn, we can do cofactor expansion along the third column of the above matrix:

∣∣∣∣∣∣∣
1 −1 0

2 0 1

0 2 1

∣∣∣∣∣∣∣ = 0C13 + 1C23 + 1C33

= (−1)2+3M23 + (−1)3+3M33 = −

∣∣∣∣∣1 −10 2

∣∣∣∣∣+
∣∣∣∣∣1 −12 0

∣∣∣∣∣
= − (2) + (2) = 0 . (268)

�

7.3 The determinant of a triangular matrix

Definition 7.12 Let A be the following n× n matrix:

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

an1 an2 ... ann

 . (269)

(i) A is called an upper triangular matrix provided that for all i, j ∈ {1, 2, ..., n}, if

i > j, then aij = 0.

(ii) A is called a lower triangular matrix provided that for all i, j ∈ {1, 2, ..., n}, if

i < j, then aij = 0.

Example 7.13 The following matrices are upper triangular:

A =

(
1 1

0 2

)
B =

1 0 2

0 1 1

0 0 1

 C =


2 0 1 0

0 1 2 3

0 0 0 3

0 0 0 4

. (270)
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The following matrices are lower triangular:

A =

(
2 0

1 2

)
B =

1 0 0

2 3 0

0 1 2

 C =


5 0 0 0

1 2 0 0

−1 1 6 0

1 1 1 1

. (271)

The following matrices are both upper triangular and lower triangular:

A =

(
1 0

0 2

)
B =

0 0 0

0 0 0

0 0 0

 C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. (272)

The following square matrices are neither upper triangular nor lower triangular:

A =

(
1 2

3 4

)
B =

1 0 1

0 1 0

1 0 1

 C =


1 0 0 0

0 1 3 0

0 0 1 0

2 0 0 0

. (273)

Theorem 7.14 Let A be an n× n matrix:

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

an1 an2 ... ann

 . (274)

If A is upper triangular or lower triangular, then det (A) = a11a22...ann.

7.4 Determinants and row operations

Theorem 7.15 Let A be an n× n matrix.

(i) If B is obtained by switching two rows of A, then det (B) = − det (A).

(ii) If B is obtained by multiplying a nonzero scalar s by one row of A, then
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det (B) = s det (A).

(iii) If B is obtained by adding a multiple of one row of A to another row of A, then

det (B) = det (A).

This theorem gives us the following strategy: to compute the determinant of
a large matrix, use elementary row operations to find a row-equivalent triangular
matrix. Then, the determinant will be easy to compute.

Example 7.16 Find the determinant of the following matrix:

A =


0 2 1 4

2 2 −4 1

1 1 −2 −1
1 3 2 5

 . (275)

We’ll use the theorem to predict how the determinant will change when we use

elementary row operations. First, let’s apply elementary row operations until we
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get an upper triangular matrix:

A =


0 2 1 4

2 2 −4 −1
1 1 −2 −1
1 3 2 5


R1↔R3−−−−→ B1 =


1 1 −2 −1
2 2 −4 −1
0 2 1 4

1 3 2 5

 detB1 = − detA

R2−2R1↔R2−−−−−−−→ B2 =


1 1 −2 −1
0 0 0 1

0 2 1 4

1 3 2 5

 detB2 = detB1 = − detA

R4−R1↔R4−−−−−−−→ B3 =


1 1 −2 −1
0 0 0 1

0 2 1 4

0 2 4 6

 detB3 = detB2 = − detA

R4−R3→R4−−−−−−−→ B4 =


1 1 −2 −1
0 0 0 1

0 2 1 4

0 0 3 2

 detB4 = detB3 = − detA

R2↔R3−−−−→ B5 =


1 1 −2 −1
0 2 1 4

0 0 0 1

0 0 3 2

 detB5 = − detB4 = detA

R3↔R4−−−−→ B6 =


1 1 −2 −1
0 2 1 4

0 0 3 2

0 0 0 1

 detB6 = − detB5 = − detA

(276)
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Now, since B6 is upper triangular,

detB6 =

∣∣∣∣∣∣∣∣∣∣
1 1 −2 −1
0 2 1 4

0 0 3 2

0 0 0 1

∣∣∣∣∣∣∣∣∣∣
= (1)(2)(3)(1) = 6. (277)

Ergo, detA = −6 . �

7.5 Properties of determinants

Theorem 7.17 Let A be a square matrix. The matrix A is invertible if and only if

det (A) 6= 0.

