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1 Exam 01

1.1 Summary

Exam 01 is based on Chapters 1, 2, 4, and 5.
In Chapter 1, we talked about how to solve systems of linear equations using

Gauss-Jordan elimination. This technique is crucial for most of the computational
problems in this course. Gaussian elimination is the process of finding a row ech-
elon form of the matrix. Jordan elimination is the process of taking a row echelon
form and finding the reduced row echelon form.

Chapter 2 focused on vectors in Euclidean space. We discussed addition and
scalar multiplication of vectors, and linear combinations. In particular, our Quiz 01
was about determining whether a given vector was a linear combination of some
other vectors. We also briefly mentioned length, and the dot product.

Chapter 4 was about matrices. We defined addition of matrices, scalar multipli-
cation of matrices, and matrix products. We also defined the identity matrix, which
serves as a multiplicative identity for matrices. This brought with it the topic of
inverse matrices. We also defined the transpose of a matrix.

Chapter 5 was mainly about vector subspaces of Rn. Every span of a sequence
of vectors is a vector subspace, and conversely, every vector subspace is the span
of some sequence of vectors. Now, among all the different sequences of vectors
that could span a vector subspace, there are some that are “nice” in the sense of
being linearly independent, while still corresponding to the entire vector subspace.
These sequences are called bases of a vector subspace. We also introduced the
columnspace and nullspace of a matrix, as examples of vector subspaces of Rn.
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1.2 Practice problems

Section 1.3: Exercises 1.3.1-4, 1.3.6
Section 1.4: Exercises 1.4.5-13, 1.4.16-25, 1.4.27, 1.4.28
Section 1.5: Exercises 1.5.1-6
Section 1.7: Exercise 1.7.2

Section 2.1: Exercises 2.1.2, 2.1.3
Section 2.4: Exercises 2.4.1-3
Section 2.6: Exercises 2.6.1, 2.6.7

Section 4.3: Exercise 4.3.2
Section 4.4: Exercises 4.4.1, 4.4.2, 4.4.4-7, 4.4.9-12, 4.4.14
Section 4.5: Exercises 4.5.1-5, 4.5.7, 4.5.8, 4.5.18
Section 4.7: Exercises 4.7.1-3

Section 5.1: Exercises 5.1.1-5
Section 5.2: Exercises 5.2.3-11
Section 5.3: Exercises 5.3.1, 5.3.2
Section 5.4: Exercises 5.4.1-5, 5.4.8, 5.4.14, 5.4.15
Section 5.5: Exercises 5.5.1, 5.5.2
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1.3 Test content

The directions of each problem are given here:

1. [20] Describe the set of solutions of the following linear system.

[linear system]

2. [20] Express the vector

−→u = [ vector ]

as a linear combination of the vectors

−→v1 = [ vector ] , −→v2 = [ vector ] , −→v3 = [ vector ],

or show that no such expression is possible.

3. [20] Find the inverse of the following matrix, or show that the matrix is not
invertible.

A = [ matrix ]

4. [20] Find a basis for the nullspace of the following matrix.

A = [ matrix ]

5. [20] For each of the following sets, write “Y” if the set is a vector subspace
of [ some Euclidean space ] and “N” if it is not. (It is not necessary to show your
work or reasoning for this problem.)

[Four different sets]
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2 Exam 02

2.1 Summary

Exam 02 is based on Chapters 6, 9, 10, 7, and 8.
Chapter 6 was our first look at linear transformations. Specifically, Chapter 6

only mentioned linear transformations between Euclidean spaces. We discussed the
definition and various examples. Every linear transformation can be represented by
a matrix. We opened up the discussion of how to find the matrix representation of
a linear transformation, but didn’t go into great detail until Chapter 10.

Chapter 9 was about extending the definitions and concepts that we learned
about Euclidean spaces to more general settings. We defined the term “vector
space” in a way that was general enough to include many interesting sets, such as
vector spaces of polynomials, matrices, and general functions. We also discussed
some concepts from Euclidean space which are valid in general vector spaces. In
particular, linear combinations, vector subspaces, and bases (and all their conse-
quences) can be discussed in general vector spaces.

In Chapter 10, we discussed the properties of linear transformations in the con-
text of general vector spaces. Particular emphasis was placed on finding matrix
representations of linear transformations with respect to given bases on the domain
and codomain. This led us back to the context of matrices over the real numbers.

Chapter 7 was about determinants. With some amount of effort, we defined the
determinant of a general square matrix in a computationally-minded way. We also
discussed some shortcuts that assist in computing the determinant of a square ma-
trix. The main reason that we concern ourselves with determinants is that it gives
a straightforward criterion for figuring out whether a square matrix is invertible; a
square matrix is invertible if and only if its determinant is nonzero.

Once we knew how to compute the determinant of a square matrix, we were
then able to move into Chapter 8, which used these results to find eigenvalues.
Eigenvalues and eigenvectors serve many important purposes in applied math, but
we were mostly interested in them because they are crucial to the notion of diago-
nalization. Diagonalization allows for simplified computations involving matrices
and exponents.
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2.2 Practice problems

Section 6.1: Exercises 6.1.1, 6.1.2, 6.1.5
Section 6.2: Exercise 6.2.5

Section 9.1: Exercises 9.1.1-4, 9.17
Section 9.2: Exercises 9.2.2-4, 9.26, 9.2.7
Section 9.3: Exercises 9.3.2-4, 9.3.8, 9.3.9, 9.3.11, 9.3.16
Section 9.4: Exercises 9.4.1-4, 9.4.8, 9.4.9

Section 10.1: Exercises 10.1.1, 10.1.2, 10.1.4, 10.1.5,
Section 10.3: Exercise 10.3.1
Section 10.4: Exercises 10.4.1-6,

Section 7.1: Exercises 7.1.1, 7.1.2
Section 7.2: Exercises 7.2.1-7
Section 7.3: Exercise 7.3.1
Section 7.4: Exercise 7.4.1
Section 7.5: Exercises 7.5.1, 7.5.3, 7.5.6, 7.5.7, 7.5.10, 7.5.13

Section 8.1: Exercises 8.1.1-5
Section 8.2: Exercises 8.2.1-7
Section 8.4: Exercises 8.4.5, 8.4.6
Section 8.9: Exercises 8.9.1, 8.9.2
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2.3 Test content

The directions of each problem are given here:

1. [20] For each of the following functions, write “Y” if the function is a lin-
ear transformation and “N” if it is not. (It is not necessary to show your work or
reasoning for this problem.)

