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MTH 309 1. Systems of linear equations

Systems of linear equations



a11x1 + a12x2 + . . . + a1nxn = b1. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
am1x1 + am2x2 + . . . + amnxn = bm
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Question: How many solutions a system of linear equations can have?

Example: Systems of equations in 2 variables.
{x1 + x2 = 1
x1 − x2 = 1

{x1 + x2 = 1
x1 + x2 = 2

{ x1 + x2 = 1
2x1 + 2x2 = 2
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Example: Systems of equations in 3 variables.



x1 + x2 + x3 = 1
x1 − x2 + x3 = 1
x1 = 1



x1 + x2 + x3 = 1
x1 − x2 + x3 = 1
x1 − x2 + x3 = 6



x1 + x2 + x3 = 1
x1 − x2 + x3 = 1
x1 + 5x2 + x3 = 1
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In general:
A system of linear equations can have either
• no solutions
• exactly one solution
• infinitely many solutions

Definition
If as system of linear equations which has no solutions is called an incon-
sistent system. Otherwise the system is consistent.
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MTH 309 2. Matrices and elementary row operations

Next:

How to solve a system of linear equations
system of equations

−x1 + 2x2 + 3x3 = 4
2x1 + 6x3 = 9
4x1 − x2 − 3x3 = 0

solutions

x1 = . . .
x2 = . . .
x3 = . . .


 augmented

matrix





 matrix in reduced

row echelon form




make
a matrix

read off
solutions

Gauss-Jordan
elimination
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Matrices
matrix = rectangular array of numbers

Example.

[ 1 2 3
4 5 6

]



1 2 0
7 −5 1
8 10 7
6 4 3




Note
Every system of linear equations can be represented by a matrix.

Example.


−x1 + 2x2 + 3x3 = 4
2x1 + 6x3 = 9
4x1 − x2 − 3x3 = 0
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Elementary row operations:

1) Interchange of two rows.

Example.
 1 2 3 4

0 1 5 1
4 3 0 7




2) Multiplication of a row by a non-zero number.

Example.
 1 2 3 4

0 1 5 1
4 3 0 7




3) Addition of a multiple of one row to another row.

Example.
 1 2 3 4

0 1 5 1
4 3 0 7



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Proposition
Elementary row operations do not change solutions of the system of equa-
tions represented by a matrix.

system of
linear equations

system of
linear equations

augmented
matrix

augmented
matrix

elementary
row operationdifferent systems

same solutions
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MTH 309 3. Gauss-Jordan elimination

Recall:

How to solve a system of linear equations
system of equations

−x1 + 2x2 + 3x3 = 4
2x1 + 6x3 = 9
4x1 − x2 − 3x3 = 0

solutions

x1 = . . .
x2 = . . .
x3 = . . .


 augmented

matrix





 matrix in reduced

row echelon form




make
a matrix

read off
solutions

Gauss-Jordan
elimination

• Every system of linear equations can be represented by a matrix
• Elementary row operations:

- interchange of two rows
- multiplication of a row by a non-zero number
- addition of a multiple of one row to another row.
• Elementary row operations do not change solutions of systems of linear equa-
tions.
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Definition
A matrix is in the row echelon form if:
1) the first non-zero entry of each row is a 1 (“a leading one”);
2) the leading one in each row is to the right of the leading one in the

row above it.
A matrix is in the reduced row echelon form if in addition it satisfies:
3) all entries above each leading one are 0.




1 ∗ ∗ ∗ 0 0 ∗ ∗ 0
0 0 0 0 1 0 ∗ ∗ 0
0 0 0 0 0 1 ∗ ∗ 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0




(∗ = any number)

Example



1 0 4 0 7 0
0 1 5 0 1 0
0 0 0 1 3 0
0 0 0 0 0 1







1 2 4 6 7 0
0 1 5 0 1 2
0 0 0 1 3 0
0 0 0 0 0 0







1 0 4 0 7 0
0 0 1 0 1 0
0 1 3 6 3 0
0 0 0 0 0 1



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Fact
If a system of linear equations is represented by a matrix in the reduced
row echelon form then it is easy to solve the system.

Example



1 0 3 0 0
0 1 7 0 0
0 0 0 1 0
0 0 0 0 1




Proposition
A matrix in the reduced row echelon form represents an inconsistent system
if and only if it contains a row of the form

[ 0 0 0 . . . 0 1 ]

i.e. with the leading one in the last column.
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Example



1 0 3 0 0
0 1 7 0 0
0 0 0 1 0
0 0 0 0 0




Note
In an augmented matrix in the reduced row echelon form free variables
correspond to columns of the coefficient matrix that do not contain leading
ones.
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Example



1 0 0 0 5
0 1 0 0 6
0 0 1 0 7
0 0 0 1 8




Note
A matrix in the reduced row echelon form represents a system of equations
with exactly one solution if and only if it has a leading one in every column
except for the last one.
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Gauss-Jordan elimination process (= row reduction)

 matrix





 matrix

in the reduced row
echelon form


elementary

row operations

À Interchange rows, if necessary, to bring a non-zero element to the top of
the first non-zero column of the matrix.

Á Multiply the first row so that its first non-zero entry becomes 1.

Â Add multiples of the first row to eliminate non-zero entries below the lead-
ing one.

Ã Ignore the first row; apply steps 1-3 to the rest of the matrix.

Ä Eliminate non-zero entries above all leading ones.

14



Example.

 0 4 −8 0 4

2 6 −6 −2 −4
2 7 −8 0 −1



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How to solve systems of linear equations: example



4x2 − 8x3 = 4
2x1 + 6x2 − 6x3 − 2x4 = −4
2x1 + 7x2 − 8x3 = −1
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MTH 309 4. Pivot positions and pivot columns




0 4 −8 0 4
2 6 −6 −2 −4
2 7 −8 0 −1







1 0 3 0 −4
0 1 −2 0 1
0 0 0 1 1


row

reduction

Definition
A pivot position in a matrix is a position that after row reduction contains
a leading one.
A pivot column of a matrix is a column that contains a pivot position.

Theorem
1) A system of linear equations is inconsistent if and only if the last column
of its augmented matrix is a pivot column.
2) Free variables of the system correspond to non-pivot columns of the
coefficient matrix.
3) The system has only one solution if and only if every column of its
augmented matrix is a pivot column, except for the last column.
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Theorem
A system of linear equations can have either 0, 1, or infinitely many solu-
tions.

Proof.

YES NO

YES NO

augmented
matrix

Is
the last column
a pivot column

?

Is
every column

of the coeficient matrix
a pivot column

?

zero
solutions

exactly one
solution

infinitely many
solutions
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MTH 309 5. Applications of systems of linear equations

Recall:

How to solve a system of linear equations
system of equations

−x1 + 2x2 + 3x3 = 4
2x1 + 6x3 = 9
4x1 − x2 − 3x3 = 0

solutions

x1 = . . .
x2 = . . .
x3 = . . .


 augmented

matrix





 matrix in reduced

row echelon form




make
a matrix

read off
solutions

Gauss-Jordan
elimination

Next: Some applications of systems of linear equations:
• Computations of traffic flow.
• Balancing chemical equations.
• Google PageRank.
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Computations of traffic flow

x2 45 cars/h

x5

85 cars/h

70 cars/h

x1

x 4

x 3

120
cars/

h
A B

C D

Problem. Find the flow rate of cars on each segment of streets.
Note:
• flow into an intersection = flow out of that intersection
• total flow in = total flow out
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Balancing chemical equations
Burning propane:

x1C3H8 + x2O2 x3CO2 + x4H2O
Note:
• The numbers x1, x2, x3, x4 are positive integers.
• The number of atoms of each element on the left side is the same as the

number of atoms of that element on the right side.
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Google PageRank

Early search engines:

database
of webpages

user
search results

in random order

search query

Google search engine:

database
of webpages
with rankings

user
search results

highly ranked pages first

search query
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How to rank webpages?

Very simple ranking:
ranking of a page =

( number of links
pointing to that page

)

page 3 page 4

page 1 page 2

Network of web pages.

Problem. This is very easy to manipulate.
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How to rank webpages?

Google PageRank: Links from highly ranked pages are worth more than links
from lower ranked pages.
If:
• the rank of a page is x
• the page has n links to other

pages
then each link from that page is
worth x/n.

page 3 page 4

page 1 page 2
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MTH 309 6. Vectors and vector equations

Next: From systems of linear equations to vector equations.



x1 + 2x2 = 4
2x1 + 7x2 = 9
4x1 + x2 = 0

x1

 1

2
4


 + x2


 2

7
1


 =


 4

9
0




Why vectors and vector equations are useful:
• They show up in many applications (velocity vectors, force vectors etc.)
• They give a better geometric picture of systems of linear equations.
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Definition
A column vector is a matrix with one column.

Note. Columns of a matrix are column vectors.

Notation
Rn is the set of all column vectors with n entries.
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Operations on vectors in Rn

1) Addition of vectors:

 a1...
an


 +


 b1...
bn


 =


 a1 + b1...
an + bn




2) Multiplication by scalars:

c ·

 a1...
an


 =


 ca1...
can



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Geometric interpretation of vectors in R2

Vector coordinates:

Vector addition:
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Scalar multiplication:
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Vector equations
x1v1 + x2v2 + . . .+ xpvp = w

Example. Solve the following vector equation:

x1
[ 2

3
]

+ x2
[ 4
−2

]
=
[ 10

3
]
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How to solve a vector equation

x1v1 + . . .+ xpvp = w
vector of equation

make
a matrix

[ v1 . . . vp w ]
augmented matrix

row
reduction

[ reduced matrix ]

read off
solutions



x1 = . . .
. . . . . .
xp = . . .
solutions
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Example: Target shooting.
At time t = 0 a target is observed at the position (x0, y0) moving in the direction
of the vector vt . The target is moving at such speed, that it travels the length
of vt in one second. A missile is positioned at the point (0, 0). When fired, it
will move vertically with such speed, that it will travel the length of the vector
vm in one second. After how many seconds should the missile be fired in order
to intercept the target?

vm

vt
y0

x0
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MTH 309 7. Linear combinations and span

Recall:
Vector equations are equivalent to systems of linear equations:

x1
[ 2

3
]

+ x2
[ 4

2
]

=
[ 7

3
] {2x1 + 4x2 = 7

3x1 + 2x2 = 3
vector

equation
system of

linear equations

Upshot. A vector equation can have either:
• no solutions
• exactly one solution
• infinitely many solutions

Next:
• When does a vector equation have a solution?
• When does it have exactly one solution?
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Definition
A vector w ∈ Rn is a linear combination of vectors v1, . . . vp ∈ Rn if there
exists scalars c1, . . . , cp such that

w = c1v1 + . . .+ cpvp

Equivalently: A vector w is a linear combination of vectors v1, . . . vp is the
vector equation

x1v1 + . . .+ xpvp = w
has a solution.

Example.

v1 =

 1

2
1


 v2 =


 3

1
2


 v3 =


 5

0
3



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Example. Let

v1 =

 1

2
1


 v2 =


 3

1
2


 v3 =


 5

0
3


 w =


 9

3
6




Express w as a linear combination of v1, v2, v3 or show that this is not possible.
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Example. Let
v1 =


 1

0
0


 v2 =


 0

1
0


 w =


 1

1
3




Express w as a linear combination of v1, v2 or show that this is not possible.
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Geometric picture of the last example

v1

v2

⇤
� 1

1
3

⌅
⇥w =

3

�1v1 + �2v2
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Definition
If v1, . . ., vp are vectors in Rn then

Span(v1, . . ., vp) =



the set of all
linear combinations
c1v1 + . . .+ cpvp




Example.

v1 =

 1

0
0


 v2 =


 0

1
0



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Proposition
A vector w is in Span(v1, . . ., vp) if and only if the vector equation

x1v1 + . . .+ xpvp = w
has a solution.
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Geometric interpretation of Span

u

v

Geometric interpretation of Span

Span(u⇥ v) = { �1u + �2v | �1⇥ �2 � R }

u

Span(u) = { �u | � � R }

u

u

v

Geometric interpretation of Span

Span(u⇥ v) = { �1u + �2v | �1⇥ �2 � R }

u

v
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Proposition
For arbitrary vectors v1, . . . , vp ∈ Rn the zero vector 0 ∈ Rn is in
Span(v1, . . . , vp).

u

v

Geometric interpretation of Span

Span(u⇥ v) = { �1u + �2v | �1⇥ �2 � R }

u

v

u

v

Geometric interpretation of Span

Span(u⇥ v) = { �1u + �2v | �1⇥ �2 � R }

u

Span(u) = { �u | � � R }

u

41



MTH 309 8. Linear independence

Definition
A homogenous vector equation is a vector equation of the form

x1v1 + . . .+ xpvp = 0
(i.e. with the zero vector as the vector of constants).