To summarize all of our results about square matrices, we state the following
very big theorem.

Theorem 7.18 Let A be an n×n matrix. The following statements are equivalent.

(i) detA 6= 0.

(ii) A is invertible.

(iii) Any linear transformation that has A as its matrix representation is invertible.

(iv) The equation A−→v =
−→
0 has only the trivial solution.

(v) The columns of A are linearly independent.

(vi) dim (Col (A)) = n.

(vii) The columns of A form a basis for Rn.

(viii) A has full rank.

(ix) rank (A) = n.

(x) A is row-equivalent to In.

(xi) Any augmented matrix whose left side is A has no free variables.

(xii) null (A) =
{−→
0
}

.

Theorem 7.19 Let A and B be n× n matrices. In that case,

det (AB) = det (A) det (B) . (278)
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In particular, if A and B are inverse matrices, then AB = In. The theorem above
now indicates that

1 = det (In) = det (AB) = det (A) det (B) . (279)

From this, we deduce that detB = 1
detA

.
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8 Eigenvalues, eigenvectors and diagonalization

8.1 Eigenvalues and eigenvectors

Definition 8.1 Let A be an n × n matrix with entries in R. An eigenvalue of A

is a scalar λ ∈ C such that there exists a nonzero vector −→v ∈ Rn satisfying the

equation A−→v = λ−→v . In that case, −→v is called an eigenvector of A corresponding

to λ.

Do the eigenvectors corresponding to a particular eigenvalue of a matrix form a
vector space? Almost.

Definition 8.2 Let A be an n×n matrix, and let λ ∈ C be an eigenvalue of A. The

eigenspace of A associated to λ is the set

Eλ =
{−→v ∈ Rn

∣∣A−→v = λ−→v
}
. (280)

8.2 Finding eigenvalues

Suppose that A is an n× n matrix that has an eigenvalue λ, with an associated
eigenvector −→v . In that case, A−→v = λ−→v . This can also be written as

(A− λIn)−→v =
−→
0 . (281)

By definition, in order for−→v to be an eigenvector of A corresponding to λ, we need
that −→v 6= −→0 . Now, the equation above has a non-trivial solution if and only if

det (A− λIn) = 0. (282)

(The left side of the equation above is called the “characteristic polynomial” of the
matrix, and the entire equation is called the “characteristic equation” of the matrix.)
Using this fact, we can find the eigenvalues of any square matrix. From there,
finding the eigenvectors associated to each eigenvalue is possible. These vectors
form an actual vector space associated to each eigenvalue.
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Example 8.3 Find the eigenvalues and associated eigenspaces of the following ma-

trix:

A =

(
2 1

1 2

)
. (283)

We begin by writing the characteristic polynomial:

det (A− λI2) = det

((
2 1

1 2

)
− λ

(
1 0

0 1

))

=

∣∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣∣ = (2− λ)2 − 1 = λ2 − 4λ+ 3. (284)

We now solve the characteristic equation by setting this to 0:

0 = λ2 − 4λ+ 3 = (λ− 3) (λ− 1) . (285)

This gives us the eigenvalues λ1 = 1 and λ2 = 3 .

