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1 Preliminaries

In this document, we introduce the basic principles of using matrices in mathe-
matics and applied mathematics to solve systems of equations. In order to do this,
we’ll need to explain how to do algebra on matrices, just as one would do algebra
on the numbers.

The practice of redefining and generalizing operations on numbers to work for
different mathematical contexts is a field of mathematics known as “abstract alge-
bra.” The particular case of vectors and matrices is the sub-field known as “linear
algebra.” These two fields are a primary research interest for mathematicians of the
past, present and future. There are entire (enormous) books devoted solely to these
subjects, and the author admits to a proclivity to ramble for hours on end about
them.

With such an abundance of literature in mind, you may be asking:

1.1 Why does this document exist?

Unfortunately, many students do not take a course in abstract or linear algebra
until late in their undergraduate education (if ever). This leaves them mostly in the
dark concerning matrices. I wrote this document for the sake of those who want to
learn how to use matrices despite not having that background.

So:

1.2 Why does anyone care about matrices?

Matrix algebra is a skill that can significantly reduce the effort required to do
a computation. As a visual strategy, it can highlight ways of reducing the amount
of steps in a computation. Additionally, computers think of systems of equations
primarily in terms of matrices. Beyond this, matrices can provide a link between
solving systems of equations and deeper concepts in linear algebra. In general, just

about every person ever doing mathematical work can benefit from learning about

matrices.
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1.3 What is a matrix?

Definition 1.1 An m× n matrix (pronounced “m by n matrix”) is an assignment

of some mathematical objects to each ordered pair (i, j), where 1 ≤ i ≤ m and

1 ≤ j ≤ n. We say that an m× n matrix has m rows and has n columns.

Matrices are generally visualized as rectangles made up of squares, each one
labeled by (i, j), with larger values for i below smaller ones, and larger values for
j to the right of smaller ones. In each square, the value corresponding to (i, j) is
placed. (In other words, the value assigned to (i, j) is placed in the cell contained
by the ith row and the jth column.)

For example, a 3× 4 matrix of numbers making the following assignments:

(1, 1) 1

(1, 2) 5

(1, 3) −4
3

(1, 4) 4

(2, 1) 0

(2, 2) 4

(2, 3) −2
(2, 4) 3

(3, 1)
√
2

(3, 2) 6

(3, 3) e2

(3, 4) π

(1)

would be visualized like this:

1 5 −4
3

4

0 4 −2 3
√
2 6 e2 π

. (2)

However, we need not bother ourselves with drawing lines dividing the cells. In-
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stead, we’ll just write the assignments like this: 1 5 −4
3

4

0 4 −2 3√
2 6 e2 π

 or

 1 5 −4
3

4

0 4 −2 3√
2 6 e2 π

. (3)

We define two matrices as being equal if they are the same size and for each
ordered pair (i, j), the two matrices associate (i, j) to equal mathematical objects.
Thus, two matrices are equal only if all of their entries agree:(

1 0 9

0 6 7

)
6=

(
1 0 9

0 6 6

)
. (4)

There are plenty generalizations of matrices. For one thing, we’ve only dealt
with matrices that have two coordinates for each cell, creating a 2-dimensional di-
agram. What if we had triplets, (i, j, k), creating a 3-dimensional diagram? What
if we had quadruplets, (i, j, k, l), creating a 4-dimensional diagram? What if we
had more than that? These generalizations are known in mathematics as “tensors,”
although some applied mathematicians refer to them as “n-dimensional matrices.”
For our purposes, though, we will only be need with “2-dimensional” matrices,
such as those diagrammed above.
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2 Matrix operations

It will be convenient to be able to add, subtract, multiply and (sort of) divide
matrices, in the same way that one would add, subtract, multiply and (sometimes)
divide real numbers. So first, we’ll have to explain what these operations mean.

2.1 Addition of matrices

Addition of matrices is unnervingly simple. Given two m × n matrices, one
adds them by simply adding the entries in corresponding positions:
a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn

+


b11 b12 ... b1n

b21 b22 ... b2n
...

... . . . ...
bm1 bm2 ... bmn

 =


a11 + b11 a12 + b12 ... a1n + b1n

a21 + b21 a22 + b22 ... a2n + b2n
...

... . . . ...
am1 + bm1 am2 + bm2 ... amn + bmn

 .

(5)
For example: (

0 1

1 2

)
+

(
4 9

−1 8

)
=

(
0 + 4 1 + 9

1 + (−1) 2 + 8

)
=

(
4 10

0 10

)
(
−12 7

6 2

)
+

(
4 6

−1 5

)
=

(
−12 + 4 7 + 6

6 + (−1) 2 + 5

)
=

(
−8 13

5 7

)
 1 0 1

−1 1 0

0 −1 −1

+

2 −2 2

0 2 −2
0 2 0

 =

 1 + 2 0 + (−2) 1 + 2

−1 + 0 1 + 2 0 + (−2)
0 + 0 −1 + 2 −1 + 0

 =

 3 −2 3

−1 3 −2
0 1 −1


(
−6 1 0 0

1 2 −2 1

)
+

(
8 9 −1 −4
4 6 −12 −3

)
=

(
2 10 −1 −4
5 8 −14 −2

)


1

4

−2
0

6

+


0

9

−1
−2
−1

 =


1

13

−3
−2
5



.

(6)
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The sum of two m × n matrices will always be an m × n matrix. Addition of
matrices makes sense only when the matrices have the same numbers of rows and
columns; one cannot add a 2× 3 matrix to a 4× 3 matrix:

(
3 1 7

0 −2 8

)
+


5 1 0

1 1 1

0 −1 12

8 −9 1

 (is meaningless) (7)

2.2 Multiplication of matrices

There are two sorts of multiplications for matrices, depending on what kind of
mathematical object you want to multiply by a matrix.

2.2.1 Scalar multiplication

“Scalar multiplication” is the multiplication of a “scalar,” (that is, a number) by
a matrix. This, too, is very simple; just multiply each entry by the scalar:

k


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn

 =


ka11 ka12 ... ka1n

ka21 ka22 ... ka2n
...

... . . . ...
kam1 kam2 ... kamn

 . (8)

For example:

12

(
1 5 0

3 −2 1

)
=

(
12 60 0

36 −24 12

)

0


1 −2
0 1

5 2

1 1

 =


0 0

0 0

0 0

0 0


(9)

5



−1
(
0 −2 8

)
=
(
0 2 −8

)

6


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 =


6 12 18 24

30 36 42 48

54 60 66 72

78 84 90 96


(10)

The product of a scalar and a matrix will always be a matrix of the same size.