Definition
Let v1, . . . , vp ∈ Rn. The set {v1, . . . , vp} is linearly independent if the
homogenous equation

x1v1 + . . .+ xpvp = 0
has only one, trivial solution x1 = 0, . . . , xp = 0. Otherwise the set is
linearly dependent.
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Theorem
Let v1, . . . , vp ∈ Rn. If the set {v1, . . . , vp} is linearly independent then the
equation

x1v1 + . . .+ xpvp = w
has exactly one solution for any vector w ∈ Span(v1, . . . , vp).
If the set is linearly dependent then this equation has infinitely many
solutions for any w ∈ Span(v1, . . . , vp).
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Example. Let

v1 =

 1

2
−2


 v2 =


 3

5
4


 v3 =


 1

3
−12




Check is the set {v1, v2, v3} is linearly independent.

Note
A set {v1, . . . , vp} is linearly independent if and only if every column of the
matrix [ v1 v2 . . . vp ]
is a pivot column.
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Some properties of linearly (in)dependent sets
1) A set consisting of one vector {v1} is linearly dependent if and only if v1 = 0.

2) A set consisting of two vectors {v1, v2} is linearly dependent if and only if
one vector is a scalar multiple of the other.
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3) If {v1, . . . , vp} is a set of p vectors in Rn and p > n then this set is linearly
dependent.
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Upshot: how to find the number of solutions of a vector equation

NO YES

YES NO

vector equation
x1v1 + . . .+ xpvp = w

is w in
Span(v1, . . . , vp)?

is the set
{v1, . . . , vp}lin. independent

?
zero

solutions

exactly one
solution

infinitely many
solutions
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MTH 309 9. Linear independence vs span

Recall:

1) Span(v1, . . ., vp) =



the set of all
linear combinations
c1v1 + . . .+ cpvp




2) A set of vectors {v1, . . . , vp} is linearly independent if the equation
x1v1 + . . .+ xpvp = 0

has only one, trivial solution x1 = 0, . . . , xp = 0.

NO YES

YES NO

vector equation
x1v1 + . . .+ xpvp = w

is w in
Span(v1, . . . , vp)?

is the set
{v1, . . . , vp}lin. independent

?
zero

solutions

exactly one
solution

infinitely many
solutions
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Linear independence vs. Span

u

v

Geometric interpretation of Span

Span(u⇥ v) = { �1u + �2v | �1⇥ �2 � R }

u

Span(u) = { �u | � � R }

u
u = 0

Span(u)

{u} linearly independent {u} linearly dependent

u

v

u

v

Geometric interpretation of Span

Span(u⇥ v) = { �1u + �2v | �1⇥ �2 � R }

u

v

{u, v} linearly independent {u, v} linearly dependent
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Theorem
If {v1, . . . , vp} is a linearly dependent set of vectors in then:
1) for some vi we have vi ∈ Span(v1, . . . , vi−1, vi+1, . . . , vp).
2) for some vi we have

Span(v1, . . . , vp) = Span(v1, . . . , vi−1, vi+1, . . . , vp)

Example.
v1 =

[ 1
0
]

v2 =
[ 2

0
]

v3 =
[ 0

1
]
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MTH 309 10. Matrix equations

So far:



2x1 + 4x2 + 6x3 + 3x4 = 7
3x1 + 2x2 + 2x3 + 9x4 = 3
5x1 + 8x2 + 3x3 + 3x4 = 9

x1

 2

3
5


 + x2


 4

2
8


 + x3


 6

2
3


 + x4


 3

9
3


 =


 7

3
9




vector equation

system of
linear equations

Next:


 2 4 6 3

3 2 2 9
5 8 3 3


 ·


x1x2x3x4


 =


 7

3
9




matrix equation
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Definition
Let A be an m× n matrix with columns v1, v2, . . . , vn and let w be a vector
in Rn:

A = [ v1 v2 . . . vn ] w =


c1c2...
cn




The product Aw is a vector in Rm given by
Aw = c1v1 + c2v2 + . . .+ cnvn

Example.

A =
[ 1 2 3

4 5 6
]

w =

 3
−2

1



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Properties of matrix-vector multiplication

1) The product Aw is defined only if
(number of columns of A) = (number of entries of w)

Am × n wn × 1

A · w
m× 1

2) A(v + w) = Av + Aw

3) If c is a scalar then A(cw) = c(Aw).
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Example. Solve the matrix equation

 1 1 −4

1 −2 3
3 −3 0


 ·

 x1x2x3


 =


 1

2
3



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How to solve a matrix equation

Ax = b
matrix equation

[ A b ]
augmented matrix

row
reduction

[ reduced matrix ]

read off
solutions

x = . . .
solutions
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MTH 309 11. The column space and the null space

Recall: A vector equation
x1v1 + . . .+ xnvn = b

has a solution if and only if b ∈ Span(v1, . . ., vn).

Definition
If A is a matrix with columns v1, . . ., vn:

A = [ v1 . . . vn ]

then the set Span(v1, . . . , vn) is called the column space of A and it is
denoted Col(A).
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Upshot. A matrix equation Ax = b has a solution if and only if b ∈ Col(A).

Question: What conditions on the matrix A guarantee that the equation Ax = b
has a solution for an arbitrary vector b?
Example.

A =

 1 1 2 3

1 2 3 4
5 6 7 8





 1 0 0 0

0 1 0 −1
0 0 1 2


row

reduction

Example.

A =

 1 1 2 3

1 2 3 4
2 3 5 7





 1 0 1 2

0 1 1 1
0 0 0 0


row

reduction
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Proposition
A matrix equation Ax = b has a solution for any b if and only if A has a
pivot position in every row.
In such case Col(A) = Rm, where m is the number of rows of A.
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Recall: A vector equation
x1v1 + . . .+ xnvn = b

has only one solution for each b ∈ Span(v1, . . ., vn) if and only if the homoge-
nous equation

x1v1 + . . .+ xnvn = 0
has only the trivial solution x1 = 0, . . ., xn = 0.

Definition
If A is a matrix then the set of solution of the homogenous equation

Ax = 0
is called the null space of A and it is denoted Nul(A).

Upshot. A matrix equation Ax = b has only one solution for each b ∈ Col(A)
if and only if Nul(A) = {0}.
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Example. Find the null space of the matrix

A =

 1 4

2 5
3 6




Proposition
Nul(A) = {0} if and only if the matrix A has a pivot position in every
column.
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Example. Find the null space of the matrix

A =

 3 1 −2 1 5

1 0 1 0 1
5 2 −5 5 3




Note
If A is an m× n matrix then Nul(A) can be always described as a span of
some vectors in Rn.
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Upshot: how to find the number of solutions of a matrix equation

NO YES

YES NO

matrix equation
Ax = b

b ∈ Col(A) ?

Nul(A) = {0} ?zero
solutions

exactly one
solution

infinitely many
solutions
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MTH 309 12. Solutions of matrix equations

Recall:
1) We can multiply vectors by matrices.
2) Matrix equation: Ax = b

NO YES

YES NO

matrix equation
Ax = b

b ∈ Col(A) ?

Nul(A) = {0} ?zero
solutions

exactly one
solution

infinitely many
solutions

Col(A) = (span of column vectors of A)

Nul(A) = (set of solutions of Ax = 0)
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Recall: Nul(A) can be always described as a span of some vectors.

Example. Find the null space of the matrix

A =

 1 1 0 2
−2 −2 1 −5

1 1 −1 3



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Example. Solve the matrix equation Ax = b where

A =

 1 1 0 2
−2 −2 1 −5

1 1 −1 3


 b =


 1

0
−1



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Proposition
Let v0 be some chosen solution of a matrix equation Ax = b. Then any
other solution v of this equation is of the form

v = v0 + n
where n ∈ Nul(A).

v0

n

v0 + Nul(A)
solutions of Ax = b

Nul(A)
solutions of Ax = 0
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MTH 309 13. Matrix transformations

Recall: If A is an m× n matrix then

A ·

 b1...
bn


 =


 c1...
cm




Definition
If A is an m× n matrix then the function

TA : Rn → Rm

given by TA(v) = Av is called the matrix transformation associated to A.
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Example.
Let TA : R3 → R2 be the matrix transformation defined by the matrix

A =
[ 1 2 3

1 3 3
]

1) Compute TA(v) where v =

 1
−1

1


.

2) Find a vector v such that TA(v) =
[ 5

6
]
.
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Geometric interpretation of matrix transformations R2 → R2

A =
[ 1 −1

1 0
]
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Null spaces, column spaces and matrix transformations

Example.
A =

[ 1 1
1 1

]
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Note
If TA : Rn → Rm is a linear transformation associated to a matrix A then:
• Col(A) = the set of values of TA.
• Nul(A) = the set of vectors v such that TA(v) = 0.
• TA(v) = TA(w) if and only if w = v + n for some n ∈ Nul(A).
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Recall:
A function F : Rn → Rm is:
• onto if for each b ∈ Rm there is v ∈ Rn such that F (v) = b;

not onto onto
• one-to-one if for any v1, v2 such that v1 6= v2 we have F (v2) 6= F (v2).

not one-to-one one-to-one

Proposition
Let A be an m× n matrix. The following conditions are equivalent:
1) The matrix transformation TA : Rn → Rm is onto.
2) Col(A) = Rm.
3) The matrix A has a pivot position in every row.

Proposition
Let A be an m× n matrix. The following conditions are equivalent:
1) The matrix transformation TA : Rn → Rm is one-to-one.
2) Nul(A) = {0}.
3) The matrix A has a pivot position in every column.

72



Example. For the following 2 × 2 matrix A check if the matrix transformation
TA : R2 → R2 is onto and if it is one-to-one.

A =
[ 1 −1

1 0
]

Example. For the following 3 × 4 matrix A check if the matrix transformation
TA : R4 → R3 is onto and if it is one-to-one.

A =

 1 1 0 2
−2 −2 1 −5

1 1 −1 4



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Proposition
Let A be an m×n matrix. If the matrix transformation TA : Rn → Rm is both
onto and one-to-one then we must have m = n (i.e. A must be a square
matrix).
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MTH 309 14. Linear transformations and standard matrices

Problem: How to recognize if a function f : Rn → Rm is a matrix transformation?

Example. Rotation by an angle θ:

v
Rθ(v) θ

Rθ : R2 → R2
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Definition
A function T : Rn → Rm is a linear transformation if it satisfies the following
conditions:
1) T (u + v) = T (u) + T (v) for all u, v ∈ Rn

2) T (cv) = cT (v) for any v ∈ Rn and any scalar c.

Proposition
Every matrix transformation is a linear transformation.
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Theorem
Every linear transformation T : Rn → Rm is a matrix transformation:

T = TA
for some matrix A.
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Corollary
If T : Rn → Rm is a linear transformation then T = TA where A is the
matrix given by

A = [ T (e1) T (e2) . . . T (en) ]

This matrix is called the standard matrix of T .

Example. Let T : R2 → R3 be the function given by

T
([ x1x2

])
=

 x1 + x20

2x1




Check if T is a linear transformation. If it is, find its standard matrix.