[four different functions]

2. [20] Determine whether the following sequence of vectors in [vector space]
is linearly independent.

[finite sequence of vectors]

3. [20] Find the matrix representation of the linear transformation

T : [vector space 1]→ [vector space 2]
T ([generic input vector]) = [specific output vector]

with respect to the bases

B = [basis for vector space 1]
C = [basis for vector space 2]

on [vector space 1] and [vector space 2] respectively.

4. [20] Compute the determinant of the following matrix.

A = [5× 5 matrix]

5. [20] Diagonalize the following matrix.

A = [2× 2 matrix] .
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(To clarify: you are being asked to produce matrices P and D satisfying the equa-
tion P−1AP = D, such that D is a diagonal matrix.)

7



3 Final exam

3.1 Summary

The final exam is cumulative, based on Chapters 1, 2, 4, 5, 6, 7, 8, 9, 10, and
11. Of these, only Chapter 11 is new.

In Chapter 11, we introduced inner products. An inner product is an operation
that takes two input vectors and associates an output scalar, satisfying some partic-
ular properties. We began with real-valued inner products.

Defining an inner product allows us to define a notion of magnitude, which, in
turn, allows us to consider distances. Not only that, but inner products also give a
notion of orthogonality. With an orthogonal basis, it is much easier to find coordi-
nates of a given vector. These coordinates are called “Fourier coefficients.”

This brings up the question of how one can find an orthogonal basis for a given
vector space. The theorem that answers this is the Gram-Schmidt procedure. This
procedure takes a basis for an inner product space and finds an orthogonal basis.
We also briefly mentioned orthogonal projections of a given vector onto a given
vector subspace. In an infinite-dimensional vector space, this allows one to define
what is called a “generalized Fourier series.”

We then considered linear transformations between inner product spaces. We
defined isometries and orthogonal transformations. This brought us, once again, to
the topic of matrices. In particular, a linear transformation between inner product
spaces is an isometry if and only if the matrix representation is an orthogonal ma-
trix.

On the topic of matrices, we discussed that every symmetric matrix A with real
entries can be “orthogonally diagonalized,” meaning that we can find a diagonal
matrix D and an orthogonal matrix P such that P−1AP = D. We also talked about
positive definite matrices, which can be used to define an inner product on a Eu-
clidean space.

Finally, we briefly mentioned complex inner product spaces, saying that they
follow all of the same theorems as real inner product space. We used the Gram-
Schmidt procedure to find orthogonal bases in complex inner product spaces. (We
also defined unitary and Hermitian matrices, featured in subsection 11.11.)
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3.2 Practice problems

Section 11.1: Exercises 11.1.2, 11.1.3
Section 11.2: Exercises 11.2.1, 11.2.2, 11.2.4, 11.2.5
Section 11.3: Exercises 11.3.1, 11.3.2
Section 11.4: Exercises 11.4.1-4
Section 11.6: Exercises 11.6.1-3
Section 11.7: Exercise 11.7.1
Section 11.8: Exercise 11.8.2, 11.8.3
Section 11.10: Exercises 11.10.1-10

9



3.3 Test content

The directions of each problem are given here:

1. [10] Describe the set of solutions of the following linear system.

[linear system]

2. [10] Find the inverse of the following matrix, or show that the matrix is not
invertible.

A = [ matrix ]

3. [10] Find a basis for the nullspace of the following matrix.

A = [ matrix ]

4. [10] Find the matrix representation of the linear transformation

T : [vector space 1]→ [vector space 2]
T ([generic input vector]) = [specific output vector]

with respect to the bases

B = [basis for vector space 1]
C = [basis for vector space 2]

on [vector space 1] and [vector space 2] respectively.

5. [10] Determine whether the following matrix is diagonalizable.

A = [square matrix] .

6. [10] Consider the set S = [set of vectors] in V = [inner product space]. Find
S⊥, the orthogonal complement of S in V .
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7. [10] Orthogonally diagonalize the following matrix.

A = [2× 2 symmetric matrix] .

(To clarify: you are being asked to produce matrices P and D satisfying the equa-
tion P−1AP = D, such that D is a diagonal matrix and P is an orthogonal matrix.)

8. [10] In the complex inner product space C3 with the (complex) dot product,
let

−→v1 = [vector] , −→v2 = [vector] , −→v3 = [vector].

Use the Gram-Schmidt procedure to find an orthogonal basis for the vector sub-
space W = span (−→v1 ,−→v2 ,−→v3).

9. [10] For each of the following matrices, consider the operation 〈, 〉 on R2

defined by the relationship

〈−→u ,−→v 〉 = −→u T
A−→v .

For each matrix, write “Y” if the matrix defines an inner product on R2 and “N” if
it does not. (It is not necessary to show your work or reasoning for this problem.)

[four different matrices]

10. [10] For each of the following matrices, write “Y” if the matrix is Hermitian
and “N” if it is not. (It is not necessary to show your work or reasoning for this
problem.)

[four different matrices]
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