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1 Preliminaries

Classifying differential equations means coming up with a term for each type
of differential equation, and (if possible) a strategy for finding the solution. The
key here is that the term should be applied unambiguously. That is, if two mathe-
maticians look at the same differential equation (perhaps simplified or written in a
different way), then they ought to come up with the same terms to describe it.

At this point, a very natural question may come to mind:

1.1 Why bother?

Indeed, when dealing with regular algebraic equations that don’t involve deriva-
tives, there is very little, if any need for classification. The reason for this is simple:
the essential strategy of solving an algebraic equation is almost always the same:
get the variable by itself on one side of the equation.

However, for differential equations, the situation is not so simple. There is no
single method or strategy for solving differential equations. This is reminiscent of
something you’ve learned before. Consider the following integrals:

�
x

x+ 1
dx

�
x2ex dx

�
1

x2 + 5x+ 6
dx (1)

A different method is necessary for evaluating each of these. Therefore, we’ve
come up with terms like “u-substitution,” “integration by parts,” and “integration
by partial fractions,” in order to quickly refer to these strategies. This necessity is
exactly the reason that classification of differential equations is so important; each
classification needs to be solved using a different method.

1.2 What’s so ordinary about ordinary differential equations?

First, let’s address the broadest classification of differential equations that we’ll
be dealing with: ordinary ones.

Definition 1.1 An ordinary differential equation (ODE) is a differential equation

in which the solution has only one independent variable.
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The solution to a differential equation will always be a function. Therefore,
it will have at least one independent variable and at least one dependent variable.
Here are some ODEs and their (general) solutions:

y′ = 2x y(x) = x2 + C

y′ = x2y y(x) = Ce
1
3
x3

x′′ + 9x = 10 cos(2t) x(t) = 2 cos(2t) + c1 cos(3t) + c2 sin(3t)

. (2)

The attribute to notice about these differential equations is that they all have so-
lutions depending only on one independent variable (and some undetermined con-
stants): in the first two, this variable is x, and in the third, it is t. We will also study
systems of ODEs:

x′ = x+ 2y

y′ = 2x+ y

x(t) = c1e
3t + c2e

−t

y(t) = c1e
3t − c2e−t

. (3)

In these cases, there is more than one dependent variable. However, the number
of independent variables is still just one: in the case above, x and y are dependent
variables, while t is the only independent variable.

So, if ordinary differential equations have solutions with only one independent
variable, then surely an “extraordinary” differential equation would have more than
one, right? Indeed, but the term is “partial differential equations,” due to the pres-
ence of partial derivatives in the equation:

∂2u

∂t2
+ 2x2

∂u

∂x
− 3x

∂u

∂y
+

∂2u

∂x∂y
= 0. (4)

In general, partial differential equations are much more difficult to solve than ordi-
nary differential equations.

In Math 306, we will only consider problems involving ordinary differential
equations.
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2 First Order Ordinary Differential Equations

After specifying whether a differential equation is ordinary or partial, the next
most important classification is the “order:”

Definition 2.1 The order of a differential equation is the highest order of all of the

derivatives upon which it depends.

Here are some examples:

y′ =
√
x+ y first order

y′′ = x
y

second order

y′y = sin (x2 + y) first order
y′′y + (y′)2 = 0 second order
y′′′′′′′′′′′′′′′′′′′ = x nineteenth order

. (5)

As the last example above demonstrates, it is an eyesore to write many primes for a
high-order derivative. In general, for dealing with higher order derivatives than the
second derivative, we will write y(3) instead of y′′′, y(4) instead of y′′′′, and so on.