78



Example. Let S : R2 → R3 be the function given by

S
([ x1x2

])
=

 1 + x2x23x1




Check if S is a linear transformation. If it is, find its standard matrix.
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Back to rotations:

v
Rθ(v) θ

Rθ : R2 → R2
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Proposition
Let e1, e2, . . . , en be the standard basis of of Rn. For any vectors
v1, vn, . . . , vn ∈ Rm there exists one and only one linear transformation

T : Rn → Rm

such that
T (e1) = v1 T (e2) = v2, . . . , T (en) = vn

The standard matrix of this linear transformation is given by
A = [ v1 v2 . . . vn ]
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MTH 309 15. Matrix multiplication

Recall:
1) If A is an m× n matrix then the function

TA : Rn → Rm

defined by TA(v) = Av is called the matrix transformation associated to A.

2) A function T : Rn → Rm is a linear transformation if
(ii) T (u + v) = T (u) + T (v)
(ii) T (cv) = cT (v)

3) Every matrix transformation is a linear transformation.

4) Every linear transformation T : Rn → Rm is a matrix transformation:
T (v) = Av

where
A = [ T (e1) T (e2) . . . T (en) ]

The matrix A is called the standard matrix of T .
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Composition of linear transformations
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Theorem
If S : Rn → Rm and T : Rm → Rk are linear transformation then the com-
position

T ◦ S : Rn → Rk

is also a linear transformation.

Upshot. The function T ◦ S is represented by some matrix C :
T ◦ S(v) = Cv
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Question. Let S : Rn → Rm and T : Rm → Rk be linear transformations, and
let
• B is the standard matrix of S
• A is the standard matrix of T

What if the standard matrix of T ◦ S : Rn → Rk?
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Definition
Let
• A be an k × m matrix
• B = [v1 v2 . . . vn] be an m× n matrix

Then A · B is an k × n matrix given by
A · B = [Av1 Av2 . . . Avn]

Note. The product A · B is defined only if
(number of columns of A) = (number of rows of B)

Ak × m Bm× n

A · B
k × n
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Example.

A =
[ 0 1 2

3 4 5
]

B =

 0 −1 2 1

4 5 1 0
1 2 3 1



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MTH 309 16. Another view of matrix multiplication

A =

 a11 . . . a1m... ...
ak1 . . . akm


 B =


 b11 . . . b1n... ...
bm1 . . . bmn




AB =

 c11 . . . c1m... ...
ck1 . . . ckm




cij = [ ai1 ai2 . . . aim ] ·


b1jb1j...
b1j


 = ai1b1j + ai2b2j + . . .+ aimbmj
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Example.

A =
[ 0 1 2

3 4 5
]

B =

 0 −1 2 1

4 5 1 0
1 2 3 1



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Example.
• Acme Inc. makes two types of widgets: WG1 and WG2.
• Each widget must go though two processes: assembly and testing.
• The number of hours required to complete each process is as follows:

assembly testing
WG1 3 1
WG2 7 3

• Acme Inc. has three plans in New York, Texas, and Minnesota.
• Hourly cost (in dollars) of each process in each plant is as follows:

NY TX MN
assembly 10 15 12

testing 15 20 15

Problem. What is the cost of producing each type of widgets in each plant?
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MTH 309 17. Matrix algebra

Other operations on matrices

1) Addition.

If A =

 a11 . . . a1n... ...
am1 . . . amn


, B =


 b11 . . . b1n... ...
bm1 . . . bmn


 are m× n matrices then

A+ B =

 a11 + b11 . . . a1n + b1n... ...
am1 + bm1 . . . amn + bmn




Note. The sum A+ B is defined only if A and B have the same dimensions.
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2) Scalar multiplication.

If A =

 a11 . . . a1n... ...
am1 . . . amn


, and c is a scalar then

cA =

 ca11 . . . ca1n... ...
cam1 . . . camn



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Properties of matrix algebra
1) (AB)C = A(BC )
2) (A+ B)C = AC + BC
A(B + C ) = AB + AC

3) In = the n × n identity matrix:

In =



1 0 . . . 0
0 1 . . . 0... ... . . . ...
0 0 . . . 1




If A is an m× n matrix then
A · In = A
Im · A = A
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Non-commutativity of matrix multiplication

1) If AB is defined then BA need not be defined.

2) Even if both AB and BA are both defined then usually
AB 6= BA
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One more operation on matrices: matrix transpose

Definition
The transpose of a matrix A is the matrix AT such that

(rows of AT ) = (columns of A)

Properties of transpose
1) (AT )T = A
2) (A+ B)T = (AT + BT )
3) (AB)T = BTAT
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MTH 309 18. Inverse of a matrix

Operations on matrices so far:
• addition/subtraction A ± B
• scalar multiplication c · A
• matrix multiplication A · B
• matrix transpose AT

Next: How to divide matrices?

Definition
A matrix A is invertible if there exists a matrix B such that

A · B = B · A = I
(where I = the identity matrix). In such case we say that B is the inverse
of A and we write B = A−1.
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Example.

A =
[ 1 −1

1 1
]

is invertible, A−1 =
[ 12 12−12 12

]
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Matrix inverses and matrix equations

Proposition
If A is an invertible matrix then for any vector b the equation Ax = b has
exactly one solution.

Example. Solve the following matrix equation:
[ 1 −1

1 1
]
·
[ x1x2

]
=
[ 1

2
]

98



Matrix inverses and matrix transformations
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Example.
A =

[ 1 1
1 1

]

Example.
A =

[ 1 2
2 4

]
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Upshot. If an m × n matrix A is invertible then the matrix transformation
TA : Rn → Rm must be one-to-one and onto.

Recall: If A be is m×n matrix then the matrix transformation TA : Rn → Rm is:
• onto if and only if A has a pivot position in every row
• one-to-one if and only if A has a pivot position in every column.

Theorem
If A is not a square matrix then it is not invertible.
If A is a square matrix then the following conditions are equivalent:
1) A is an invertible matrix.
2) The matrix A has a pivot position in every row and column.
3) The reduced row echelon form of A is the identity matrix In.
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Proposition
If A is an n × n invertible matrix then

A−1 = [ w1 w2 . . . wn
]

where wi is the solution of Ax = ei.

Example.
A =

[ 1 −1
−1 1

]
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Simplification:
How to solve several matrix equations with the same

coefficient matrix at the same time

Ax = b1, Ax = b2, . . ., Ax = bn
matrix of equations

[ A b1 b2 . . . bn ]
augmented matrix

row
reduction

[ ]
reduced matrix

read off
solutions

solutions
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Example. Solve the vector equations Ax = e1 and Ax = e2 where

A =
[ 1 −1

1 1
]

e1 =
[ 1

0
]

e2 =
[ 0

1
]
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Summary:
How to invert a matrix

Example: A =
[ 1 1

1 2
]

1) Augment A by the identity matrix.

2) Reduce the augmented matrix.

2) If after the row reduction the matrix on the left is the identity matrix,
then A is invertible and

A−1 = the matrix on the right
Otherwise A is not invertible.
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Properties of matrix inverses
1) If A is invertible then A−1 is invertible and

(A−1)−1 = A

2) If A,B are invertible then AB is invertible and
(AB)−1 = B−1A−1

3) If A is invertible then AT is invertible and
(AT )−1 = (A−1)T
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MTH 309 19. Application: Hill ciphers

Ciphers.
Cipher is an algorithm for encrypting and decrypting data to conceal its mean-
ing.

Basic working scheme of ciphers

message

encoded
message

encoded
message

decoded
message

encryption
key

decryption
key

send

encryption decryption
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Substitution cipher: Replace each letter of the alphabet by some other letter.
Example.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
T V W X Y S C N O U Z A B P I M J Q R K D E F G H L

encrypt dec
ryp

t

encryption/decryption key

message: TOP SECRET
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Hill cipher: Use matrix multiplication
Example.

A =

 0 1 1

1 1 0
0 2 1




encryption key
invertible matrix

A−1 =

 1 1 −1
−1 0 1

2 0 −1




decryption key
matrix inverse

message: TOP SECRET

Encryption:
1) Replace letters by numbers:

A
1

B
2

C
3

D
4

E
5

F
6

G
7

H
8

I
9

J
10

K
11

L
12

M
13

N
14

O
15

P
16

Q
17

R
18

S
19

T
20

U
21

V
22

W
23

X
24

Y
25

Z
260

2) Since the key is a
3 × 3 matrix split the
number sequence num-
bers in vectors with 3
entries each.
3) Multiply each vec-
tor by the encryption
matrix A.

4) Write the new vec-
tors as a sequence of
numbers.
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We can do better, but the next part will not work with an arbitrary invertible
matrix A. It will work though e.g. if all entries of A and A−1 are integers.
5) Reduce all numbers obtained in step 4 modulo 27. That is, add or subtract
from each number a multiple of 27 to get a number between 0 and 26.

6) Replace numbers by
letters.
Decryption.
1) Replace letters by
numbers, split into vec-
tors, and multiply each
vector by A−1

2) Write the new vec-
tors as a sequence of
numbers, reduce each
number modulo 27.

3) Replace numbers by
letters
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MTH 309 20. Application: Error correcting codes

transmission
error

0 1 0 0 1 0 1 0 1 1

Basic scheme of error correction

message

encoded
message

received
message

decoded
message

transmit

encoding decoding

Working assumption for this lecture: We expect at most one transmission error
in any message up to 20 bits long.
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A simple error correcting code: triple repeat.
message: 1011

Problem: The encoded message is 3 times longer than the original message.
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Better error correction: Hamming (7,4) code.

E =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1




encoding matrix

D =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0
1 1 0 1 0 0 1




decoding matrix

message: 10111101
Encoding.
1) Split the message into vectors with 4 entries, and multiply each vector by
the encoding matrix E .

2) Reduce all numbers obtained in step 1 modulo 2. That is, add or subtract
from each number a multiple of 2 to get either 0 or 1.
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Encoded message:

Received message:

Decoding. Split the received message into vectors with 7 entries, multiply each
vector by the decoding matrix D, and reduce modulo 2.

Decoded message:
114



How the Hamming code works:
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MTH 309 21. Determinants

Recall: If an n × n matrix A is invertible then:
• the equation Ax = b has a unique solution for each b ∈ Rn

• the linear transformation TA : Rn → Rn, TA(v) = Av has an inverse function.

Determinants recognize which matrices are invertible:

A detA
matrix number

= 0 if A is not invertible

6= 0 if A is invertible

Example: Determinant for a 1× 1 matrix.
A = [ a ]
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Example: Determinant for a 2× 2 matrix.
A =

[ a b
c d

]
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Definition
If A is an n × n matrix then for 1 ≤ i, j ≤ n the (i, j)-minor of A is the
matrix Aij obtained by deleting the ith row and j th column of A.

Example.

A =

 1 2 3

4 5 6
7 8 9



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Definition
Let A be an n × n matrix

A =

a11 . . . a1n... ...
an1 . . . ann




1) If n = 1, i.e. A = [ a11
], then detA = a11

2) If n > 1 then
detA = (−1)1+1a11 · detA11

+ (−1)1+2a12 · detA12
. . . . . . . . . . . .
+ (−1)1+na1n · detA1n

Example. (n = 2)
A =

[ 1 2
3 4

]

Note
If A is a 2× 2 matrix

A =
[ a11 a12a21 a22

]

then detA = a11 · a22 − a12 · a21
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Example. (n=3)

A =

 1 2 3

4 5 6
7 8 9




120



A direct way of computing the determinant of a 3× 3 matrix

A =

 1 2 3

4 5 6
7 8 9



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Example (n=4)

A =



1 0 2 0
0 4 0 1
2 1 6 1
3 5 7 0



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Note. In order to compute the determinant of an n × n matrix in this way we
need to compute:

n determinants of (n − 1)× (n − 1) matrices
n(n − 1) determinants of (n − 2)× (n − 2) matrices

n(n − 1)(n − 2) determinants of (n − 3)× (n − 3) matrices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n(n − 1)(n − 2) · . . . · 3 determinants of 2× 2 matrices

E.g. for a 25× 25 matrix we would need to compute
25 · 24 · 23 · . . . · 3 = 7, 755, 605, 021, 665, 492, 992, 000, 000

determinants of 2× 2 matrices.