2.2.2 Multiplication of matrices by matrices

Multiplying two matrices together can be significantly more complicated.


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn



b11 b12 ... b1p

b21 b22 ... b2p
...

... . . . ...
bn1 bn2 ... bnp

 =


∑n

i=1 a1ibi1
∑n

i=1 a1ibi2 ...
∑n

i=1 a1ibip∑n
i=1 a2ibi2

∑n
i=1 a2ibi2 ...

∑n
i=1 a2ibip

...
... . . . ...∑n

i=1 amibi1
∑n

i=1 amibi2 ...
∑n

i=1 amibip

 .

(11)
To summarize, the (i, j)th entry of the product of two matrices will be the sum of
the products of the entries in the ith row of the first factor and the jth column of the
second factor. For example:

1

0

−1
2

4


(
3 −2 1

)
=


3 −2 1

0 0 0

−3 2 −1
6 −4 2

12 −8 4


(
1 2

)(3
4

)
=
(
11
)

(
1 2

0 −1

)(
2 −1 0 1 2

1 1 −1 0 0

)
=

(
4 1 −2 1 2

−1 −1 1 0 0

)
(12)

6



1 0

1 2

0 −1

(0 1 1 2

2 −1 0 1

)
=

 0 1 1 2

4 −1 1 4

−2 1 0 −1


(
1 2 1

0 −1 −1

)0 1 3 2

2 −1 −1 2

3 −2 1 2

 =

(
7 −3 2 8

−5 −1 0 −4

)

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

 =

0 3 0 3

2 0 2 0

0 3 0 3


. (13)

Matrix multiplication makes sense only when the number of columns in the first
factor is equal to the number of rows in the second factor. Id est, given matrices
A and B, in order to make sense of the product AB, the number of columns of A
must equal the number of rows of B. If this condition is not satisfied, then the two
matrices simply cannot be multiplied. Additionally, the product of an m×n matrix
and an n× p matrix will always be an m× p matrix.

An interesting feature of matrix multiplication is that it is not commutative; this
means that, given matrices A and B, AB might not be the same as BA. First of all,
it’s possible that one of those multiplications makes sense, but not the other. (For
example, if A is a 2× 3 matrix and B is a 3× 5 matrix, then AB is a 2× 5 matrix,
but BA is not defined.) Besides, even if the dimensions do match in both cases, the
two products might still be different, as in the following example:(

1 1

0 1

)(
0 1

1 1

)
=

(
1 2

1 1

)
(
0 1

1 1

)(
1 1

0 1

)
=

(
0 1

1 2

). (14)

Thankfully, however, matrix multiplication is associative (which means that, for
matrices A, B and C, A(BC) = (AB)C) and distributive (which means that, for
matrices A, B and C, A(B + C) = AB + AC and (A+B)C = AC +BC).
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2.3 Division of matrices?

Given two numbers, a and b, what exactly do we mean by b
a
? We’ll need to

introduce some terminology first.

Definition 2.1 Let a be a nonzero real (or complex) number. The multiplicative

inverse of a is a number x such that ax = 1 and xa = 1.

We typically denote “the multiplicative inverse of a” by a−1, or 1
a
. When we refer to

b
a
, what we really mean is ba−1. Therefore, as long as one can define a multiplicative

inverse, one can define division. In order to explain what we mean by “division of
matrices,” we’ll need to do a similar investigation.

First, it’s necessary to come up with a matrix that can serve the same purpose
as 1 does for the real (and complex) numbers:

Definition 2.2 The n× n identity matrix is a matrix In such that if A is any m× n
matrix, then AIn = A, and if B is any n×m matrix, then InB = B.

The n × n identity matrix is always just a matrix of 1’s along the diagonal and 0’s
elsewhere:

In =



1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0
...

...
... . . . ...

0 0 0 ... 1


. (15)

For example,

I2 =

(
1 0

0 1

)
, I3 =

1 0 0

0 1 0

0 0 1

 , I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. (16)

Now we’re in a position to define a multiplicative inverse of a matrix.
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Definition 2.3 Let A be an m × n matrix. An inverse matrix of A is an n × m

matrix B such that AB = Im and BA = In.

We often denote “the inverse matrix of A” by A−1. (No one ever uses the notation
1
A

.)
Of particular interest are the square matrices:

Definition 2.4 A square matrix is an m× n matrix such that m = n.

In other words, a square matrix has as many rows as columns. As it turns out, only
square matrices can have inverse matrices. This fact is not easy to prove, but using
it, we can restate the definition:

Definition 2.5 Let A be an n×n matrix. An inverse matrix of A is an n×n matrix

B such that AB = In = BA.

Do all square matrices have inverses? No, in the same way that some numbers
(namely, 0) do not have multiplicative inverses. The following are some examples
of square matrices that do not have inverses:

(
1 1

1 1

)  1 0 0

0 1 0

−1 0 0



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (17)

(There are infinitely many for each size n× n.)
How would one compute the inverse matrix of a given matrix? In order to

answer this, we’ll need to understand the procedure of row reduction of matrices,
which is the topic of the next section.
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3 Matrix equations

A matrix equation is exactly what the name implies; an equation with matrices
in it. In particular, we’ll be interested in equations of the form Ax = B, where A is
an m× n matrix, x is an n× 1 matrix, and B is an m× 1 matrix:

a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn


︸ ︷︷ ︸

A


x1

x2
...
xn


︸ ︷︷ ︸

x

=


b1

b2
...
bm


︸ ︷︷ ︸

B

. (18)

The goal here will be to solve for the n× 1 matrix x. Here are some examples, and
their solutions (in the following, c, c1, c2 and c3 refer to arbitrary scalars):

(
1 0 1

0 1 0

)x1x2
x3

 =

(
2

0

)
Solution:

x1x2
x3

 =

 c

0

2− c


1 0 0

0 1 0

0 0 1


x1x2
x3

 =

 1

−1
2

 Solution:

x1x2
x3

 =

 1

−1
2


(
1 −1 1 −1 0

0 1 0 1 0

)

x1

x2

x3

x4

x5

 =

(
1

0

)
Solution:


x1

x2

x3

x4

x5

 =


c1

c2

1− c1
−c2
c3




4 2

1 −1
3 1

−4 −1


(
x1

x2

)
=


−10
3

5

−7

 Solution:

(
x1

x2

)
=

(
2

−1

)

(
1 0 0

)xy
z

 =
(
0
)

Solution:

xy
z

 =

 0

c1

c2



(19)
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
1 1 1

0 1 1

0 0 1

0 0 1


x1x2
x3

 =


0

0

0

0

 Solution:

x1x2
x3

 =

0

0

0


1 0 0 0

1 1 0 0

1 1 1 1



x1

x2

x3

x4

 =

0

0

0

 Solution:


x1

x2

x3

x4

 =


0

0

c

−c


1 1

0 2

−1 1

1 −1


(
x1

x2

)
=


0

2

2

2

 No solution


1 1

0 1

1 0

0 0


(
x1

x2

)
=


1

1

1

1

 No solution

−1 −3 −92 6 1

3 9 4


x1x2
x3

 =

−103
7

 No solution

(20)

As with any other kind of equation, some matrix equations have one solution, some
have no solution, and some have multiple solutions. A theorem from linear alge-
bra indicates that a matrix equation that has multiple solutions will always have
infinitely many solutions. This is why some of the systems above involve arbitrary
scalars in their solutions; by choosing any (yes, any) value for the constant(s), one
can create a new vector x that is a solution of the system.

A system of linear equations in n variables x1, x2,..., xn corresponds exactly to
a matrix equation. To see this, consider the following example:(

1 2

0 3

)(
x1

x2

)
=

(
−4
5

)
(21)

11



By computing the matrix multiplication, we get:(
1x1 + 2x2

0x1 + 3x2

)
=

(
−4
5

)
, (22)

which exactly means that
1x1 + 2x2 = −4
0x1 + 3x2 = 5

. (23)

On the other hand, by just taking the coefficients on each variable, we can revert
back to the original matrix equation:

1 x1 + 2 x2 = -4
0 x1 + 3 x2 = 5

−→

(
1 2

0 3

)(
x1

x2

)
=

(
−4
5

)
. (24)

The result is that matrix equations can be used as a shorthand for linear systems. In
fact, we can go even further. If we know that we’re dealing in the variables x1 and
x2 (which, by the way, are just names; calling them something different would have
changed nothing), then we can write the matrix equation above in an even simpler
form: (

1 2

0 3

)(
x1

x2

)
=

(
−4
5

)
−→

(
1 2 −4
0 3 5

)
. (25)

This notation is known as an augmented matrix.
Since systems of linear equations (and matrix equations) correspond exactly to

augmented matrices, we can solve them (and/or matrix equations) by dealing only
with augmented matrices. This process is called Gauss-Jordan elimination.
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3.1 Elementary row operations

We’d like to discuss a procedure of solving matrix equations commonly referred
to as “row reduction.” First, we’ll have to define the moves that are legal in the
procedure.

Definition 3.1 Let

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

am1 am2 ... amn

 (26)

be an m× n matrix. The following are the elementary row operations of A.

(i) Multiplication of all of the entries in a single row (say, the ith row) by a nonzero

constant k:

a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

ai1 ai2 ... ain
...

... . . . ...

am1 am2 ... amn


Ri→kRi−−−−−→



a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

kai1 kai2 ... kain
...

... . . . ...

am1 am2 ... amn


. (27)

(ii) Swapping two rows (say, the ith row and the jth row):

a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

ai1 ai2 ... ain
...

... . . . ...

aj1 aj2 ... ajn
...

... . . . ...

am1 am2 ... amn



Ri↔Rj−−−−→



a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

aj1 aj2 ... ajn
...

... . . . ...

ai1 ai2 ... ain
...

... . . . ...

am1 am2 ... amn


. (28)

(iii) Adding a nonzero constant k times all of the entries in a row (say, the ith row)
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to all of the corresponding entries in another row (say, the jth row):

a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

ai1 ai2 ... ain
...

... . . . ...

aj1 aj2 ... ajn
...

... . . . ...

am1 am2 ... amn



Rj→Rj+kRi−−−−−−−→



a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

ai1 ai2 ... ain
...

... . . . ...

aj1 + kai1 aj2 + kai2 ... ajn + kain
...

... . . . ...

am1 am2 ... amn


.

(29)

For example: (
1 5

−1 2

)
R2→3R2−−−−−→

(
1 5

−3 6

)
(

1 5

−1 2

)
R1↔R2−−−−→

(
−1 2

1 5

)
(

1 5

−1 2

)
R1→R1+2R2−−−−−−−→

(
−1 9

−1 2

). (30)

We have a name for the relationship between two matrices when one can be
gotten from the other by doing only elementary row operations.

Definition 3.2 Let A and B be m × n matrices. We say that A and B are row

equivalent matrices provided that there exists a sequence

A =M1 →M2 →M3 → ...→Mk−1 →Mk = B (31)

of m × n matrices M1, M2, ..., Mk such that M1 = A, Mk = B and for each i

(where 1 ≤ i < k), Mi+1 can be produced from an elementary row operation on

Mi.

In other words, two matrices are equivalent if you can get one from the other by a

14



sequence of elementary row operations. For example,

A =

(
1 2

9 18

)
and B =

(
1 2

0 0

)
(32)

are row equivalent matrices, because you can produce B by adding −9 times the
first row of A to the second row of A:(

1 2

9 18

)
R2→R2−9R1−−−−−−−→

(
1 2

0 0

)
. (33)

As another example,

A =

1 1 1

0 2 2

4 0 0

 and

1 0 0

0 1 1

0 0 0

 (34)

are row equivalent matrices, because

1 1 1

0 2 2

4 0 0

 R3→R3−4R1−−−−−−−→

1 1 1

0 2 2

0 −4 −4

 R3→R3+2R2−−−−−−−→

1 1 1

0 2 2

0 0 0

 R2→ 1
2
R2−−−−−→

1 1 1

0 1 1

0 0 0

 R1→R1−R2−−−−−−−→

1 0 0

0 1 1

0 0 0

 . (35)

Note that row equivalent matrices are not necessarily equal (unless, of course,
all of the elementary row operations done to get from one to the other cancel each
other out). As we mentioned in the first section, two matrices are equal only if all of
their corresponding entries are equal. What, then, is so great about this relationship
of row equivalence? The following sections answer this question.
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3.2 Gauss-Jordan elimination

Here is the main interest of row equivalence:

Theorem 3.3 If two linear systems have row equivalent augmented matrices, then

the two linear systems have the same solution(s).