To find the eigenvectors associated to λ1 = 1, we now apply the definition of

eigenvector; we seek −→v ∈ R2 which are nonzero and satisfy

A−→v = 1−→v . (286)

This can be re-written as

(A− 1I2)
−→v =

−→
0 . (287)

In other words, we seek vectors that solve the equation(
1 1

1 1

)(
a

b

)
=

(
0

0

)
. (288)

This gives us the redundant system of equations

a+ b = 0

a+ b = 0
. (289)

It is easy to see that b is a free variable of this system, so we give it the name s. Now
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all eigenvectors can be described as

E1 =

{(
−s
s

)∣∣∣∣∣s ∈ R

}
. (290)

In the same way, to find the eigenvectors associated to λ2 = 3, we see −→v ∈ R2

which are nonzero and satisfy

(A− 3I2)
−→v =

−→
0 . (291)

In other words, we want to solve the equation(
−1 1

1 −1

)(
c

d

)
=

(
0

0

)
. (292)

Again, we get a system of equations that does not have full rank:

−c+ d = 0

c− d = 0
. (293)

Consider d as a free variable, and call it t. In that case, all eigenvectors can be

described as

E3 =

{(
t

t

)∣∣∣∣∣t ∈ R

}
. (294)

Example 8.4 Find the eigenvalues and associated eigenspaces of the following ma-

trix:

A =

(
1 1

−1 1

)
. (295)

We begin by writing the characteristic equation:

0 = det (A− λI2) =

∣∣∣∣∣1− λ 1

−1 1− λ

∣∣∣∣∣ = (λ− 1)2 + 1 = λ2 − 2λ+ 2. (296)
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We solve this by using the quadratic formula:

λ =
− (−2)±

√
(−2)2 − 4 (1) (2)

2 (1)
= 1± i . (297)

To find the eigenspace associated to 1 + i, we must solve the equation(
−i 1

−1 −i

)(
a

b

)
=

(
0

0

)
. (298)

This gives us the system of equations

−ia+ b = 0

−a− ib = 0
. (299)

This system of equations has b as a free variable, so we name it s. The eigenspace

can now be written as

E1+i =

{(
−is
s

)∣∣∣∣∣s ∈ R

}
. (300)

To find the eigenspace associated to 1− i, we must solve(
i 1

−1 i

)(
c

d

)
=

(
0

0

)
. (301)

This gives us the system of equations

ic+ d = 0

−c+ id = 0
, (302)

with d as a free variable. We call d = t. Now the eigenspace associated to 1− i is

E1−i =

{(
it

t

)∣∣∣∣∣t ∈ R

}
. (303)

Example 8.5 Find the eigenvalues and associated eigenspaces of the following ma-
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trix:

A =

(
3 1

0 3

)
. (304)

We write the characteristic equation:

0 = det (A− λI2) =

∣∣∣∣∣3− λ 1

0 3− λ

∣∣∣∣∣ = (λ− 3)2. (305)

This gives the single, repeated eigenvalue λ = 3.

To find the eigenspace associated to λ = 3, we must solve(
0 1

0 0

)(
a

b

)
=

(
0

0

)
. (306)

This gives us the single requirement that b = 0. Now a is a free variable, and so the

eigenspace can be written as

E3 =

{(
t

0

)∣∣∣∣∣t ∈ R

}
. (307)

�

Example 8.6 Find the eigenvalues and associated eigenspaces of the following ma-

trix:

A =

2 1 1

1 2 0

0 0 2

 . (308)

We write the characteristic equation:

0 = det (A− λI3) =

∣∣∣∣∣∣∣
2− λ 1 1

1 2− λ 0

0 0 2− λ

∣∣∣∣∣∣∣ = (2− λ)

∣∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣∣
= (2− λ)

(
(λ− 2)2 − 1

)
= (2− λ)

(
λ2 − 4λ+ 3

)
= (2− λ) (λ− 1) (λ− 3) . (309)
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This gives us three eigenvalues: λ1 = 1, λ2 = 2 and λ3 = 3.