Here are some more examples:

y(4) + y′′ + y = ex fourth order
y(3) + x2y′′ + xy′ + y = 0 third order

y′ + esinxy = 1
x−lnx first order

1
y′′

+ 1
y′
+ 1

y
= tan−1x second order

y(100) + xy(75) + x2y(50) + x3y(25) + y′ = y200 one hundredth order

x3y′ − e(y(5)) = 1
x

fifth order
(y′ + y)2 = 1− x first order

x2y′′ + 2xy′ + y = 16y2 second order
y(3) +

(
x2 + xy(3)

)4
= sec(x) third order

cos (xy′′ + πy) = y(4) fourth order

(6)

True to this section’s name, we will consider only first-order ordinary differen-
tial equations in this section.
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2.1 Separable equations

Definition 2.2 We say that a first order differential equation with solution y(x)

is separable provided that it can be written in the form y′ = f(x)g(y) for some

functions f(x) and g(y).

Here are some examples, and their general solutions:

y′ = xy4 y(x) = 8
(C−3x2)

(x2 + 1) y′ = 1 y(x) = tan−1x+ C

y′ tan(x) = 2(y − 1) y(x) = 1 + Csin2x

y′ = 2xy
y+1

implicit: y + ln |y| = x2 + C

. (7)

In general, separable equations are among the easiest types of differential equa-
tions to solve. They are solved by the method of “separation of variables,” demon-
strated here in finding the solution of (1 + x)2y′ = (1 + y)2:

1. Write the differential equation in the form described by Definition 2.2:

dy

dx
= (1 + x)−2(1 + y)2. (8)

2. Re-write the differential equation so that every part that involves y is multi-
plied by y′:

(1 + y)−2
dy

dx
= (1 + x)−2. (9)

3. Integrate both sides of the differential equation:

�
(1 + y)−2dy =

�
(1 + x)−2dx (10)

4. Solve for y (as much as possible):

−(1 + y)−1 = −(1 + x)−1 + C1 (11)

1 + y =
1

1
1+x

+ C2

=
x+ 1

1 + C2(x+ 1)
(12)

y(x) = x+1
C2(x+1)+1

− 1 (13)
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2.2 Linear first order equations

Definition 2.3 We say that a differential equation with solution y(x) is linear pro-

vided that it can be written in the standard form

y(n) + pn−1(x)y
(n−1) + ...+ p2(x)y

′′ + p1(x)y
′ + p0(x)y = q(x), (14)

for some functions pn−1(x), pn−2(x), ..., p2(x), p1(x), p0(x), and q(x).

This definition has greater significance in dealing with differential equations of
second order and higher. In the case of first order differential equations, a linear
equation is one that can be written in the form

y′ + p(x)y = q(x), (15)

for some functions p(x) and q(x). (The functions p and q must depend only on x,
not on y.)

Here are some examples, and their general solutions:

y′ + y = 0 y(x) = Ce−x

y′ − tan(x)y = 2 sin(x) y(x) = C sec(x)− cos(x)

xy′ + 2 ln(x)y = x2−ln(x) y(x) =
(
1
2
x2 + C

)
x− ln(x)

. (16)

The technique here is a clever use of the product rule, and multiplication by an “in-
tegration factor,” as described below in solving xy′ + y = xex:

1. Put the differential equation in the standard form described in Definition 2.3:

y′ +
1

x
y = ex (17)

2. The integration factor is defined as the exponential of the antiderivative of
the coefficient of y:

ρ(x) = e
�

1
x

dx = eln |x| = x. (for x > 0) (18)
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3. Multiply the integration factor by the differential equation:

xy′ + x
1

x
y = xex (19)

4. By design, the side of the equation containing y′ is now the derivative of
ρ(x)y:

d

dx
(xy) = xex. (20)

5. Integrate both sides of the equation:

xy =

�
xex dx = (x− 1)ex + C. (21)

6. Solve for y(x):
y(x) = x−1

x
ex + C

x
. (22)
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2.3 Exact equations

Definition 2.4 LetM(x, y)+N(x, y)y′ = 0 be a differential equation with solution

y(x). We say that this differential equation is exact provided that there exists a

function F (x, y) such that M = ∂F
∂x

and N = ∂F
∂y

.