This means that for any augmented matrix, we can do elementary row operations
without worrying about whether the solutions will be altered. Let’s look at the
following example:

1x1 + 0x2 + 1x3 = 1

1x1 + 1x2 + 2x3 = 1

1x1 + 0x2 + 2x3 = 1

1x1 − 1x2 + 2x3 = 0

. (36)

Even when we look at the augmented matrix for this, it’s not really clear how to
proceed: 

1 0 1 1

1 1 2 1

1 0 2 1

1 −1 2 0

 . (37)

However, this augmented matrix is row equivalent to:
1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 . (38)

Based on the theorem, this augmented matrix can then be thought of as a restate-
ment of the original system:

1x1 + 0x2 + 0x3 = 1

0x1 + 1x2 + 0x3 = 0

0x1 + 0x2 + 1x3 = 0

0x1 + 0x2 + 0x3 = 1

. (39)
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It’s now clear what the solutions of this system are. (In this case, there aren’t any,
since 0x1+0x2+0x3 cannot be anything other than 0, but the last equation requires
that it be 1.)

This example illustrates that if we can use elementary row operations to find a
sufficiently simple augmented matrix, then solving the matrix equation will be easy.
But how simple is “sufficiently simple?” The following definitions will formalize
this concept.

Definition 3.4 Let A be an m × n matrix. A row echelon form of A is a matrix B

that is row equivalent to A such that:

(i) The left-most nonzero entry of each row of B is 1.

(ii) The left-most nonzero entry of each row of B contains only zeros below it in its

column.

(iii) If (i, j) and (k, l) are two positions of left-most nonzero entries in B and i < k,

then j < l.

(iv) Any rows that do not contain nonzero entries are at the bottom of the matrix.

Here are some examples of matrices that meet the criteria of row echelon form, and
some that don’t:1 3 2

0 0 1

0 0 0

 is row echelon.

1 3 2

0 0 −1
0 0 0

 is not; it doesn’t satisfy criterion (i).

1 1 0

0 1 0

0 0 0

 is row echelon.

1 1 0

0 1 0

0 1 0

 is not; it doesn’t satisfy criterion (ii).

(
1 0 2

0 1 0

)
is row echelon.

(
0 1 0

1 0 2

)
is not; it doesn’t satisfy criterion (iii).

0 1 1

0 0 1

0 0 0

0 0 0

 is row echelon.


0 1 1

0 0 0

0 0 0

0 0 1

 is not; it doesn’t satisfy criterion (iv).

(40)
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To summarize: row echelon form matrices have only 1’s as the left-most nonzero
entries of each row, below which are only 0’s; further, the left-most nonzero 1’s
must move to the right as one moves down the rows.

Row echelon form is simple, but it can get even simpler:

Definition 3.5 Let A be an m × n matrix. A reduced row echelon form of A is a

matrix B that is row equivalent to A such that:

(i) The left-most nonzero entry of each row of B is 1.

(ii) The left-most nonzero entry of each row of B contains only zeros above and

below it in its column.

(iii) If (i, j) and (k, l) are two positions of left-most nonzero entries in B and i < k,

then j < l.

(iv) Any rows that do not contain nonzero entries are at the bottom of the matrix.

To summarize: reduced row echelon matrices are row echelon matrices with the ad-
ditional condition that each left-most nonzero entry in each row is the only nonzero
entry in its entire column. Here are some examples of reduced row echelon matri-
ces, and some examples which are row echelon but not reduced row echelon:1 0 0 0

0 1 0 0

0 0 1 0

 is reduced row echelon.

1 0 1 0

0 1 0 0

0 0 1 0

 is not.

(
1 0 0 0

0 0 1 0

)
is reduced row echelon.

(
1 0 3 0

0 0 1 0

)
is not.

1 0

0 1

0 0

0 0

0 0

 is reduced row echelon.


1 −1
0 1

0 0

0 0

0 0

 is not.

0 1 4 0 0

0 0 0 1 0

0 0 0 0 1

 is reduced row echelon.

0 1 4 1 0

0 0 0 1 0

0 0 0 0 1

 is not.

(41)

As long as we can find a reduced row echelon form of an augmented matrix, we

18



can solve the system. So, which matrices have reduced row echelon forms? All of
them:

Theorem 3.6 Every m× n matrix has a unique reduced row echelon form.

Thus, whatever matrix we are given, we can perform some sequence of elementary
row operations to arrive at a reduced row echelon matrix. The process of using
elementary row operations to find the reduced row echelon form of an augmented
matrix is commonly called “row reduction,” or “Gauss-Jordan elimination.”

Here are some examples of augmented matrices, and their reduced row echelon
forms: (

1 2 0

2 1 0

)
RREF:

(
1 0 0

0 1 0

)

5 0 2 −1
0 0 2 4

1 0 1 1

1 0 0 −1

 RREF:


1 0 0 −1
0 0 1 2

0 0 0 0

0 0 0 0

(
1 2 −2 2 3

−1 4 −4 −2 −15

)
RREF:

(
1 0 0 2 −1
0 1 −1 0 2

)
6 −6 0 24

2 −1 0 5

0 2 0 −6

 RREF:

1 0 0 1

0 1 0 −3
0 0 0 0



2 0 3 −1
0 1 3 −3
1 0 3 −5
1 1 2 4

 RREF:


1 0 0 4

0 1 0 6

0 0 1 −3
0 0 0 0


1 1 1 3 2 3

0 4 1 21 6 −4
0 6 3 27 6 −6

 RREF:

1 0 0 0 2 4

0 1 0 6 0 −1
0 0 1 −3 0 0


 4 2 3 28

−6 −2 −1 −28
9 3 1 40

 RREF:

1 0 0 4

0 1 0 0

0 0 1 4



(42)
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
2 0 4 2 −2
0 −1 1 0 1

1 1 1 1 −2
−1 1 −3 −1 0

 RREF:


1 0 2 1 −1
0 −1 1 0 1

0 0 0 0 0

0 0 0 0 0

 (43)

When dealing with a linear system, it is important to understand how the re-
duced row echelon form of the corresponding matrix equation should be interpreted.
Let’s look at the following example:

−3w + 1x− 7y − 3z = 2

−2w + 1x− 5y + 0z = −5
−w + 1x− 1y + 1z = 0

2w + 0x+ 4y + 0z = −4

(44)

First, convert this system into an augmented matrix:
−3 1 −7 −3 2

−2 1 −5 0 −5
0 1 −1 1 0

2 0 4 0 −4

 , (45)

and find its reduced row echelon form:
1 0 2 0 −1
0 1 −1 0 −1
0 0 0 1 1

0 0 0 0 0

 . (46)