To find the eigenspace associated to λ1 = 1, we solve the equation1 1 1

1 1 0

0 0 1


ab
c

 =

0

0

0

 . (310)

We proceed with Gauss-Jordan elimination:

 1 1 1 | 0

1 1 0 | 0

0 0 1 | 0

 R2−R1→R2−−−−−−−→

 1 1 1 | 0

0 0 −1 | 0

0 0 1 | 0


R2↔R3−−−−→

 1 1 1 | 0

0 0 1 | 0

0 0 −1 | 0

 R3+R2→R3−−−−−−−→

 1 1 1 | 0

0 0 1 | 0

0 0 0 | 0


R1−R2→R1−−−−−−−→

 1 1 0 | 0

0 0 1 | 0

0 0 0 | 0

 . (311)

This gives us the system
a+ b = 0

c = 0
, (312)

where b is a free variable that we call r. Now the eigenspace is

E1 =


−rr

0

∣∣∣∣∣r ∈ R

 . (313)

To find the eigenspace associated to λ2 = 2, we solve the equation0 1 1

1 0 0

0 0 0


ab
c

 =

0

0

0

 . (314)
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We proceed with Gauss-Jordan elimination: 0 1 1 | 0

1 0 0 | 0

0 0 0 | 0

 R1↔R2−−−−→

 1 0 0 | 0

0 1 1 | 0

0 0 0 | 0

 . (315)

This gives us the system
a = 0

b+ c = 0
. (316)

With c as the free variable s, the eigenspace is

E2 =


 0

−s
s

∣∣∣∣∣s ∈ R

 . (317)

To find the eigenspace associated to λ3 = 3, we solve the equation−1 1 1

1 −1 0

0 0 −1


ab
c

 =

0

0

0

 . (318)

We proceed with Gauss-Jordan elimination:

 −1 1 1 | 0

1 −1 0 | 0

0 0 −1 | 0

 R1+R2→R1−−−−−−−→

 0 0 1 | 0

1 −1 0 | 0

0 0 −1 | 0


R3+R1→R3−−−−−−−→

 0 0 1 | 0

1 −1 0 | 0

0 0 0 | 0

 R1↔R2−−−−→

 1 −1 0 | 0

0 0 1 | 0

0 0 0 | 0

 . (319)

This gives us the system
a− b = 0

c = 0
(320)
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with b as a free variable, which we will call t. Now the eigenspace is

E3 =


tt
0

∣∣∣∣∣t ∈ R

 (321)

�

Proposition 8.7 Let A be an upper or lower triangular matrix. The eigenvalues of

A are the entries along the main diagonal.

8.4 Diagonalization

Definition 8.8 Let A be an n × n matrix. We say that A is a diagonal matrix

provided that all entries of A that are not on the main diagonal are 0. (In other

words, A is both upper and lower triangular.)

Definition 8.9 LetA andB be n×nmatrices. We say thatA andB are similar ma-

trices provided that there exists an invertible n×nmatrix P such that P−1AP = B.

Definition 8.10 LetA be an n×n matrix. We say thatA is a diagonalizable matrix

provided that there exists a diagonal matrix D such that A is similar to D.

Theorem 8.11 An n× n matrix A is diagonalizable if and only if A has n linearly

independent eigenvectors. In that case, P−1AP = D, where P is the matrix whose

columns are linearly independent eigenvectors and D is the diagonal matrix whose

diagonal entries are the corresponding eigenvalues.

To “diagonalize” a matrix A means to find the matrices P and D such that
P−1AP = D and D is diagonal.

Example 8.12 Diagonalize the following matrix.

A =

(
3 1

1 3

)
. (322)
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We first need the eigenvalues and eigenvectors:

0 = det (A− λI2) =

∣∣∣∣∣3− λ 1

1 3− λ

∣∣∣∣∣
= (λ− 3)2 − 1 = λ2 − 6λ+ 8 = (λ− 2) (λ− 4) . (323)

This gives us the distinct, real eigenvalues λ1 = 4 and λ2 = 2.

To find the eigenspace corresponding to λ1 = 4, we solve the following equa-

tion:

(A− 4I2)
−→v =

−→
0 , (324)

which we write as (
−1 1

1 −1

)(
a

b

)
=

(
0

0

)
. (325)

This gives us the system a − b = 0, with b as a free variable. Call b = s. Now

a− s = 0, so a = s. Thus, the eigenvectors are(
a

b

)
=

(
s

s

)
= s

(
1

1

)
, (326)

where s 6= 0.