Next: How to compute determinants faster.
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MTH 309 22. Determinants and cofactor expansion

Definition
If A is an n × n matrix and 1 ≤ i, j ≤ n then the ij-cofactor of A is the
number

Cij = (−1)i+j detAij

Example.

A =

 1 2 3

4 5 6
7 8 9




Note. By the definition of the determinant we have:
detA = a11C11 + a12C12 + . . .+ a1nC1n
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Theorem
Let A be an n × n matrix.
1) For any 1 ≤ i ≤ n we have

detA = ai1Ci1 + ai2Ci2 + . . .+ ainCin
(cofactor expansion across the ith row).
2) For any 1 ≤ j ≤ n we have

detA = a1jC1j + a2jC2j + . . .+ anjCnj
(cofactor expansion down the j th column).

Example.

A =



1 3 0 4
0 4 6 1
2 1 0 3
0 5 0 0



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Example. Compute the determinant of the following matrix:



1 0 0 3 0 0 2 0 3 0 0 0 0 e 0 0 0 3 0 0 0
0 2 0 0 π 0 0 0 6 0 0 5 6 0 2 0 7 0 0 0 0
0 0 1 0 0 0 0 0 11 0 0 0 0 0 7 0 0 0 0 0 0
0 0 0 −12 0 0 0 0 4 0 0 2 0 4 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 0 9 0 0 0 2 1 2 3 4 0 0
0 0 0 0 0 0 3 1 0 0 −1 0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 2 1 0 0 0 0 0 0 12 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 −1 0 0 4 0 0
0 0 0 0 0 0 0 0 0 3 0 0 2 7 0 −4 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 1 0 4 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 7 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 2 8 9 0 3 3 2 5 6 3 8 9 2 6 2 2 1



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Definition
An square matrix is upper triangular is all its entries below the main diag-
onal are 0.

A =




a11 a12 a13 . . . a1n0 a22 a23 . . . a2n0 0 a33 . . . a3n... ... ... . . . ...
0 0 0 . . . ann




Proposition
If A is an upper triangular matrix as above then

detA = a11 · a22 · . . . · ann
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MTH 309 23. Determinants and row reduction

Recall: If A is an upper triangular matrix:

A =




a11 a12 a13 . . . a1n0 a22 a23 . . . a2n0 0 a33 . . . a3n... ... ... . . . ...
0 0 0 . . . ann




then detA = a11 · a22 · . . . · ann.

Note. If A is a square matrix then the row echelon form of A is always upper
triangular.
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Theorem
Let A and B be n × n matrices.
1) If B is obtained from A by interchanging two rows (or two columns) then

detB = − detA
2) If B is obtained from A by multiplying one row (or one column) of A by
a scalar k then

detB = k · detA
2) If B is obtained from A by adding a multiple of one row of A to another
row (or adding a multiple of one column to another column) then

detB = detA

Example.

A =

 1 2 3

1 0 7
2 5 1



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Computation of determinants via row reduction
Idea. To compute detA, row reduce A to the row echelon form. Keep track how
the determinant changes at each step of the row reduction process.

Example. Compute detA where

A =



0 1 2 3
2 4 0 10
3 4 1 7
−2 5 3 0



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Theorem
If A is a square matrix then A is invertible if and only if detA 6= 0

Recall: A is invertible if and only if its reduced row echelon form is the identity
matrix.
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Further properties of determinants
1) det(AT ) = detA
2) det(AB) = (detA) · (detB)
3) det(A−1) = (detA)−1

Note. In general det(A+ B) 6= detA+ detB.
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MTH 309 24. Cramer’s rule

Recall: If A is square matrix then the ij-cofactor of A is the number
Cij = (−1)i+j detAij

Definition
If A is an n × n matrix then the adjoint (or adjugate) of A is the matrix

adjA =


C11 C12 · · · C1nC21 C22 · · · C2n... ... ...
Cn1 Cn2 · · · Cnn




T

=


C11 C21 · · · Cn1C12 C22 · · · Cn2... ... ...
C1n C2n · · · Cnn




Theorem
If A is an invertible matrix then

A−1 = 1
detA · adjA
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Example. Compute A−1 for

A =

 1 1 2

4 0 0
1 1 1



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Recall: If A is an invertible matrix then the equation Ax = b has only one
solution: x = A−1b.

Definition
If A is an n × n matrix and b ∈ Rn then Ai(b) is the matrix obtained by
replacing the ith column of A with b.

Example.
A =


 1 2 3

4 5 6
7 8 9


 b =


 10

20
30




Theorem (Cramer’s Rule)
If A is an n × n invertible matrix and b ∈ Rn then the unique solution of
the equation

Ax = b
is given by

x = 1
detA


detA1(b)...

detAn(b)



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Example. Solve the equation

 1 1 2

4 0 0
1 1 1


 ·

 x1x2x3


 =


 1

2
3



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MTH 309 25. Geometric interpretation of determinants

Recall:

A detA
matrix number

= 0 if A is not invertible

6= 0 if A is invertible

Note. Any two vectors in R2 define a parallelogram:

v1

v2

Notation
area(v1, v2) =

(area of the parallelogram
defined by v1 and v2

)
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Theorem
If v1, v2 ∈ R2 then

area(v1, v2) = ∣∣det [ v1 v2
]∣∣

Idea of the proof.
v1 =

[ a
b
]
, v2 =

[ c
d
]

c

c

a

a

a+c

a+c

d d

b b

b+d b+d

P

v1

v2

area(P)
12ab+
12ab+
12cd+
12cd+
cb+
cb+

(a+ c)(b+ d)
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Example.

v1 =
[ 2

3
]
, v2 =

[ 2
−2

]
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Example. Calculate the area of the parallelogram with vertices at the points
(2, 1), (5, 3), (7, 1), (4, −1).

(2, 1)

(5, 3)

(7, 1)

(4, −1)
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Example. Calculate the area of the triangle with vertices at the points (2, 1),
(5, 3), (4, −1).

(2, 1)

(5, 3)

(4, −1)

141



Note. In order to compute areas of other polygons, subdivide them into trian-
gles.
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MTH 309 26. Determinants and linear transformations

Recall: If A is a 2× 2 matrix then it defines a linear transformation
TA : R2 → R2 TA(v) = Av

Note. TA maps parallelograms to parallelograms:

v1

v2

TA(v1)

TA(v2)

Theorem
If A is a 2× 2 matrix and v1, v1 ∈ R2 then

area(TA(v1), TA(v2)) = |detA| · area(v1, v2)
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Generalization:
Theorem
If A is a 2× 2 matrix then for any region S of R2 we have:

area(TA(S)) = |detA| · area(S)

S TA(S)

Idea of the proof.
The area of S can be approximated by the sum of small squares covering S.

144



MTH 309 27. Sign of the determinant

Example.
A =

[ 2 1
1 3

]

Example.
A =

[ 2 3
2 1

]

Theorem
If A is a 2×2 matrix then the linear transformation TA : R2 → R2 preserves
orientation if detA > 0 and reverses orientation if detA < 0.

145



MTH 309 28. General vector spaces

Linear Algebra Calculus

Rn =
(set of all column vectors

with n entries
)

C∞(R) =
( set of all smooth

functions f : R→ R

)

Column vectors can be added and
multiplied by real numbers.

Functions can be added and multi-
plied by real numbers.

Linear transformation is a function
T : Rn → Rm, T (v) = Av

It satisfies:
• T (u + v) = T (u) + T (v)
• T (cv) = cT (v)

Differentiation is a function
D : C∞(R)→ C∞(R), D(f ) = f ′

It satisfies:
• D(f + g) = D(f ) +D(g)
• D(cf ) = cD(f )

Typical problem: given a vector b
find all vectors x such that

T (x) = b
(i.e solve the equation Ax = b).

Typical problem: given a function g
find all functions f such that

D(f ) = g
(i.e find antiderivatives of g).

Fact: Such vectors x are of the form
x = v0 + n

where:
• v0 is some distinguished solution

of Ax = b;
• n ∈ Nul(A) (i.e. n is a solution

of Ax = 0).

Fact: Such functions f are of the form
f = F + C

where:
• F is some distinguished an-

tiderivative of g;
• C is a constant function (i.e. C is

a solution of D(f ) = 0).
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Definition
A (real) vector space is a set V together with two operations:
• addition

V × V −→ V(u, v) 7−→ u + v
• multiplication by scalars

R× V −→ V
(c, v) 7−→ c · v

Moreover the following conditions must be satisfied:
1) u + v = v + u
2) (u + v) + w = u + (v + w)
3) there is an element 0 ∈ V such that 0 + u = u for any u ∈ V
4) for any u ∈ V there is an element −u ∈ V such that u + (−u) = 0
5) c(u + v) = cu + cv
6) (c + d)u = cu + du
7) (cd)u = c(du)
8) 1u = u
Elements of V are called vectors.
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Theorem
If V is a vectors space then:
1) c · 0 = 0 where c ∈ R and 0 ∈ V is the zero vector;
2) 0 · u = 0 where 0 ∈ R, u ∈ V and 0 is the zero vector;
3) (−1) · u = −u
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Examples of vector spaces.
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MTH 309 29. Vector subspaces

Defitnition
Let V be a vector space. A subspace of V is a subset W ⊆ V such that
1) 0 ∈ W
2) if u, v ∈ W then u + v ∈ W
3) if u ∈ W and c ∈ R then cu ∈ W .

Example.
Recall: P = the vector space of all polynomials.

Proposition
Let V be a vector space and W ⊆ V is a subspace then W is itself a vector
space.
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Example.
Recall: F (R) = the vector space of all functions f : R→ R

Some interesting subspaces of F (R):
1) C (R) = the subspace of all continuous functions f : R→ R

2) Cn(R) = the subspace of all functions f : R→ R that are differentiable n or
more times.
3) C∞(R) = the subspace of all smooth functions f : R→ R (i.e. functions that
have derivatives of all orders: f ′, f ′′, f ′′′, . . . ).
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Note. If V is a vector space then:
1) the biggest subspace of V is V itself;
2) the smallest subspace of V is the subspace {0} consisting of the zero vector

only;
3) if a subspace of V contains a non-zero vector, then it contains infinitely

many vectors.
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MTH 309 30. Linear transformations of vector spaces

Definition
Let V ,W be vector spaces A linear transformation is a function

T : V → W
which satisfies the following conditions:
1) T (u + v) = T (u) + T (v) for all u, v ∈ V
2) T (cv) = cT (v) for any v ∈ V and any scalar c.
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Note. If T : V → W is a linear transformation then for any vector b ∈ W we
can consider the equation

T (x) = b
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Definition
If T : V → W is a linear transformation then:
1) The kernel of T is the set

Ker(T ) = {v ∈ V | T (v) = 0}
2) The image of T is the set

Im(T ) = {w ∈ W | w = T (v) for some v ∈ V}
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Proposition
If T : V → W is a linear transformation then:
1) Ker(T ) is a subspace of V
2) Im(T ) is a subspace of W

Theorem
If T : V → W is a linear transformation and v0 is a solution of the equation

T (x) = b
then all other solutions of this equation are vectors of the form

v = v0 + n
where n ∈ Ker(T ).
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Example.
D : C∞(R) −→ C∞(R)

f 7−→ f ′
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MTH 309 31. Basis of a vector space

Recall:
• A vector space is a set V equipped with operations of addition and multipli-
cation by scalars. These operations must satisfy some properties.
• Some examples of vector spaces:
1) Rn = the vector space of column vectors.
2) F (R) = the vector space of all functions f : R→ R.
3) C (R) = the vector space of all continuous functions f : R→ R.
4) C∞(R) = the vector space of all smooth functions f : R→ R.
5) Mm,n(R) = the vector space of all m× n matrices.
6) P = the vector space of all polynomials.
7) Pn = the vector space of polynomials of degree ≤ n.
• If V , W are vector spaces then a linear transformation is a function T : V → W
such that
1) T (u + v) = T (u) + T (v)
2) T (cv) = cT (v)

• Many problems involving Rn can be easily solved using row reduction, matrix
multiplication etc.
• The same types of problems involving other vector spaces can be difficult to
solve.
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Next goal:
If V is a finite dimensional vector space then we can construct a coordinate
mapping

V → Rn

which lets us turn computations in V into computations in Rn.