What does this mean? In order to interpret this, let’s revert from the augmented
matrix to the system notation:

1w + 0x+ 2y + 0z = −1
0w + 1x− 1y + 0z = −1
0w + 0x+ 0y + 1z = 1

0w + 0x+ 0y + 0z = 0

⇒
w + 2y = −1
x− y = −1

z = 1

. (47)
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At first, this does not seem helpful. It appears that there’s still more to solve. How-
ever, that is not the case; these are the only restrictions on the values of w, x, y
and z. In other words, their values can be anything, as long as they satisfy that
w + 2y = −1, x − y = −1, and z = 1. Select a value c for y. This completely
determines the values for w, x, y and z:

w + 2c = −1
x− c = −1
y = c

z = 1

⇒

w = −2c− 1

x = c− 1

y = c

z = 1

, or


w

x

y

z

 =


−2c− 1

c− 1

c

1

 . (48)

In linear algebra, we call y a free variable, since any chosen value for y will produce
a solution to the system.

Some systems have more than one free variable. For example,1 0 0 −1 1 1

0 1 0 2 2 0

0 0 1 0 0 −1

⇒ 1x1 + 0x2 + 0x3 − 1x4 + 1x5 = 1

0x1 + 1x2 + 0x3 + 2x4 + 2x5 = 0

0x1 + 0x2 + 1x3 + 0x4 + 0x5 = −1
(49)

which gives the equations
x1 − x4 + x5 = 1

x2 + 2x4 + 2x5 = 0

x3 = −1
. (50)

The situation is similar here. Again, any values for x1, x2, x3, x4 and x5 which
satisfy the above relationships will be a solution. By choosing values x4 = c1 and
x5 = c2, we can completely determine the solution:

x1

x2

x3

x4

x5

 =


1 + c1 − c2
−2c1 − 2c2

−1
c1

c2

 . (51)
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3.3 Computing inverse matrices
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4 Determinants

A common theme in mathematics is drawing information from expressions by
associating simpler expressions to them.

For example, given a quadratic equation ax2 + bx + c = 0, how can we tell
whether the solutions will be real, non-real, or repeated? In this case, we look at
the associated “discriminant,” the expression b2− 4ac, and study it in order to learn
about the original equation. Just from this single number, we can tell whether the
equation has two real solutions (in the case that the discriminant is positive), and
whether they are rational (if the discriminant is a nonzero perfect square) or irra-
tional (if the discriminant is not a perfect square), one real solution (in the case that
the discriminant is zero), or two non-real solutions (in the case that the discriminant
is negative).

In this section, we’ll see what we can learn about a square matrix from an asso-
ciated expression known as its “determinant:”

Definition 4.1 Let A be an n× n (square) matrix. The determinant of A is defined

recursively as follows.

(i) If n = 2, and

A =

(
a b

c d

)
, (52)

then the determinant det(A) = ad− bc.
(ii) If n > 2 and

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

an1 an2 ... ann

 , (53)

then the determinant

det(A) =
n∑

i=1

(−1)i+1a1i det(M1i), (54)
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where M1i is the submatrix defined via

M1i =


a21 a22 ... a2(i−1) a2(i+1) ... a2n

a31 a32 ... a3(i−1) a3(i+1) ... a3n
...

... . . . ...
... . . . ...

an1 an2 ... an(i−1) an(i+1) ... ann

 . (55)

This formula may seem somewhat complicated, and that’s because it is. Thankfully,
for this document, we will only consider determinants of 2 × 2 or 3 × 3 matrices,
since computing determinants for larger matrices is easy, but tiresome.

As the definition says, for a 2× 2 matrix,

A =

(
a b

c d

)
, (56)

the determinant is just

det(A) =

∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc. (57)

On the other hand, for a 3× 3 matrix,

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (58)

the determinant is

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣−a12
∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣+a13
∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ . (59)

To summarize: one takes each entry along the first row, with alternating ± signs,
multiplies them by the determinant of the submatrix obtained by deleting the row
and the column of the entry in question, and then adding it all up. With some
practice, you’ll see that the process is easy, but it can get very tedious.
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Here are some examples:∣∣∣∣∣1 2

0 5

∣∣∣∣∣ = (1)(5)− (0)(2) = 5∣∣∣∣∣1 1

1 1

∣∣∣∣∣ = 0∣∣∣∣∣−1 3

1 4

∣∣∣∣∣ = −7∣∣∣∣∣1 2

3 4

∣∣∣∣∣ = −2∣∣∣∣∣∣∣
1 1 1

0 1 1

0 0 1

∣∣∣∣∣∣∣ = 1

∣∣∣∣∣1 1

0 1

∣∣∣∣∣− 1

∣∣∣∣∣0 1

0 1

∣∣∣∣∣+ 1

∣∣∣∣∣0 1

0 0

∣∣∣∣∣ = 1

∣∣∣∣∣∣∣
2 −1 1

0 1 1

1 2 2

∣∣∣∣∣∣∣ = −2∣∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣
1 2 3

0 4 5

0 0 6

∣∣∣∣∣∣∣ = 24

∣∣∣∣∣∣∣
1 0 0

2 3 0

4 5 6

∣∣∣∣∣∣∣ = 18

∣∣∣∣∣∣∣
2 0 0

0 3 0

0 0 5

∣∣∣∣∣∣∣ = 30

∣∣∣∣∣∣∣
1 0 1

0 1 0

1 0 1

∣∣∣∣∣∣∣ = 0

. (60)
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4.1 Tricks for computing determinants

It didn’t take long for people do realize that the determinant is useful, but tire-
some to compute. Therefore, some mathematicians started to look for ways to
simplify the process. The following theorem from linear algebra doesn’t provide
any new theory, and it’s not particularly important for doing this kind of work, but
it can help to reduce the pain of figuring out the determinant of a matrix by hand.

Theorem 4.2 The following statements are true.

(i) det(In) = 1.

(ii) If A and B are n× n matrices, then det(AB) = det(A) det(B).

(iii) If A is an n× n matrix, then det (A) = det
(
AT
)
.

(iv) If A is an n × n matrix and B is obtained from A by multiplying a nonzero

constant r by a single row (or column) of A, then det(B) = r det(A).

(v) IfA is an n×n matrix andB is obtained fromA by swapping two different rows

(or columns) of A, then det(B) = − det(A).