To find the eigenspace associated to λ2 = 2, we solve

(A− 2I2)
−→v =

−→
0 , (327)

which we write as (
1 1

1 1

)(
c

d

)
=

(
0

0

)
. (328)

This gives us c + d = 0, with d as a free variable. Call d = t. Now c + t = 0, so

c = −t. Thus, the eigenvectors take the form(
c

d

)
=

(
−t
t

)
= t

(
−1
1

)
. (329)
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Based on our eigenvectors, we can construct the matrix P :

P =

(
1 −1
1 1

)
. (330)

We now find the inverse matrix:(
1 −1 | 1 0

1 1 | 0 1

)
R2−R1→R2−−−−−−−→

(
1 −1 | 1 0

0 2 | −1 1

)
1
2
R2→R2−−−−−→

(
1 −1 | 1 0

0 1 | −1
2

1
2

)
R1+R2→R1−−−−−−−→

(
1 0 | 1

2
1
2

0 1 | −1
2

1
2

)
, (331)

giving us

P−1 =

(
1
2

1
2

−1
2

1
2

)
. (332)

According to our theorem, P−1AP should be a diagonal matrix whose diagonal

entries are 4 and 2. In fact, this is the case:(
1
2

1
2

−1
2

1
2

)(
3 1

1 3

)(
1 −1
1 1

)
=

(
4 0

0 2

)
. (333)

�

Example 8.13 Diagonalize the following matrix.

A =

 2 0 0

1 4 −1
−2 −4 4

 . (334)

@@@@@@@@@@@@@

Eigenvalues: 6, 2, 2

To find the eigenvectors associated to λ1 = 6, we need to solve the following

equation:

(A− 6I3)
−→v =

−→
0 , (335)
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which we write as −4 0 0

1 −2 −1
−2 −4 −2


ab
c

 =

0

0

0

 . (336)

@@@@@@@@@@@@@@@@@

Gauss-Jordan elimination gives1 0 0

0 1 1
2

0 0 0


ab
c

 =

0

0

0

 . (337)

This gives us the system
a = 0

b+ 1
2
c = 0

, (338)

with c as a free variable. Call c = r. Now the eigenvectors all take the formab
c

 =

 0

−1
2
r

r

 = r

 0

−1
2

1

 , (339)

where r 6= 0.

To find the eigenvectors associated to λ2 = 2m we need to solve

(A− 2I3)
−→v =

−→
0 , (340)

which we write as  0 0 0

1 2 −1
−2 −4 2


de
f

 =

0

0

0

 . (341)

@@@@@@@@@@@@@@ Gauss-Jordan elimination gives1 2 −1
0 0 0

0 0 0


de
f

 =

0

0

0

 . (342)
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This gives us d + 2e − f = 0, with e and f being free variables. Call e = s and

f = t. Now d+ 2s− t = 0, so d = −2s+ t. The eigenvectors take the formde
f

 =

−2s+ t

s

t

 = s

−21
0

+ t

1

0

1

 , (343)

where s and t are not both 0.

To construct the matrix P , we take linearly independent eigenvectors as the

columns:

P =

 0 −2 1

−1 1 0

2 0 1

 . (344)

@@@@@@@@@@@@@@ We take the inverse matrix:

P−1 =

−
1
4
−1

2
1
4

−1
4

1
2

1
4

1
2

1 1
2

 . (345)

According to our theorem, P−1AP should be a diagonal matrix, and in fact, it is:

−
1
4
−1

2
1
4

−1
4

1
2

1
4

1
2

1 1
2


 2 0 0

1 4 −1
−2 −4 4


 0 −2 1

−1 1 0

2 0 1

 =

6 0 0

0 2 0

0 0 2

 . (346)

�

8.9 Properties of eigenvectors and eigenvalues

Definition 8.14 Let A be an n× n matrix, and let λ be an eigenvalue of A.

(i) The algebraic multiplicity of λ is the largest integer k such that (x− λ)k divides

the characteristic polynomial of A.

(ii) The geometric multiplicity of λ is the dimension of the eigenspace of λ.

(iii) The defect of λ is the algebraic multiplicity of λ minus the geometric multiplic-
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ity of λ.