Here are some examples, and their general solutions:

y + (x+ y) y′ = 0 y(x) = −x±
√
x2 + C

(cosx+ ln y) +
(
x
y
+ ey

)
y′ = 0 implicit: sinx+ x ln y + ey + C

(x+ tan−1y) + x+y
1+y2

y′ = 0 implicit: 1
2
x2 + xtan−1y + 1

2
ln (1 + y2) = C

(ex sin y + tan y) + (ex cos y + xsec2y) y′ = 0 implicit: ex sin y + x tan y = C
(23)

Exact equations are somewhat different from the other types of ODEs discussed
so far. With most ODEs, you can determine the classification by just a glance. On
the other hand, part (and sometimes, most) of the challenge of exact equations is
that it’s not so easy to tell whether an equation is exact or not. Therefore, we need
to use the following theorem.

Theorem 2.5 A differential equation M(x, y) + N(x, y)y′ = 0 with solution y(x)

is exact if and only if ∂M
∂y

= ∂N
∂x

.

The procedure of determining exactness and finding the solution is outlined below,
for the case of (2xy2 + 3x2) + (2x2y + 4y3) y′ = 0:

1. Find ∂M
∂y

and ∂N
∂x

:
∂
∂y

(2xy2 + 3x2) = 4xy
∂
∂x

(2x2y + 4y3) = 4xy
. (24)

If these two partial derivatives are equal, then the equation is exact; if the two partial
derivatives are not equal, then the equation is not exact, and should be solved by a
different method.

2. If the equation is exact, then set M = ∂F
∂x

and N = ∂F
∂y

, to get a system of
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equations:
2xy2 + 3x2 = ∂F

∂x

2x2y + 4y3 = ∂F
∂y

. (25)

3. To find F (x, y), integrate both sides of one of the equations (it makes no
difference which one is chosen; here we will use the first one):

�
2xy2 + 3x2 dx = F (x, y)

F (x, y) = x2y2 + x3 + g(y)
(26)

Here our constant of integration (which we have called g(y)) should be a function
of y, only.

4. Now we must find g(y). First, take the other partial derivative of this expres-
sion for F (x, y):

∂F
∂y

= ∂
∂y

(x2y2 + x3 + g(y)) = 2x2y + g′(y). (27)

5. Set this equal to the other equation:

2x2y + 4y3 =
∂F

∂y
= 2x2y + g′(y). (28)

6. Based on this, integrate to find g(y):

g′(y) = 4y3

g(y) =

�
4y3 dy = y4 + C.

(29)

7. Write F (x, y) in full:

F (x, y) = x2y2 + x3 + y4 + C. (30)

8. Set F (x, y) to a constant and solve for y (as much as possible):

C = x2y2 + x3 + y4 (31)
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2.4 Substitution methods

As you may have already noticed, differential equations can be quite compli-
cated. So, just as with integrals, sometimes it is helpful to define new variables and
substitute them into a differential equation. With some luck, this can result in a new
differential equation which is a bit simpler.

However, also similar to integration by u-substitution, there is no procedure of
determining when a substitution is necessary, or how it should be done. As with in-
tegrals, substitution methods involve making a guess, and then seeing if it’s correct.

What follows are several examples of first order ODEs which cannot be solved
directly by the usual methods, a suitable substitution, and the eventual general so-
lution.

y′ =
√
x+ y + 1

v = x+ y + 1 y(x) =
(
1
2
x+ C

)2 − x− 1

(ln y)2 +
(
y′

y

)
= 1

v = ln y y(x) = esin(C±x)

y2y′ + 2xy3 = 6x

v = y3 y(x) =
3
√
3 + Ce−3(x2)

y′ = y + y3

v = y2 + 1 implicit: y2 = Ce2x

1−Ce2x

(2x sin(y) cos(y)) y′ = 4x2 + sin2y

v = sin2y implicit: sin2y = 4x2 + Cx

(x2 + 1) sec(y)y′ + sin(y) = 2 cos(y)

v = tan y implicit: tan(y) = Ce−tan
−1(x) + 2

y′ tan(y) + 2xe(x
2) = xe(x

2) csc(y)

v = sec(y) implicit: sec(y) = e

(
e(x

2)
) (

C + 1
2
e(x

2)
)