(vi) If A is an n × n matrix and B is obtained from A by adding a nonzero scalar

multiple of one row of A to another row of A, then det(B) = det(A).

Here AT refers to the transpose matrix, which is the matrix you get by exchanging
all of the rows and columns of A:

A =


a11 a12 ... a1m

a21 a22 ... a2m
...

... . . . ...
an1 an2 ... anm

 → AT =


a11 a21 ... an1

a12 a22 ... an2
...

... . . . ...
a1m a2m ... anm

. (61)

Among the implications of this theorem is the fact that one can do elementary
row (and column) operations in order to simplify the calculation of a determinant.
For example, given the matrix

A =

87 37 9

−3 −3 −1
19 8 2

 , (62)
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it would be rather annoying to compute the determinant of A directly. However,
using the theorem above,

det(A) =

∣∣∣∣∣∣∣
87 37 9

−3 −3 −1
19 8 2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
0 −50 −20
−3 −3 −1
19 8 2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
0 −50 −20
−3 −3 −1
1 −10 −4

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 50 20

0 −33 −13
1 −10 −4

∣∣∣∣∣∣∣ = 10

∣∣∣∣∣∣∣
0 5 2

0 −33 −13
1 −10 −4

∣∣∣∣∣∣∣ = 10

∣∣∣∣∣∣∣
0 3 2

0 −20 −13
1 −6 −4

∣∣∣∣∣∣∣
= 10

∣∣∣∣∣∣∣
0 3 2

0 −20 −13
1 0 0

∣∣∣∣∣∣∣ = 10

∣∣∣∣∣∣∣
0 3 2

0 1 1

1 0 0

∣∣∣∣∣∣∣ = −10
∣∣∣∣∣∣∣
1 0 0

0 1 1

0 3 2

∣∣∣∣∣∣∣
= −10

(
1

∣∣∣∣∣1 1

3 2

∣∣∣∣∣− 0

∣∣∣∣∣0 1

0 2

∣∣∣∣∣+ 0

∣∣∣∣∣0 1

0 3

∣∣∣∣∣
)

= 10. (63)

Another implication of this theorem is that the first row is not special; one can
compute the determinant by using any kth row (or column), just by multiplying
(−1)k by each term:∣∣∣∣∣∣∣

3 0 2

0 1 0

1 1 1

∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣∣
0 1 0

3 0 2

1 1 1

∣∣∣∣∣∣∣ = −
(
0

∣∣∣∣∣0 2

1 1

∣∣∣∣∣− 1

∣∣∣∣∣3 2

1 1

∣∣∣∣∣+ 0

∣∣∣∣∣3 0

1 1

∣∣∣∣∣
)
. (64)

All of these sorts of approaches are common: simplify the matrix or look at a
particular row or column of it until the determinant becomes easy. (This usually
involves a lot of entries being zero.)
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4.2 The meaning of the determinant

What is the point of all this? The point is the following theorem, which forms
the core of every first course in linear algebra.

Theorem 4.3 Let A be an n× n matrix. The following statements are equivalent.

(i) det(A) = 0.

(ii) There exists a vector −→v 6= −→0 such that A−→v =
−→
0 .

(iii) The matrix A is not invertible.

By a “vector,” in this context, we simply mean an n× 1 matrix:

−→v =


a1

a2
...
an

 . (65)

In particular, the “zero vector” is the vector whose entries are all zero:

−→
0 =


0

0
...
0

 (66)

Let’s take a moment to examine the implications of this theorem. Suppose that
we’re doing a calculation that involves finding all the solutions of this system of
equations:

2x− y + z = 0

0x+ 1y + 1z = 0

1x+ 2y + 2z = 0

. (67)

This is the same as the matrix equation2 −1 1

0 1 1

1 2 2


xy
z

 =

0

0

0

 . (68)
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So now, in order to find the solutions, we have no choice but to do Gauss-Jordan
elimination to find the reduced row echelon form of the augmented matrix, right?
Wrong.

Using finding the reduced row echelon form of the augmented matrix would
work, but alternatively, we could just find the determinant of the matrix:∣∣∣∣∣∣∣

2 −1 1

0 1 1

1 2 2

∣∣∣∣∣∣∣ = 2

∣∣∣∣∣1 1

2 2

∣∣∣∣∣− (−1)

∣∣∣∣∣0 1

1 2

∣∣∣∣∣+ 1

∣∣∣∣∣0 1

1 2

∣∣∣∣∣ = −2. (69)

By the theorem, since the determinant is nonzero, there cannot be a vector−→v which
is not

−→
0 that satisfies the equation. As a result, our only solution is the zero vector:xy

z

 =

0

0

0

 , (70)

and so x = 0, y = 0, and z = 0.
This sort of use of the theorem is of fundamental importance to the theory of

linear transformations, but that is a topic best left for a course in linear algebra. In
the next section, we will use this theorem to determine another important piece of
data concerning matrices: eigenvalues.
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5 Eigenvalues, eigenvectors, generalized eigenvectors

An eigenvalue of a square matrix is a scalar that can simplify the multiplication
of the matrix by certain vectors.

Definition 5.1 Let A be an n × n matrix. Given a scalar λ, we say that λ is an

eigenvalue of A provided that there exists a vector −→v 6= −→0 such that A−→v = λ−→v .

Any such vector −→v is called an eigenvector of A corresponding to λ.

Let’s discuss the process of finding eigenvalues. First, we know that if A is any
n × n matrix and λ is an eigenvalue of A, then there has to be a vector −→v 6= −→0
such that:

A−→v = λ−→v . (71)

We can write this as:
A−→v − λ−→v =

−→
0 . (72)

Now, given any matrix X with n rows, we know that InX = X , by definition of In
as the identity matrix. Therefore, this equation can be written as

A−→v − λIn−→v =
−→
0 . (73)

As we briefly mentioned earlier, matrix multiplication can distribute over addition,
so we can factor out −→v to write this as:

(A− λIn)−→v =
−→
0 . (74)

By Theorem 4.3, this equations will have solutions with −→v 6= −→0 if and only if the
determinant det (A− λIn) = 0. Therefore, a scalar λ is an eigenvalue of an n×n
matrix A if and only if det (A− λIn) = 0. In order to find the eigenvalues of a
matrix, we’ll assume this equation and then solve for λ.