(iv) If the defect of an eigenvalue is zero, we say that the eigenvalue is complete.

(v) If the defect of an eigenvalue is greater than zero, we say that the eigenvalue is

defective.

(vi) If a matrix has a defective eigenvalue, we say that the matrix is defective.

Proposition 8.15 Given any n× n matrix A, the defect of any given eigenvalue of

A is non-negative.

Theorem 8.16 Let A be an n×n matrix. Either A is diagonalizable or A is defec-

tive.

Example 8.17 Determine whether the following matrix is diagonalizable.

A =


3 1 0 0 0

0 3 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 5

 . (347)

@@@@@@@@@@@@@@@@@@@@
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11 Inner product spaces

11.1 Real inner product spaces

Definition 11.1 Let V be a vector space over R. An inner product on V is an op-

eration 〈, 〉 that takes two input vectors and associates a real number as the output,

satisfying the following condtions:

(i) For any u, v ∈ V , 〈u, v〉 = 〈v, u〉 (“symmetry”)

(ii) For any u, v, w ∈ V and s, t ∈ R, 〈u, sv + tw〉 = s 〈u, v〉 + t 〈u,w〉. (“linear-

ity”)

(iii) For any u ∈ V , 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 if and only if u = 0 (“positive

definite”)

If 〈, 〉 is an inner product on V , we say that V is a real inner product space.

Example 11.2 The following are real inner product spaces.

(i) Rn, equipped with the dot product.

(ii) Let V = R2, and let

A =

(
1 1

1 2

)
. (348)

Define 〈u, v〉 = uTAv.

(iii) Let a, b ∈ R such that a < b. Let

C ([a, b] ,R) =
{
f : [a, b]→ R

∣∣f is continuous
}
. (349)

Define

〈f, g〉 =
� b

a

f (x) g (x) dx. (350)

Definition 11.3 Let V be a real inner product space. Given v ∈ V , the norm, or

magnitude of v is the value ||v|| =
√
〈v, v〉.

Example 11.4 Compute the norm of 1, x, x2, and x3 in C ([−1, 1] ,R).
By definition,

〈1, 1〉 =
� 1

−1
(1) (1) dx = x

∣∣∣∣∣
1

−1

= 2. (351)
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Therefore, ||1|| =
√
2 . Similarly,

〈x, x〉 =
� 1

−1
(x) (x) dx =

1

3
x3

∣∣∣∣∣
1

−1

=
2

3
, (352)

so ||x|| =
√

2
3

. Next,

〈
x2, x2

〉
=

� 1

−1

(
x2
) (
x2
)
dx =

1

5
x5

∣∣∣∣∣
1

−1

=
2

5
, (353)

so ||x2|| =
√

2
5

. Finally,

〈
x3, x3

〉
=

� 1

−1

(
x3
) (
x3
)
dx =

1

7
x7

∣∣∣∣∣
1

−1

=
2

7
, (354)

so ||x3|| =
√

2
7

. �

Definition 11.5 let V be a real inner product space. Given v ∈ V , we say that v is

a unit vector [in V ] provided that ||v|| = 1.

Theorem 11.6 (Cauchy-Schwarz inequality) Let V be a real inner product space.

Given u, v ∈ V ,

〈u, v〉 ≤ ||u||||v||. (355)

Theorem 11.7 (Triangle inequality) Let V be a real inner product space. Given

u, v ∈ V ,

||u+ v|| ≤ ||u||+ ||v||. (356)

11.2 Orthogonality

Definition 11.8 Let V be a real inner product space, and let u, v ∈ V . We say that

u and v are orthogonal [in V ] provided that 〈u, v〉 = 0.
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Notation u ⊥ v

Definition 11.9 Let V be a real inner product space, and let S ⊆ V . The orthogo-

nal complement of S in V is the set

S⊥ =
〈
v ∈ V

∣∣For all u ∈ S, 〈v, u〉 = 0
〉
. (357)

Example 11.10 Let V = P3 (R) with an inner product defined by

〈f, g〉 =
� 1

−1
f (x) g (x) dx (358)

Let S = {x2}. Find S⊥, the orthogonal complement of S in V .