V
vector space

Rn

coordinate
mapping

inverse
coordinate
mapping
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Motivation: How to assign coordinates to vectors

v

v
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Definition
If V is a vector space then vector w ∈ V is a linear combination of vectors
v1, . . . vp ∈ V if there exist scalars c1, . . . , cp such that

w = c1v1 + . . .+ cpvp

Definition
If V is a vector space and v1, . . ., vp are vectors in V then

Span(v1, . . ., vp) =



the set of all
linear combinations
c1v1 + . . .+ cpvp




Definition
If V is a vector space and v1, . . ., vp are vectors in V such that

V = Span(v1, . . ., vp)
the the set {v1, . . . , vp} is called the spanning set of V .
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Example.
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Definition
If V is a vector space and v1, . . ., vp ∈ V then the set {v1, . . . , vp} is linearly
independent if the homogenous equation

x1v1 + . . .+ xpvp = 0
has only one, trivial solution x1 = 0, . . . , xp = 0. Otherwise the set is
linearly dependent.

Theorem
Let V be a vector space, and let v1, . . . , vp ∈ V . If the set {v1, . . . , vp} is
linearly independent then the equation

x1v1 + . . .+ xpvp = w
has exactly one solution for any vector w ∈ Span(v1, . . . , vp).
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Example.
Recall: F (R) = the vector space of all functions f : R→ R. Let f , g, h ∈ F (R)
be the following functions:

f (t) = sin(t), g(t) = cos(t), h(t) = cos2(t)
Check if the set {f, g, h} is linearly independent.
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Example.
Let f , g, h ∈ F (R) be the following functions:

f (t) = sin2(t), g(t) = cos2(t), h(t) = cos 2t
Check if the set {f, g, h} is linearly independent.
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Definition
A basis of a vector space V is an ordered set of vectors

B = {b1, . . ., bn}
such that
1) Span(b1, . . ., bn) = V
2) The set {b1, . . ., bn} is linearly independent.
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Theorem
A set B = {b1, . . ., bn} is a basis of a vector space V if any only if for each
v ∈ V the vector equation

x1b1 + . . .+ xnbn = v
has a unique solution.

Definition
Let B = {b1, . . ., bn} be a basis of a vector space V . For v ∈ V let
c1, . . . , cn be the unique numbers such that

c1b1 + . . .+ cnbn = v
Then the vector 

c1...
cn


 ∈ Rn

is called the coordinate vector of v relative to the basis B and it is denoted
by [v]B .
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Example. Let E = {1, t, t2} be the standard basis of P2, and let
p(t) = 3 + 2t − 4t2

Find the coordinate vector [p]E .

Example. Let B = {1, 1 + t, 1 + t + t2}. One can check that B is a basis of P2.Let
p(t) = 3 + 2t − 4t2

Find the coordinate vector [p]B .
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MTH 309 32. Dimension of a vector space

Recall:
• A basis of a vector space V is a set of vectors B = {b1, . . ., bn} such that
1) Span(b1, . . ., bn) = V
2) The set {b1, . . ., bn} is linearly independent.

• For v ∈ V let c1, . . . , cn be the unique numbers such that
c1b1 + . . .+ cnbn = v

The vector
[v]B =


c1...
cn


 ∈ Rn

is called the coordinate vector of v relative to the basis B .
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V
vector space

Rn

coordinate
mapping

inverse
coordinate
mapping

Theorem
Let B be a basis of a vector space V . If v1, . . . vp,w ∈ V then:
1) Solutions of the equation x1v1 + . . . + xpvp = w are the same as

solutions of the equation x1 [v1
]
B + . . .+ xp [vp]B = [w]B .

2) The set of vectors {v1, . . . vp} is linearly independent if and only if the
set {[v1

]
B , . . . ,

[vp]B
} is linearly independent.

3) Span(v1, . . . , vp) = V if any only if Span ([v1
]
B , . . . ,

[vp]B
) = Rn.

4) {v1, . . . , vp} is a basis of V if and only if {[v1
]
B , . . . ,

[vp]B
} is a basis

of Rn.
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Example. Recall that P2 is the vector space of polynomials of degree ≤ 2.
Consider the following polynomials in P2:

p1(t) = 1 + 2t + t2
p2(t) = 3 + t + 2t2
p3(t) = 1− 8t − t2

Check if the set {p1, p2, p3} is linearly independent.
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Theorem
Let {v1, . . . , vp} be vectors in Rn. The set {v1, . . . , vp} is a basis of Rn if
and only if the matrix

A = [ v1 . . . vp ]
has a pivot position in every row and in every column (i.e. if A is an
invertible matrix).

Corollary
Every basis of Rn consists of n vectors.
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Theorem
Let V be a vector space. If V has a basis consisting of n vectors then every
basis of V consists of n vectors.

Definition
A vector space has dimension n if V has a basis consisting of n vectors.
Then we write dimV = n.
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Example.
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Theorem
Let V be a vector space such that dimV = n, and let v1, . . . vp ∈ V .
1) If {v1, . . . , vp} is a spanning set of V then p ≥ n.
2) If {v1, . . . , vp} is a linearly independent set then p ≤ n.

Corollary
Let V be a vector space such that dimV = n. If W be a subspace of V
then dimW ≤ n. Moreover, if dimW = n then W = V .
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Note.
1) One can show that every vector space has a basis.
2) Some vector spaces have bases consisting of infinitely many vectors. If V
is such vector space then we write dimV =∞.

Example.
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MTH 309 33. The rank theorem

Recall:
If A = [ v1 . . . vn ] is an m× n matrix then:
1) Col(A) = Span(v1, . . . , vn)
2) Nul(A) = {v ∈ Rm | Av = 0}
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Construction of a basis of Col(A)

Lemma
Let V be a vector space, and let v1, . . . , vp ∈ V . If a vector vi is a linear
combination of the other vectors then

Span(v1, . . . , vp) = Span(v1, . . . , vi−1, vi+1, . . . , vp)

Upshot. One can construct a basis of a vector space V as follows:
• Start with a set of vectors {v1, . . . , vp} such that Span(v1, . . . , vp) = V .
• Keep removing vectors without changing the span, until you get a linearly

independent set.
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Example. Find a basis of Col(A) where A is the following matrix:

A =




1 0 2 0 1 0
0 1 3 0 −1 0
0 0 0 1 3 0
0 0 0 0 0 1
0 0 0 0 0 0




179



Example. Find a basis of Col(A) where A is the following matrix:

A =

 −3 6 −1 1 −7

1 −2 2 3 −1
2 −4 5 8 −4



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Construction of a basis of Nul(A)

Example. Find a basis of Nul(A) where A is the following matrix:

A =

 −3 6 −1 1 −7

1 −2 2 3 −1
2 −4 5 8 −4



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Upshot. If A is matrix then:
dim Col(A) = the number of pivot columns of A
dim Nul(A) = the number of non-pivot columns of A

Definition
If A is a matrix then:
• the dimension of Col(A) is called the rank of A and it is denoted rank(A)
• the dimension of Nul(A) is called the nullity of A.

The Rank Theorem
If A is an m× n matrix then

rank(A) + dim Nul(A) = n
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Example. Let A be a 100 × 101 matrix such that dim Nul(A) = 1. Show that
the equation Ax = b has a solution for each b ∈ R100.
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Example. Let A be a 5× 9. Can the null space of A have dimension 3?
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MTH 309 34. Change of basis

Recall: Any basis B = {b1, . . . , bn} of a vector space V defines a coordinate
system:

v = c1b1 + . . .+ cnbn = v

[v]B =

c1...
cn




v
b1

b2
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Note. Choosing a convenient basis can simplify computations.
Example. Graphene lattice.

1.4Å = 1.4 · 10−10m
atoms of
carbon

Image of graphene taken with an atomic force microscope.
c© University of Augsburg, Experimental Physics IV.
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Coordinates of atoms in the graphene lattice

[0, 0]

[0, 1.4]

[1.21, −0.7] [3.63, −0.7]

[1.21, 2.1]

[1.21, 3.5]

[2.42, 0]

[2.42, 1.4]

[2.42, 4.2]

[3.63, 2.1]

[3.63, 3.5]
In the standard basis
E = {e1, e2}:
e1 =

[ 1
0
]

e2 =
[ 0

1
]

[0, 0]

[−1, 1]

[1, 0] [2, 1]

[−1, 2]

[−2, 3]

[1, 1]

[0, 2]

[−2, 4]

[0, 3]

[−1, 4]
In a more convenient
basis B = {b1, b2}:
b1 =

[ 1.21
−0.7

]

b2 =
[ 1.21

0.7
]
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Problem Let
B = {b1, . . . , bn}, D = {d1, . . . , d1}

be two bases of a vector space V , and let v ∈ V . Assume that we know [v]B .What is [v]D ?

V

Rn Rn
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Definition
Let B = {b1, . . . , bn} and D = {d1, . . . , d1} be two bases of a vector space
V . The matrix

PD←B = [ [b1
]
D
[b2
]
D . . . [bn]D

]

is called the change of coordinates matrix from the basis B to the basis D .

Propostion
Let B = {b1, . . . , bn} and D = {d1, . . . , d1} be two bases of a vector space
V . For any vector v ∈ V we have

[v]D = PD←B · [v]B
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Example. Let P2 be the vector space of polynomials of degree ≤ 2. Consider
two bases of P2:

B = {1, 1 + t, 1 + t + t2}
D = {1 + t, 1− 5t, 2 + t2}

1) Compute the change of coordinates matrix PD←B .
2) Let p ∈ P2 be a polynomial such that

[p]B =

 3

4
5




Compute [p]D .
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Proposition
If B, D , E are three bases of a vector space V then:
1) PB←D = (PD←B )−1

2) PE←B = PE←D · PD←B
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MTH 309 35. Application: Perspective rectification

What we want:

What we have:
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Image formation in a camera

center of
the camera

the sensor
plane

The camera coordinate system C
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
 1

258
72





 1

2958
514





 1

274
2291





 1

2975
1839



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The mural coordinate systemM
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From mural coordinates to camera coordinates

PC←M = [ [m1
]
C
[m2
]
C
[m3
]
C
]
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Problem: What are the numbers a, b, c?
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MTH 309 36. The dot product

Definition
If

u =

 a1...
an


 v =


 b1...
bn




are vectors in Rn then the inner product (or dot product) of u and v is the
number

u · v = a1b1 + . . .+ anbn

Properties of the dot product:
1) u · v = v · u
2) (u + v) · w = u · w + v · w
3) (cu) · v = c(u · v)
4) u · u ≥ 0 and u · u = 0 if and only if u = 0.
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Definition
If u ∈ Rn then the length (or the norm) of u is the number

||u|| = √u · u

Note. If u =

 a1...
an


 then ||u|| =

√
a21 + . . .+ a2n.

Properties of the norm:
1) ||u|| ≥ 0 and ||u|| = 0 if and only if u = 0.
2) ||cu|| = |c| · ||u||
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Definition
A vector u ∈ Rn is an unit vector if ||u|| = 1.

Definition
If u, v ∈ Rn then the distance between u and v is the number

dist(u, v) = ||u− v||

Note. If u =

 a1...
an


, v =


 b1...
bn


 then

dist(u, v) =
√

(a1 − b1)2 + . . .+ (an − bn)2
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Definition
Vectors u, v ∈ Rn are orthogonal if u · v = 0.