We demonstrate the procedure in the case of

A =

(
1 3

3 1

)
. (75)
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1. Set 0 = det (A− λI2) and solve as follows:

0 = det (A− λI2) = det

((
1 3

3 1

)
− λ

(
1 0

0 1

))
=

∣∣∣∣∣1− λ 3− 0

3− 0 1− λ

∣∣∣∣∣
= (1− λ) (1− λ)− (3)(3) = 1− 2λ+ λ2 − 9 = λ2 − 2λ− 8. (76)

The expression λ2− 2λ− 8 is known as the characteristic polynomial of A, and the
equation λ2 − 2λ− 8 = 0 is known as the characteristic equation of A.

2. Solve the characteristic equation:

0 = λ2 − 2λ− 8 = (λ− 4) (λ+ 2) , (77)

and so A has two eigenvalues: λ1 = 4 and λ2 = −2.

Now, how can one find the eigenvectors associated to an eigenvalue? We will
again refer to the equation

(A− λIn)−→v =
−→
0 . (78)

Once the eigenvalues have been determined, one can substitute them into this equa-
tion to solve for the eigenvectors. We demonstrate the procedure for the case of

A =

(
1 3

3 1

)
. (79)

1. Find the eigenvalues of A. (By the example above, these are λ1 = 4 and
λ2 = 2.)

2. For each eigenvalue, find the solutions of the equation (A− λIn)−→v =
−→
0 .

In our case, for the eigenvalue λ1 = 4:

(A− 4I2)
−→v1 =

((
1 3

3 1

)
− 4

(
1 0

0 1

))
−→v1 . (80)

Thus, finding the eigenvector(s) −→v1 corresponding to λ1 = 4 is reduced to the prob-

31



lem of solving the matrix equation(
−3 3

3 −3

)(
a

b

)
=

(
0

0

)
. (81)

By using Gauss-Jordan elimination, we find that this equation has the same solu-
tions as the equation (

1 −1
0 0

)(
a

b

)
=

(
0

0

)
. (82)

(In the case of 2 × 2 matrices, such as this one, the solutions are very easy to see
even without Gauss-Jordan elimination, but for larger matrices, things could be
more opaque at first.) From this, we get the relationship

a− b = 0, (83)

which cannot be solved for an explicit value of a and b. This is normal. In general,
any nonzero scalar times an eigenvector will also be an eigenvector corresponding
to the same eigenvalue, so we should expect to have infinitely many solutions. In
this case, the eigenvectors corresponding to λ1 = 4 are

−→v1 =

(
a

a

)
, (84)

where a is any value whatsoever (except 0), known as a free variable. Similarly, for
the eigenvalue λ2 = 2, we have the matrix equation(

−1 3

3 −1

)
−→v2 =

(
0

0

)
, (85)

whose solutions are of the form

−→v2 =

(
3b

b

)
, (86)

where b is any value whatsoever (except 0).
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5.1 Distinct, real eigenvalues

Here are some examples of matrices with eigenvalues that are real and distinct:(
0 −1
−1 0

)
has eigenvalues λ1 = 1, λ2 = −1

with eigenvectors

(
a

a

)
for λ1,

(
−b
b

)
for λ2(

0 3

1 2

)
has eigenvalues λ1 = 3, λ2 = −1

with eigenvectors

(
a

a

)
for λ1,

(
−3b
b

)
for λ2(

1 1

2 0

)
has eigenvalues λ1 = 2, λ2 = −1

with eigenvectors

(
a

a

)
for λ1,

(
b

−2b

)
for λ2(

2 2

2 −1

)
has eigenvalues λ1 = 3, λ2 = −2

with eigenvectors

(
2a

a

)
for λ1,

(
b

−2b

)
for λ2(

−1 −5
−1 3

)
has eigenvalues λ1 = 4, λ2 = −2

with eigenvectors

(
a

−a

)
for λ1,

(
5b

b

)
for λ2(

2 2

9 −1

)
has eigenvalues λ1 = 5, λ2 = −4

with eigenvectors

(
2a

3a

)
for λ1,

(
b

−3b

)
for λ2(

0 −2
5 −7

)
has eigenvalues λ1 = −5, λ2 = −2

with eigenvectors

(
2a

5a

)
for λ1,

(
b

b

)
for λ2

(87)
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(
−5 1

4 −2

)
has eigenvalues λ1 = −6, λ2 = −1

with eigenvectors

(
a

−a

)
for λ1,

(
b

4b

)
for λ2(

−12 −2
10 0

)
has eigenvalues λ1 = −10, λ2 = −2

with eigenvectors

(
a

−a

)
for λ1,

(
b

−5b

)
for λ2(

−2 12

4 −10

)
has eigenvalues λ1 = 2, λ2 = −14

with eigenvectors

(
3a

a

)
for λ1,

(
−b
b

)
for λ2(

−1 8

11 2

)
has eigenvalues λ1 = 10, λ2 = −9

with eigenvectors

(
8a

11a

)
for λ1,

(
b

−b

)
for λ2(

−8 −1
7 0

)
has eigenvalues λ1 = −7, λ2 = −1

with eigenvectors

(
a

−a

)
for λ1,

(
b

−7b

)
for λ2(

−7 8

2 −1

)
has eigenvalues λ1 = 1, λ2 = −9

with eigenvectors

(
a

a

)
for λ1,

(
−4b
b

)
for λ2(

1 7

−3 −9

)
has eigenvalues λ1 = −6, λ2 = −2

with eigenvectors

(
a

−a

)
for λ1,

(
7b

−3b

)
for λ2(

−2 1

0 −3

)
has eigenvalues λ1 = −2, λ2 = −3

with eigenvectors

(
a

0

)
for λ1,

(
b

−b

)
for λ2

(88)
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(
−3 −1
−1 −3

)
has eigenvalues λ1 = −2, λ2 = −4

with eigenvectors

(
a

−a

)
for λ1,

(
b

b

)
for λ2(

7 5

5 7

)
has eigenvalues λ1 = 12, λ2 = 2

with eigenvectors

(
a

a

)
for λ1,

(
b

−b

)
for λ2(

−4 −3
−7 −8

)
has eigenvalues λ1 = −11, λ2 = −1

with eigenvectors

(
3a

7a

)
for λ1,

(
b

−b

)
for λ2 0 −1 0

−1 0 0

−2 −1 0

 has eigenvalues λ1 = 0, λ2 = 1, λ3 = −1

with eigenvectors

0

0

a

 for λ1,

 b

−b
−b

 for λ2,

 c

c

−3c

 for λ3

 1 −1 0

−1 0 −1
0 −1 1

 has eigenvalues λ1 = −1, λ2 = 1, λ3 = 2

with eigenvectors

 a

2a

a

 for λ1,

b0
b

 for λ2,

 c

−c
c

 for λ3

 1 0 0

−1 2 0

3 1 0

 has eigenvalues λ1 = 1, λ2 = 2, λ3 = 0

with eigenvectors

 a

a

4a

 for λ1,

 0

2b

b

 for λ2,

0

0

c

 for λ3

(89)
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5.2 Repeated, real eigenvalues

The characteristic polynomial is, of course, a polynomial. Therefore, it may
sometimes have repeated roots.