By definition,

S⊥ =

{
f ∈ P3 (R)

∣∣∣∣∣
� 1

−1
x2f (x) dx = 0

}
. (359)

Each element f ∈ P3 (R) can be written as

f (x) = ax3 + bx2 + cx+ d, (360)

for some a, b, c, d ∈ R. Thus, f ∈ S⊥ if and only if

0 =

� 1

−1
x2
(
ax3 + bx2 + cx+ d

)
dx =

1

6
ax6+

1

5
bx5+

1

4
cx4+

1

3
dx3
∣∣∣∣1
−1

=
2

5
b+

2

3
d.

(361)
In other words,

S⊥ =

{
ax3 + bx2 + cx+ d

∣∣∣∣∣25b+ 2
3
d = 0

}
. (362)

�

Proposition 11.11 Let V be a real inner product space. Given any S ⊆ V , S⊥ is a

vector subspace of V .
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Definition 11.12 Let V be a real inner product space. Given a set of nonzero vec-

tors S ⊆ V , we say that S is an orthogonal set in V provided that for all u, v ∈ S,

if u 6= v, then u ⊥ v. We say that S is an orthonormal set in V provided that S is

an orthogonal set in V and each element of S is a unit vector in V .

Proposition 11.13 Let V be a real inner product space. Given a nonempty S ⊆ V ,

if S is orthogonal, then S is linearly independent.

In particular, the previous proposition indicates that any orthogonal set that
spans an entire subspace is a basis for that subspace.

Proposition 11.14 Let V be a real inner product space, and let B = (v1, v2, ..., vk)

be an orthogonal basis for V . Given any u ∈ V , the coordinates of u with respect

to B are

[u]B =


〈u,v1〉
||v1||
〈u,v2〉
||v2||

...
〈u,vk〉
||vk||

 . (363)

Definition 11.15 Let V be a real inner product space, and let B be an orthogonal

basis of V . Given v ∈ V , the Fourier coefficients of v with respect to B are the

coordinates of v with respect to B.

11.3 The Gram-Schmidt orthogonalization procedure

Suppose that v1 and v2 are linearly independent, but not orthogonal. To con-
struct a new vector u2 that is orthogonal to v1, we consider u2 = v2 − tv1 for some
t ∈ R. To find t, we use the fact that v1 ⊥ u2:

0 = 〈v1, u2〉 = 〈v1, v2 − tv1〉 = 〈v1, v2〉 − t 〈v1, v1〉 . (364)

Now t = 〈v1,v2〉
〈v1,v1〉 =

〈v1,v2〉
||v1||2

. We can extend this to find an orthogonal basis for any
real inner product space.
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Proposition 11.16 (Gram-Schmidt orthogonalization) Let V be a real inner prod-

uct space, and let (v1, v2, ..., vn) be a basis for V . Define

u1 = v1

u2 = v2 − 〈u1,v2〉〈u1,u1〉u1

u3 = v3 − 〈u1,v3〉〈u1,u1〉u1 −
〈u2,v3〉
〈u2,u2〉u2

...

un = vn − 〈u1,vn〉〈u1,u1〉u1 −
〈u2,vn〉
〈u2,u2〉u2 − ...−

〈un−1,vn〉
〈un−1,un−1〉un−1

. (365)

In that case, (u1, u2, ..., un) is an orthogonal basis for V .

Example 11.17 Find an orthogonal basis for

V = span



1

1

1

1

 ,


1

1

1

0

 ,


1

1

0

0


 (366)

in R4 with the dot product.