Pythagorean Theorem
Vectors u, v are orthogonal if and only if

||u||2 + ||v||2 = ||u + v||2

202



MTH 309 37. Orthogonal bases

Definition
A set of vectors {v1, . . . , vk} in Rn is an orthogonal set if each pair each
pair of vectors in this set is orthogonal, i.e.

vi · vj = 0
for all i 6= j .

Example.



 1

0
0


 ,


 0

1
0


 ,


 0

0
1




 is an orthogonal set in R3.

Example.



 1

2
3


 ,


 −3

0
1


 ,


 1
−5

3




 is another orthogonal set in R3.
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Proposition
If {v1, . . . , vk} is an orthogonal set of non-zero vectors in Rn then this set
is linearly independent.

Recall: Any linearly independent set of n vectors in Rn is a basis of Rn.
Corollary
If {v1, . . . , vn} is an orthogonal set of n non-zero vectors in Rn then this
set is a basis of Rn.
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Definition
If V is a subspace of Rn then we say that a set {v1, . . . vk} is an orthogonal
basis of V if
1) {v1, . . . vk} is a basis of V and
2) {v1, . . . vk} is an orthogonal set.

Recall. If B = {v1, . . . vk} is a basis of a vector space V and w ∈ V then the
coordinate vector of w relative to B is the vector

[ w ]B =

 c1...
ck




where c1, . . . , ck are scalars such that c1v1 + . . .+ ckvk = w.
Propostion
If B = {v1, . . . vk} is an orthogonal basis of V and w ∈ V then

[ w ]B =

 c1...
ck




where ci = w · vi
vi · vi = w · vi

||vi||2
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Example. Let

B =



 1

2
3


 ,


 −3

0
1


 ,


 1
−5

3




 , w =


 3

2
1




The set B is an orthogonal basis of R3. Compute [ w ]B .
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Theorem (Gram-Schmidt Process)
Let {v1, . . . , vk} be a basis of V . Define vectors {w1, . . . ,wk} as follows:

w1 = v1

w2 = v2 −
(w1 · v2

w1 · w1

)
w1

w3 = v3 −
(w1 · v3

w1 · w1

)
w1 −

(w2 · v3
w2 · w2

)
w2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
wk = vk −

(w1 · vk
w1 · w1

)
w1 −

(w2 · vk
w2 · w2

)
w2 − . . . −

( wk−1 · vk
wk−1 · wk−1

)
wk−1

Then the set {w1, . . . ,wk} is an orthogonal basis of V .
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Example. In R4 take

v1 =



2
1
3
−1


 , v2 =




7
4
3
−3


 , v3 =




5
7
7
8




The set B = {v1, v2, v3} is a basis of some subspace V ⊆ R4. Find an orthogonal
basis of V .
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Definition
An orthogonal basis B = {w1, . . . ,wk} of V is called an orthonormal basis
if ||wi|| = 1 for i = 1, . . . , k .

Propostion
If B = {v1, . . . vk} is an orthonormal basis of V and w ∈ V then

[ w ]B =

 c1...
ck




where ci = w · vi.

Note. If B = {v1, . . . vk} is an orthogonal basis of V then
C =

{ v1
||v1||, . . .,

vk
||vk ||

}

is an orthonormal basis of V .
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MTH 309 38. Orthogonal projections

Recall:
1) If

u =

 a1...
an


 v =


 b1...
bn




are vectors in Rn then:
• u · v = a1b1 + . . .+ anbn
• ||u|| = √u · u
• dist(u, v) = ||u− v||

2) Vectors u, v are orthogonal if u · v = 0.
3) Pythagorean theorem: u, v are orthogonal if and only if

||u||2 + ||v||2 = ||u + v||2

4) If V ⊆ Rn is a subspace then an orthogonal basis of V is a basis which
consists of vectors that are orthogonal to one another.
5) If B = {v1, . . . vk} is an orthogonal basis of V and w ∈ V then

[ w ]B =

 c1...
ck




where ci = w · vi
vi · vi .
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6) Gram-Schmidt process:
a basis
{v1, . . . , vk}
of V ⊆ Rn

an orthogonal basis
{w1, . . . ,wk}

of V
G-S process

w1 = v1

w2 = v2 −
(w1 · v2

w1 · w1

)
w1

w3 = v3 −
(w1 · v3

w1 · w1

)
w1 −

(w2 · v3
w2 · w2

)
w2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
wk = vk −

(w1 · vk
w1 · w1

)
w1 −

(w2 · vk
w2 · w2

)
w2 − . . . −

( wk−1 · vk
wk−1 · wk−1

)
wk−1
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Problem. Find the flow rate of cars on each segment of streets:

x2 x4

45 cars/h

90 cars/h

x5

x1

72 cars/
h

x 3

120
cars/

h
A B

C D
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Upshot.
• Recall: a matrix equation Ax = b has a solution if and only if b ∈ Col(A).
• In practical applications we may obtain a matrix equation that has no solu-
tions, i.e. where b 6∈ Col(A).
• In such cases we may look for approximate solutions as follows:

– replace b by a vector b′ such that b′ ∈ Col(A) and dist(b, b′) is a as small
as possible.

– then solve Ax = b′

b

b′

Definition
Given b′ ∈ Col(A) as above we will say that a vector v is a least square
solution of the equation Ax = b if v is a solution of the equation Ax = b′.

Next: How to find the vector b′?
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Definition
Let V be a subspace of Rn. A vector w ∈ Rn is orthogonal to V if w · v = 0
for all v ∈ V .

V

w

Proposition
If V = Span(v1, . . . , vk ) then a vector w ∈ Rn is orthogonal to V if and
only if w · vi = 0 for i = 1, . . . , k .
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Definition
Let V be a subspace of Rn and let w ∈ Rn the orthogonal projection of w
onto V is a vector projVw such that
1) projVw ∈ V
2) the vector z = w− projVw is orthogonal to V .

projV w
V

z
w
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The Best Approximation Theorem
If V is a subspace of Rn and w ∈ Rn then projVw is a vector in V which is
closest to w:

dist(w, projVw) ≤ dist(w, v)
for all v ∈ V .
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Corollary
The least square solutions of a matrix equation Ax = b are solutions of the
equation

Ax = projCol(A)b

b

projCol(A)b

Next: If V is a subspace of Rn and w ∈ Rn how to compute projVw?
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Theorem
If V is a subspace of Rn with an orthogonal basis {v1, . . . , vk} and w ∈ Rn
then

projVw =
(w · v1

v1 · v1

)
v1 + . . .+

(w · vk
vk · vk

)
vk

Corollary
If V is a subspace of Rn with an orthonormal basis {v1, . . . , vk} and w ∈ Rn
then

projVw = (w · v1) v1 + . . .+ (w · vk ) vk
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Example. Let

B =






1
2
0
3


 ,




2
−4

5
2


 ,




4
1
0
−2






, w =




1
2
2
1




The set B is an orthogonal basis of some subspace V of R4. Compute projVw.
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Note. In general if V is a subspace of Rn and w ∈ Rn then in order to find
projVw we need to do the following:
1) find a basis of V .
2) use the Gram-Schmidt process to get an orthogonal basis of V
3) use the orthogonal basis to compute projVw.

Example. Consider the following matrix A and vector u:

A =

 0 0 1 1

1 3 4 2
2 6 3 −1


 , u =


 0

3
0




Compute projCol(A)u.
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Example. Find least square solutions of the matrix equation Ax = b where

A =



1 1 0 0 0
1 0 1 1 0
0 −1 1 0 1
0 0 0 −1 1


 , b =




90
120
72
45



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MTH 309 39. Computation of least square solutions

Recall:
1) The least square solutions of a matrix equation Ax = b are the solutions of
the equation

Ax = projCol(A)b

2) If Ax = b is a consistent equation, then b ∈ Col(A), and projCol(A)b = b. In
such case the least square solutions of Ax = b are just the ordinary solutions.

3) If Ax = b is inconsistent, then the least square solutions are the best sub-
stitute for the (nonexistent) ordinary solutions.

4) If {v1, . . . , vk} is an orthogonal basis of a subspace V of Rn then
projVw =

(w · v1
v1 · v1

)
v1 + . . .+

(w · vk
vk · vk

)
vk

5) If {v1, . . . , vk} is an arbitrary basis of V then we can use the Gram-Schmidt
process to obtain an orthogonal basis of V .
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How to compute least square solutions of Ax = b
(version 1.0)

1) Compute a basis of Col(A).
2) Use the Gram-Schmidt process to get an orthogonal basis of Col(A).
3) Use the orthogonal basis to compute projCol(A)b.
4) Compute solutions of the equation Ax = projCol(A)b.

Next goal: Simplify this.
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Definition
If V is a subspace of Rn then the orthogonal complement of V is the set
V⊥ of all vectors orthogonal to V :

V⊥ = {w ∈ Rn | w · v = 0 for all v ∈ V}

V ⊥

V

Proposition
If V is a subspace of Rn then:
1) V⊥ is also a subspace of Rn.
2) For each vector w ∈ Rn there exist unique vectors v ∈ V and z ∈ V⊥

such that w = v + z.
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Definition
If A is an m×n matrix then the row space of A is the subspace Row(A) of
Rn spanned by rows of A.

Example
A =

[ 1 2 3
4 5 6

]

Proposition
If A is a matrix then

Row(A)⊥ = Nul(A)
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Corollary
If A is a matrix then

Col(A)⊥ = Nul(AT )
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Back to least square solutions

Theorem
A vector x̂ is a least square solution of a matrix equation

Ax = b
if and only if x̂ is an ordinary solution of the equation

(ATA)x = ATb

Definition
The equation

(ATA)x = ATb
is called the normal equation of Ax = b.
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How to compute least square solutions of Ax = b
(version 2.0)

1) Compute ATA, ATb.
2) Solve the normal equation (ATA)x = ATb.

Example. Compute least square solutions of the following equation:

 1 1

0 2
0 0


 ·
[ x1x2

]
=

 1

2
3



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MTH 309 40. Least square lines and curves

Application: Least square lines

f (x) = ax + b
x1

y1

f (x1)

x2

y2

f (x2)

x3

y3

f (x3)

x4
y4

f (x4)

x5

y5

f (x5)

Definition
If (x1, y1), . . ., (xp, yp) are points on the plane then the least square line for
these points is the line given by an equation f (x) = ax + b such that the
number

dist



 y1...
yp


 ,


 f (x1)...
f (xp)




 =

√
(y1 − f (x1))2 + . . .+ (yp − f (xp))2

is the smallest possible.
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Proposition
The line f (x) = ax+b is the least square line for points (x1, y1), . . ., (xp, yp)
if the vector

[ a
b
]

is the least square solution of the equation

 x1 1... ...
xp 1


 ·
[ z1z2

]
=

 y1...
yp



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Example. Find the equation of the least square line for the points (0, 0), (1, 1),
(3, 1), (5, 3).
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Application: Least square curves
The above procedure can be used to determine curves other than lines that fit
a set of points in the least square sense.

Example: Least square parabolas

x1
y1

x2

y2

x3

y3

x4
y4

x5

y5

f (x) =
ax2 + bx

+ c

Definition
If (x1, y1), . . ., (xp, yp) are points on the plane then the least square parabola
for these points is the parabola given by an equation f (x) = ax2 + bx + c
such that the number

dist



 y1...
yp


 ,


 f (x1)...
f (xp)




 =

√
(y1 − f (x1))2 + . . .+ (yp − f (xp))2

is the smallest possible.
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Proposition
The parabola f (x) = ax2 + bx + c is the least square parabola for points
(x1, y1), . . ., (xp, yp) if the vector


 ab
c


 is the least square solution of the

equation 

x21 x1 1... ...
x2p xp 1


 ·

 z1z2z3


 =


 y1...
yp



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Example. Find the equation of the least square parabola for the points (−2, 2),
(0, 0), (1, 1), (2, 3).
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MTH 309 41. Inner product spaces

Recall:
1) The dot product in Rn:


 a1...
an


 ·

 b1...
bn


 = a1b1 + a2b2 + . . .anbn

2) Properties of the dot product:
a) u · v = v · u
b) (u + v) · w = u · w + v · w
c) (cu) · v = c(u · v)
d) u · u ≥ 0 and u · u = 0 if and only if u = 0.