Definition 5.2 Let A be an n× n matrix with characteristic polynomial

p (λ) = λn + an−1λ
n−1 + ...+ a1λ+ a0. (90)

Suppose that the characteristic polynomial factors as:

p(λ) = (λ− r1)m1(λ− r2)m2 ...(λ− rk)mk , (91)

where r1, r2, ..., rk−1 and rk are all distinct. For each i, the multiplicity of the

eigenvalue ri is the corresponding exponent mi.

In other words, the multiplicity of an eigenvalue a is the number of times the factor
λ−a appears in the characteristic polynomial. To have distinct roots literally means
that the multiplicity of each eigenvalue is 1. If an eigenvalue has multiplicity greater
than 1, it is called a repeated eigenvalue. (Some sources also refer to these as
“multiple eigenvalues.” The opinion of the author is that this term is extremely
confusing.)
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Here are some examples of matrices with repeated eigenvalues:(
1 2

0 1

)
has eigenvalue λ = 1 with multiplicity 2

with eigenvectors

(
a

0

)
for λ(

1 0

1 1

)
has eigenvalue λ = 1 with multiplicity 2

with eigenvectors

(
0

a

)
for λ(

−1 3

−3 −7

)
has eigenvalue λ = −4 with multiplicity 2

with eigenvectors

(
a

−a

)
for λ(

1 1

−4 −3

)
has eigenvalue λ = −1 with multiplicity 2

with eigenvectors

(
a

−2a

)
for λ(

−5 2

−2 −1

)
has eigenvalue λ = −3 with multiplicity 2

with eigenvectors

(
a

a

)
for λ(

−12 0

0 −12

)
has eigenvalue λ = −12 with multiplicity 2

with eigenvectors

(
a

b

)
for λ(

3 6

−6 15

)
has eigenvalue λ = 9 with multiplicity 2

with eigenvectors

(
a

a

)
for λ

(92)
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(
6 4

−4 −2

)
has eigenvalue λ = 2 with multiplicity 2

with eigenvectors

(
a

−a

)
for λ(

3 6

−6 15

)
has eigenvalue λ = 9 with multiplicity 2

with eigenvectors

(
a

a

)
for λ0 0 1

0 1 3

2 0 −1

 has eigenvalues
λ1 = 1 with multiplicity 2,
λ2 = −2 with multiplicity 1

with eigenvectors

0

a

0

 for λ1,

 b

2b

−2b

 for λ2

1 −1 1

0 1 2

0 0 1

 has eigenvalue λ = 1 with multiplicity 3

with eigenvectors

a0
0

 for λ

 9 4 0

−6 −1 0

6 4 3

 has eigenvalues
λ1 = 3 with multiplicity 2,
λ2 = 5 with multiplicity 1

with eigenvectors

 2a

−3a
b

 for λ1,

 c

−c
c

 for λ2

()

(93)
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
2 1 2 −1
0 1 1 0

0 0 −1 0

0 0 0 1

 has eigenvalues
λ1 = 1 with multiplicity 2,
λ2 = −1 with multiplicity 1,
λ3 = 2 with mulitiplicity 1

with eigenvectors


a

b

0

a+ b

 for λ1,


c

c

−2c
0

 for λ2,


0

0

0

d

 for λ3


2 0 0 0

1 −1 0 0

1 1 −1 0

−1 −1 −1 2

 has eigenvalues
λ1 = 2 with multiplicity 2,
λ2 = −1 with multiplicity 2

with eigenvectors


0

0

0

a

 for λ1,


0

0

3b

b

 for λ2


1 −1 1 0

0 1 2 0

0 0 1 0

0 0 0 4

 has eigenvalues
λ1 = 1 with multiplicity 3,
λ2 = 4 with multiplicity 1

with eigenvectors


a

0

0

0

 for λ1,


0

0

0

b

 for λ2


−4 −4 −4 0

0 −4 −4 0

0 0 −4 0

0 0 0 −4

 has eigenvalue λ = −4 with multiplicity 4

with eigenvectors


a

0

0

b

 for λ

.

(94)
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There is a strangeness to some repeated eigenvalues. Some eigenvalues have a
property known as “defectiveness.”

Definition 5.3 Let A be a matrix with an eigenvalue λ. The dimension of the

eigenspace corresponding to λ is the number of free variables in the eigenvectors

of λ.

For example, the matrix

A =

−5 −6 3

3 4 −3
0 0 −2

 (95)

has the eigenvalue λ1 = −2, with multiplicity 2, and the eigenvalue λ2 = 1, with
multiplicity 1. The eigenvectors corresponding to these take the form: a

b

a+ 2b

 for λ1,

 c

−c
0

 for λ2, (96)

where a, b and c are any real numbers. We say that λ1 has an eigenspace of dimen-
sion 2, since any of its eigenvectors can be completely determined by specifying the
values of at least 2 free variables: a and b. As for λ3, there is only one free variable
involved in its eigenvectors: c. Therefore, λ3 has an eigenspace of dimension 1.

Definition 5.4 Let A be a matrix with an eigenvalue λ. The defect of λ is the

multiplicity of λ minus the dimension of the eigenspace corresponding to λ.

In the example above, λ1 had multiplicity 2 and an eigenspace of dimension 2, so
its defect was 0. Similarly, λ2 had multiplicity 1 and an eigenspace of dimension 1,
so its defect was also 0.

On the other hand, the matrix

A =

(
10 0

−10 10

)
(97)
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has the eigenvalue λ = 10 with multiplicity 2, but the eigenvectors corresponding
to it have the form (

0

a

)
. (98)

With only one free variable (that is, a), λ has an eigenspace of dimension 1. There-
fore the defect of λ is 2− 1 = 1.

An eigenvalue with a defect of 0 is called a complete eigenvalue, while one with
a defect greater than 0 is called a defective eigenvalue.
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5.3 Complex eigenvalues
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