Define

v1 =


1

1

1

1

 , v2 =


1

1

1

0

 , v3 =


1

1

0

0

. (367)

We note that (v1, v2, v3) is linearly independent, and so it is a basis for V . We follow
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the Gram-Schmidt orthogonalization procedure:

u1 = v1 =


1

1

1

1



u2 = v2 − u1·v2
u1·u1u1 =


1

1

1

0

− 3
4


1

1

1

1

 =


1
4
1
4
1
4

−3
4



u3 = v3 − u1·v3
u1·u1u1 −

u2·v3
u2·u2u2 =


1

1

0

0

− 2
4


1

1

1

1

− ( 1
2)
( 3
4)


1
4
1
4
1
4

−3
4

 =


1
3
1
3

−2
3

0



. (368)

Now, according to the proposition, (u1, u2, u3) is an orthogonal basis for V . �

11.7 Diagonalization of symmetric matrices

Definition 11.18 Let A be an n× n matrix. We say that A is an orthogonal matrix

provided that ATA = In.

Proposition 11.19 Let A ∈Mn×n (R). The following statements are equivalent.

(i) A is orthogonal.

(ii) The columns of A form an orthonormal set.

(iii) A is invertible, and AT = A−1.

Definition 11.20 Let A be an n × n matrix. We say that A is orthogonally diago-

nalizable provided that there exists an orthogonal matrix P and a diagonal matrix

D such that P−1AP = D.

Theorem 11.21 Let A ∈ Mn×n (R). If A is symmetric, then A is orthogonally

diagonalizable.
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To find an orthogonal diagonalization, follow the same procedure as for ordi-
nary diagonalization, but also ensure that the vectors chosen for the matrix P are
orthonormal.

Example 11.22 Orthogonally diagonalize the following matrix:

A =

(
3 2

2 6

)
. (369)

(In other words, find matrices P and D such that P is orthogonal, D is diagonal,

and P−1AP = D.)

We first need the eigenvalues of A, so we write the characteristic polynomial:

det (A− λI2) =

∣∣∣∣∣3− λ 2

2 6− λ

∣∣∣∣∣ = λ2 − 9λ+ 14 = (λ− 2) (λ− 7) . (370)

This gives us the eigenvalues λ1 = 7 and λ2 = 2, each with an algebraic multiplicity

of 1.

To find the eigenspace corresponding to λ1 = 7, we solve

(A− 7I2)
−→v =

−→
0(

−4 2

2 −1

)(
a

b

)
=

(
0

0

)
. (371)

This gives us that 2a − b = 0, with b as a free variable. Call b = s. Now a = 1
2
s,

and so each element of the eigenspace E7 takes the form(
a

b

)
=

(
1
2
s

s

)
= s

(
1
2

1

)
. (372)

To find the eigenspace corresponding to λ2 = 2, we solve

(A− 2I2)
−→v =

−→
0(

1 2

2 4

)(
a

b

)
=

(
0

0

)
. (373)
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This gives us that a + 2b = 0, with b as a free variable. Call b = t. Now a = −2t,
so each element of the eigenspace E2 takes the form(

a

b

)
=

(
−2t
t

)
= t

(
−2
1

)
. (374)

As usual, to construct P , we need to select two linearly independent eigenvec-

tors. This is equivalent to selecting values for s and t:

−→v1 = s

(
1
2

1

)
, −→v2 = t

(
−2
1

)
. (375)

Unlike before, though, we must also select these eigenvectors so that they are or-

thogonal unit vectors. Therefore, we need that ||−→v1 || = ||−→v2 || = 1. This gives us the

equations

1 = ||−→v1 || =
√(

1
2
s
)2

+ (s)2

1 = ||−→v2 || =
√
(−2t)2 + (t)2

, (376)

from which we can get the solutions s = 2√
5

and t = 1√
5
. Further,

−→v1 · −→v2 =

(
1√
5
2√
5

)
·

(
− 2√

5
1√
5

)
= 0, (377)

so these eigenvectors are also orthogonal. We use these to construct P :

P =

(
1√
5
− 2√

5
2√
5

1√
5

)
. (378)

Since this matrix is orthogonal, its inverse is equal to its transpose:

P−1 =

(
1√
5

2√
5

− 2√
5

1√
5

)
. (379)
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This gives us the diagonalization

P−1AP =

(
1√
5

2√
5

− 2√
5

1√
5

)(
3 2

2 6

)(
1√
5
− 2√

5
2√
5

1√
5

)
=

(
7 0

0 2

)
= D. (380)

�
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