2) Using the dot product we can define:
• length of vectors
• distance between vectors
• orthogonality of vectors
• orthogonal and orthonormal bases
• orthogonal projection of a vector onto a subspace of Rn

• ...

Next: Generalization to arbitrary vector spaces.
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Definition
Let V be a vector space. An inner product on V is a function

V × V −→ R
u, v 7−→ 〈u, v〉

such that:
a) 〈u, v〉 = 〈v, u〉
b) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
c) 〈cu, v〉 = c〈u, v〉
d) 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.

Definition
Let V be a vector space with an inner product 〈 , 〉.
1) The length (or norm) of a vector v is the number

||v|| = √〈v, v〉
2) The distance between vectors u, v ∈ V is the number

dist(u, v) = ||u− v||
3) Vectors u, v ∈ V are orthogonal if 〈u, v〉 = 0.
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Example. The dot product is an inner product in Rn.

Example. Let p1, . . . , pn be any positive numbers. For vectors u, v ∈ Rn

u =

 a1...
an


 v =


 b1...
bn




define:
〈u, v〉 = p1(a1b1) + p2(a2, b2) + . . .+ pn(anbn)

This gives an inner product in Rn.
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Example. Let C [0, 1] be the vector space of continuous functions f : [0, 1]→ R.
Define:

〈f , g〉 =
∫ 1

0
f (t)g(t)dt

This is an inner product on C [0, 1].

y = f (t)

y = g(t)

10

Example. Compute the length of the function
f (t) = 1 + t2

in C [0, 1].
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Definition
Let V be a vector space with an inner product 〈 , 〉, and letW be a subspace
of V . A vector v ∈ V is orthogonal to W if 〈v,w〉 = 0 for all w ∈ W .

Definition
Let V be a vector space with an inner product 〈 , 〉, and let W be a
subspace of V . The orthogonal projection of a vector v ∈ V onto W is a
vector projW v such that
1) projW v ∈ W
2) the vector z = v − projW v is orthogonal to W .

Best Approximation Theorem
If V is a vector space with an inner product 〈 , 〉, W is a subspace of V ,
and v ∈ V , then projW v is the vector of V which is the closest to v:

dist(v, projW v) ≤ dist(v,w)
for all w ∈ W .

Theorem
Let V is a vector space with an inner product 〈 , 〉, and let W be a subspace
of V . If B = {w1, . . . ,wk} is an orthogonal basis of W (i.e. a basis such
that 〈wi,wj〉 = 0 for all i 6= j) then for v ∈ V we have:

projW v = 〈v,w1〉
〈w1,w1〉w1 + . . .+ 〈v,wk〉

〈wk ,wk〉wk
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Application: Fourier approximations.
Goal: Let f : [0, 1] → R be a continuous function. Find the best possible
approximation of f of the form

P(t) = a0
+ a1 sin(2πt) + b1 cos(2πt)
+ a2 sin(2π2t) + b2 cos(2π2t)
. . . . . . . . . . . . . . . . . . . . .
+ an sin(2πnt) + bn cos(2πnt)

10
sin(2πt)

10
sin(2π2t)

10
sin(2π3t)

10
cos(2πt)

10
cos(2π2t)

10
cos(2π3t)

Note: Let Wn be a subspace of C [0, 1] given by:
Wn = Span(1, sin(2πt), cos(2πt), . . . , sin(2πnt), cos(2πnt))

By the Best Approximation Theorem, the best approximation of f is obtained if
we take P(t) = projWnf (t).
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Theorem
The set

{1, sin(2πt), cos(2πt), . . . , sin(2πnt), cos(2πnt)}
is an orthogonal basis of Wn.

Corollary
If f ∈ C [0, 1] then

projWnf (t) = a0
+ a1 sin(2πt) + b1 cos(2πt)
+ a2 sin(2π2t) + b2 cos(2π2t)
. . . . . . . . . . . . . . . . . . . . .
+ an sin(2πnt) + bn cos(2πnt)

where:

a0 = 〈f , 1〉〈1, 1〉 =
∫ 1

0
f (t)dt

and for k > 0:

ak = 〈f , sin(2πkt)〉
〈sin(2πkt), sin(2πkt)〉 = 2

∫ 1

0
f (t) · sin(2πkt)dt

bk = 〈f , cos(2πkt)〉
〈cos(2πkt), cos(2πkt)〉 = 2

∫ 1

0
f (t) · cos(2πkt)dt
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Example. Compute projWnf (t) for the function f (t) = t.
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Application: Polynomial approximations.
Goal: Let f : [0, 1] → R be a continuous function. Find the best possible
approximation of f given by a polynomial P(t) of degree ≤ n:

P(t) = a0 + a1t + . . .+ antn

Note: Let Pn be the subspace of C [0, 1] consisting of all polynomials of degree
≤ n:

Pn = {a0 + a1t + . . .+ antn | ak ∈ R}
By the Best Approximation Theorem, the best approximation of f is obtained if
we take P(t) = projPnf (t).
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Gram-Schmidt process:

a basis
{v1, . . . , vk}
of W ⊆ V

an orthogonal basis
{w1, . . . ,wk}

of W
G-S process

Theorem (Gram-Schmidt Process)
Let V be a vector space with an inner product 〈 , 〉, and letW be a subspace
of V . Let {v1, . . . , vk} be a basis of W . Define vectors {w1, . . . ,wk} as
follows:

w1 = v1

w2 = v2 − 〈w1, v2〉
〈w1,w1〉w1

w3 = v3 − 〈w1, v3〉
〈w1,w1〉w1 − 〈w2, v3〉

〈w2,w2〉w2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
wk = vk − 〈w1, vk〉

〈w1,w1〉w1 − 〈w2, vk〉
〈w2,w2〉w2 − . . . − 〈wk−1, vk〉

〈wk−1,wk−1〉wk−1

Then the set {w1, . . . ,wk} is an orthogonal basis of W .
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Example. Find an orthogonal basis of the subspace P2 of the vector space
C [0, 1].
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Example. Compute projP2f (t) for f (t) = √t.
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MTH 309 42. Eigenvalues and eigenvectors

Recall: An n × n matrix A defines a linear transformation
TA : Rn → Rn

given by TA(v) = Av.
Next goal: Understand this linear transformation better.

Example.
A =

[ 2 0
0 3

]
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Example.
A =

[ 2 1
1 2

]
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Definition
Let A be an n × n matrix. If v ∈ Rn is a non-zero vector and λ is a scalar
such that

Av = λv
then we say that
• λ is an eigenvalue of A
• v is an eigenvector of A corresponding to λ.

Example.
A =

[ 2 0
0 3

]

Example.
A =

[ 2 1
1 2

]
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Computation of eigenvalues

Recall: In = n × n identity matrix:

In =



1 0 . . . 0
0 1 . . . 0... ... . . . ...
0 0 . . . 1




Propostiton
If A be an n× n matrix then λ ∈ R is an eigenvalue of A if and only if the
matrix equation

(A − λIn)x = 0
has a non-trivial solution.
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Propostiton
If B is an n × n matrix then equation

Bx = 0
has a non-trivial solution if and only of the matrix B is not invertible.

Propostiton
If A be an n × n matrix then λ ∈ R is an eigenvalue of A if and only if

det(A − λIn) = 0
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Example. Find all eigenvalues of the following matrix:

A =

 2 2 1

1 3 1
1 2 2



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Definition
If A is an n × n matrix then

P(λ) = det(A − λIn)
is a polynomial of degree n. P(λ) is called the characteristic polynomial
of the matrix A.

Upshot
If A is a square matrix then

eigenvalues of A = roots of P(λ)

Example.

A =

 2 2 1

1 3 1
1 2 2




Corollary
An n × n matrix can have at most n distinct eigenvalues.

253



Computation of eigenvectors

Proposition
If λ is an eigenvalue of an n × n matrix A then

{ eigenvectors of A
corresponding to λ

}
=
{ vectors in

Nul(A − λIn)
}
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Corollary/Definition
If A is an n × n matrix and λ is an eigenvalue of A then the set of all
eigenvectors corresponding to λ is a subspace of Rn.
This subspace is called the eigenspace of A corresponding to λ.

Proposition
If λ is an eigenvalue of an n × n matrix A then

{ eigenspace of A
corresponding to λ

}
= Nul(A − λIn)
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Example. Consider the following matrix:

A =

 2 2 1

1 3 1
1 2 2




Recall that eigenvalues of A are λ1 = 1 and λ2 = 5. Compute bases of
eigenspaces of A corresponding to these eigenvalues.

Solution.
λ1 = 1
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λ2 = 5
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MTH 309 43. Matrix diagonalization

Recall:
1) Let A be an n × n matrix. If v ∈ Rn is a non-zero vector and λ is a scalar
such that

Av = λv
then
• λ is an eigenvalue of A
• v is an eigenvector of A corresponding to λ.

2) The characteristic polynomial of an n × n matrix A is the polynomial given
by the formula

P(λ) = det(A − λIn)
where In is the n × n identity matrix.

3) If A is a square matrix then
eigenvalues of A = roots of P(λ)

4) If λ is an eigenvalue of an n × n matrix A then
{ eigenvectors of A

corresponding to λ
}

=
{ vectors in

Nul(A − λIn)
}
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Motivating example: Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

259



Problem. Find a formula for the n-th Fibonacci number Fn.
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General Problem. If A is a square matrix how to compute Ak quickly?

Easy case:
Definition
A square matrix D is diagonal matrix if all its entries outside the main
diagonal are zeros:

D =


λ1 0 . . . 0
0 λ2 . . . 0... ... . . . 0
0 0 . . . λn




Proposition
If D is a diagonal matrix as above then

Dk =


λk1 0 . . . 0
0 λk2 . . . 0... ... . . . 0
0 0 . . . λkn



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Definition
A square matrix A is a diagonalizable if A is of the form

A = PDP−1

where D is a diagonal matrix and P is an invertible matrix.

Example.

A =

 1 0 1

0 1 1
1 1 0


 is a diagonalizable matrix:

A =

 1 1 −1

1 1 1
1 −2 0


 ·

 2 0 0

0 −1 0
0 0 1


 ·

 1 1 −1

1 1 1
1 −2 0



−1

Proposition
If A is a diagonalizable matrix, A = PDP−1, then

Ak = PDkP−1
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Example.

Let A =

 1 0 1

0 1 1
1 1 0


. Compute A10.
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Diagonalization Theorem
1) An n × n matrix A is a diagonalizable if and only if it has n linearly
independent eigenvectors v1, v2, . . . , vn.
2) In such case A = PDP−1 where :
P = [ v1 v2 . . . vn ]

D =


λ1 0 . . . 0
0 λ2 . . . 0... ... . . . 0
0 0 . . . λn




λ1 = eigenvalue corresponding to v1λ2 = eigenvalue corresponding to v2. . . . . . . . . . . . . . . . . . . . .
λn = eigenvalue corresponding to vn
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Example. Diagonalize the following matrix if possible:

A =

 4 0 0

1 3 −1
1 −1 3



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Note. Not every matrix is diagonalizable.
Example. Check if the following matrix is diagonalizable:

A =
[ 2 1

0 2
]
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Proposition
If A is an n×n matrix with n distinct eigenvalues then A is diagonalizable.
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Back to Fibonacci numbers:
[ FnFn+1

]
=
[ 0 1

1 1
]n−1

·
[ 1

1
]
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MTH 309 44. Diagonalization of symmetric matrices

Recall:
1) A square matrix A is diagonalizable if there exists an invertible matrix P and
a diagonal matrix D such that

A = PDP−1

2) If A is diagonalizable then it is easy to compute powers of A:
Ak = PDkP−1

3) An n × n matrix A is a diagonalizable if and only if it has n linearly inde-
pendent eigenvectors v1, v2, . . . , vn. In such case we have:

P = [ v1 v2 . . . vn ]

D =


λ1 0 . . . 0
0 λ2 . . . 0... ... . . . 0
0 0 . . . λn




λ1 = eigenvalue corresponding to v1λ2 = eigenvalue corresponding to v2. . . . . . . . . . . . . . . . . . . . .
λn = eigenvalue corresponding to vn

4) Not every square matrix is diagonalizable.
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Definition
A square matrix A is symmetric if AT = A




1 2 3 4
2 0 5 6
3 5 7 8
4 6 8 9




Theorem
Every symmetric matrix is diagonalizable.
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Theorem
If A is a symmetric matrix and λ1, λ2 are two different eigenvalues of A,
then eigenvectors corresponding to λ1 are orthogonal to eigenvectors cor-
responding to λ2.

Note. If v, w are vectors in Rn then
v · w = vTw

Example.

v =

 1

2
3


, w =


 4

5
6



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Theorem
If A is an n × n symmetric matrix then A has n orthogonal eigenvectors.

Example.
a) Find three orthogonal eigenvectors of the following symmetric matrix:

A =

 2 1 1

1 2 1
1 1 2




b) Use these eigenvectors to diagonalize this matrix.
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Upshot. How to find n orthogonal eigenvectors for a symmetric n×n matrix A:
1) Find eigenvalues of A.
2) Find a basis of the eigenspace for each eigenvalue.
3) Use the Gram-Schmidt process to find an orthogonal basis of each eigenspace.
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Definition
A square matrix Q = [ u1 u2 . . . un ] is an orthogonal matrix if
{u1, u2, . . . , un} is an orthonormal set of vectors, i.e.:

ui · uj =
{1 if i = j

0 if i 6= j

Theorem
If Q is an orthogonal matrix then Q is invertible and Q−1 = QT .
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Note. If P = [ v1 v2 . . . vn ] is a matrix with orthogonal columns, then

Q =
[ v1
||v1||

v2
||v2|| . . . vn

||vn||
]

is an orthogonal matrix.

Theorem
If A is a symmetric matrix then A is orthogonally diagonalizable. That is,
there exists an orthogonal matrix Q and a diagonal matrix D such that

A = QDQ−1 = QDQT
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Example. Find an orthogonal diagonalization of the following symmetric matrix:

A =

 2 1 1

1 2 1
1 1 2



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Note. We have seen that any symmetric matrix is orthogonally diagonalizable.
The converse statement is also true:

Proposition
If a matrix A is orthogonally diagonalizable then A is a symmetric matrix.
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MTH 309 45. Spectral decomposition of symmetric matrices

Recall:
1) An orthogonal matrix Q = [ u1 u2 . . . un ] is a square matrix such that
{u1, u2, . . . , un} is an orthonormal set of vectors, i.e.:

ui · uj =
{1 if i = j

0 if i 6= j

2) If Q is an orthogonal matrix then Q−1 = QT

3) A square matrix A is orthogonally diagonalizable if there exist an orthogonal
matrix Q and a diagonal matrix D such that

A = QDQ−1 = QDQT

4) A matrix A is orthogonally diagonalizable if and only if A is a symmetric
matrix (i.e. AT = A).

278



Yet another view of matrix multiplication
Note. If C is an n × 1 matrix and D is an 1 × n matrix then CD is an n × n
matrix.

Propostion
Let A be an n×n matrix with columns v1, . . . , vn, and B be an n×n matrix
with rows w1, . . . ,wn:

A = [ v1 . . . vn ] B =

w1...

wn




Then
AB = v1w1 + v2w2 + . . .+ vnwn

Example.
A =

[ 1 2
3 4

]
B =

[ 5 1
7 2

]
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Theorem
Let A be a symmetric matrix with orthogonal diagonalization

A = QDQT

If
Q = [ u1 . . . un ] and D =


 λ1 . . . 0... . . . 0

0 . . . λn




then
A = λ1(u1uT1 ) + λ2(u2uT2 ) + . . .+ λn(unuTn )

Note. The above formula is called the spectral decomposition of the matrix A.
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Example.
[ 3 1

1 3
]

=
[ 1/√2 −1/√2

1/√2 1/√2
]
·
[ 4 0

0 2
]
·
[ 1/√2 −1/√2

1/√2 1/√2
]T
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Spectral decomposition and linear transformations
[ 3 1

1 3
]

=
[ 1/√2 −1/√2

1/√2 1/√2
]
·
[ 4 0

0 2
]
·
[ 1/√2 −1/√2

1/√2 1/√2
]T
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MTH 309 46. Application: Symmetric image compression

• The size of this image is 1000×
1000 pixels.
• The color of each pixel is repre-

sented by an integer between 0
(black) and 255 (white).
• The whole image is described by

a (symmetric) matrix A consisting
of 1000 × 1000 = 1, 000, 000
numbers
• Each number is stored in 1 byte,

so the image file size is 1, 000, 000
bytes (≈ 1 MB).

How to make the image file smaller:
1) Find the spectral decomposition of the matrix A:

A = λ1(u1uT1 ) + λ2(u2uT2 ) + . . .+ λ1000(u1000uT1000)
where |λ1| ≥ |λ2| ≥ . . . ≥ |λ1000|.

2) For k = 1, . . . , 1000 define:
Bk = λ1(u1uT1 ) + λ2(u2uT2 ) + . . .+ λk (ukuTk )

This matrix approximates the matrix A and can be stored using k · (1000 + 1)
numbers (i.e. k · (1000 + 1) bytes).
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Eigenvalues of the matrix A

0 100 200 300 400 500 600 700 800 900 1000
k

10 1 10 1

100 100

101 101

102 102

103 103

104 104

105 105

|
k|

matrix B11001 bytes
compression 1000:1

matrix B55005 bytes
compression 200:1
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matrix B1010,010 bytes
compression 100:1

matrix B2020,020 bytes
compression 50:1

matrix B5050,050 bytes
compression 20:1

matrix B100100,100 bytes
compression 10:1
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MTH 309 47. Singular Value Decomposition

Theorem
Any A an m× n matrix can be written as a product

A = UΣV T
where:
• U = [ u1 . . . um ] is an m×m orthogonal matrix.
• V = [ v1 . . . vn ] is an n × n orthogonal matrix.
• Σ is an m× n matrix of the following form:




σ1 0 · · · 0
0 σ2 · · · 0... ... . . . 0
0 0 · · · σn0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0






σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0... ... . . . 0 0 · · · 0
0 0 · · · σm 0 · · · 0


or

(if n ≤ m) (if n ≥ m)
where σ1 ≥ σ2 ≥ . . . ≥ 0.

Note.
• The numbers σ1, σ2, . . . are called singular values of A.
• The vectors u1, . . . , um are called left singular vectors of A.
• Then the vectors v1, . . . , vn are called right singular vectors of A.
• The formula A = UΣV T is called a singular value decomposition (SVD) of A.
• The matrix Σ is uniquely determined, but U and V depend on some choices.
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Theorem
Let A be a matrix with a singular value decomposition

A = UΣV T

If
U = [ u1 . . . um ] V = [ v1 . . . vn ]

and σ1, . . . , σr are singular values of A then then
A = σ1(u1vT1 ) + σ2(u2vT2 ) + . . .+ σr(urvTr )
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Application: Image compression

• The size of this image is 800×700
pixels.
• The color of each pixel is represented

by an integer between 0 (black) and
255 (white).
• The whole image is described by

a matrix A consisting of 800 × 700
= 560, 000 numbers.
• Each number is stored in 1 byte, so

the image file size is 560, 000 bytes
(≈ 0.53 MB).

How to make the image file smaller:
1) Compute SVD of the matrix A:

A = UΣV T

where
U = [ u1 . . . um ] V = [ v1 . . . vn ]

and σ1, . . . , σr are singular values of A.
2) Replace A by the matrix

Bk = σ1(u1vT1 ) + . . .+ σk (ukvTk )
for some 1 ≤ k ≤ 700. This matrix can be stored using k · (800 + 700 + 1)
numbers.
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Singular values of the matrix A

0 100 200 300 400 500 600 700
k

101 101

102 102

103 103

104 104

105 105

k

matrix B11501 bytes
compression 374:1

matrix B57905 bytes
compression 75:1
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matrix B1015,010 bytes
compression 37:1

matrix B2030,020 bytes
compression 18:1

matrix B5075,050 bytes
compression 7:1

matrix B100150,100 bytes
compression 4:1
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How to compute SVD of a matrix A
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How to compute SVD of a matrix A

1) Compute an orthogonal diagonalization of the symmetric n × n matrix ATA:
ATA = QDQT

such that eigenvalues on the diagonal of the matrix D are arranged from the
largest to the smallest. We set V = Q.

2) If

D =


λ1 0 . . . 0
0 λ2 . . . 0... ... . . . 0
0 0 . . . λn




then σi = √λi. This gives the matrix Σ.
Note: if n > m then we use only λ1, . . . , λm. The remaining eigenvalues
λm+1, . . . , λn of D will be equal to 0 in this case.

3) Let V = [ v1 . . . vn ], and let σ1, . . . , σr be non-zero singular values of A.
The first r columns of the matrix U = [ u1 . . . um ] are given by

ui = 1
σiAvi

The remaining columns ur+1, . . . , um can be added arbitrarily so that U is an
orthogonal matrix (i.e.{u1, . . . , um}) is an orthonormal basis of Rm.
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Example. Find SVD of the following matrix:

A =

 −1 0

1 −1
0 1



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MTH 309 48. Application: SVD and data analysis

Recall:
Let A be a matrix with a singular value decomposition

A = UΣV T

If
U = [ u1 . . . um ] V = [ v1 . . . vn ]

and σ1, . . . , σr are singular values of A then then
A = σ1(u1vT1 ) + σ2(u2vT2 ) + . . .+ σr(urvTr )

Example: Movie ratings:

5 0 5 0 4
5 0 3 0 5
0 5 0 5 1
1 5 0 4 0
4 0 4 0 3
0 5 0 4 0
3 0 3 0 2

Ma
trix

Am
elie

Alie
n

Cas
abl

anc
a

Inte
rste

llar

user 1
user 2
user 3
user 4
user 5
user 6
user 7
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Singular value decomposition of the matrix of movie ratings:

U =




−0.6 0.1 −0.3 −0.2 0.2 −0.7 −0.2
−0.5 0.1 0.8 0.2 0.1 0.1 0.1
−0.1 −0.6 0.2 −0.7 −0.4 0.0 0.0
−0.1 −0.5 −0.1 0.7 −0.4 −0.1 −0.2
−0.5 0.1 −0.3 −0.1 −0.1 0.7 −0.4
−0.1 −0.6 −0.1 0.0 0.8 0.1 0.2
−0.3 0.1 −0.3 0.0 −0.3 0.1 0.8




Σ =




13.6 0 0 0 0
0 11.4 0 0 0
0 0 1.9 0 0
0 0 0 1.1 0
0 0 0 0 0.3
0 0 0 0 0
0 0 0 0 0




V =




−0.6 0.1 0.0 0.7 −0.4
−0.1 −0.7 −0.1 0.3 0.6
−0.5 0.1 −0.7 −0.4 0.2
−0.1 −0.6 0.0 −0.4 −0.7
−0.5 0.1 0.7 −0.4 0.3







5 0 5 0 4
5 0 3 0 5
0 5 0 5 1
1 5 0 4 0
4 0 4 0 3
0 5 0 4 0
3 0 3 0 2



≈




−0.6 0.1
−0.5 0.1
−0.1 −0.6
−0.1 −0.5
−0.5 0.1
−0.1 −0.6
−0.3 0.1



·
[13.6 0

0 11.4
]
·
[−0.6 −0.1 −0.5 −0.1 −0.5

0.1 −0.7 0.1 −0.6 0.1
]
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Problem. A new movie “Captive State” was rated by the seven users as follows:
4, 4, 0, 1, 4, 0, 0. What kind of movie it is?
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