2yy′ ln (y2 − 4) = (y2 − 4)
√
e2x + e−2x + 2

v = y2 − 4 implicit: y2 = e±
√
ex+e−x+C + 4

(32)
Substitution problems can be the most difficult kinds of ODE problems to solve.
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It can be very far from obvious what the appropriate substitution should be, and
even when (if) it is found, it can be very far from obvious what to do next. It is
the opinion of the author that, hypothetically, if he wanted to create the most unfair
problem in the history of first courses in differential equations, he would first look
to the bizarre world of substitution problems.

However, there is good news: besides the obvious good news that I just saved a
bunch of money on my car insurance by switching to Geico, there are three cases
of substitution problems that can be solved through more predictable approaches.
These are the homogeneous substitutions, the Bernoulli substitutions, and the order-
reducing substitutions.

2.4.1 Homogeneous substitutions

Definition 2.6 A first order ordinary differential equation with solution y(x) is

called homogeneous of first order provided that it can be written in the form y′ =

f
(
y
x

)
for some function f .

Here are some examples, and their general solutions:

xy2y′ = x3 + y3 y(x) = x 3
√
C + 3 ln |x|

xy′ = y + 2
√
xy y(x) = x(C + ln |x|)2

(x+ y)y′ = x− y implicit: y2 + 2xy − x2 = C

(x− y)y′ = x+ y implicit: tan−1
(
y
x

)
= ln

(√
x2 + y2

)
+ C

(x2 − y2) y′ = 2xy implicit: y = C (x2 + y2)

xy′ = y +
√
x2 + y2 implicit: y +

√
x2 − y2 = Cx2

(33)

A pattern to notice in these examples is that many homogeneous equations involve
x and y raised to some rational powers, with no other functions involved.

Homogeneous equations can be solved via the substitution v = y
x
. We demon-

strate the procedure of homogeneous substitution in the case of the differential
equation yy′ + x =

√
x2 + y2:
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1. Rewrite the equation so that y and x only appear in fractions of the form y
x

or
x
y
:

y′ + x
y
=

√(
x
y

)2
+ 1

y′ = −x
y
+

√(
x
y

)2
+ 1

. (34)

2. Write v = y
x
, and replace y′ with v′x+ v:

v′x+ v = −1

v
+

√(
1

v

)2

+ 1. (35)

3. Solve as normally for v(x). (Typically this means either separate variables or
write the new equation as a linear first order ODE):

v′xv + v2 = −1 +
√
1 + v2

v′xv = − (1 + v2) +
√
1 + v2�

v√
1+v2−(1+v2) dv =

�
1
x
dx�

v√
1+v2(1−

√
1+v2)

dv = ln |x|+ C1.

(36)

Let u = 1 −
√
1 + v2. (Author’s note: this happens to be the most difficult u-

substitution I have ever seen.) In that case, du = −v√
1+v2

dv, and so

−
�

1
u
du = ln |x|+ C1

ln |u| = − ln |x|+ C2

|u| = eC2

|x|

u = ± eC2

x

1−
√
1 + v2 = C3

x

1 + v2 =
(
1− C3

x

)2
= 1− 2C3

x
+ C3

2

x2

v2 = C3
2

x2
− 2C3

x
.

(37)

4. Reverse the substitution and solve for y (as much as possible):

y2 = C3
2 − 2C3x . (38)
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2.4.2 Bernoulli substitutions

Definition 2.7 A Bernoulli equation is a differential equation with solution y(x)

which can be written in the standard form y′ + p(x)y = q(x)yn for some functions

p(x) and q(x) and some real number n 6= 1.

Here are some examples, and their general solutions:

3y2y′ + y3 = e−x y(x) = e−3x(x+ C)3

xy′ + 6y = 3xy
4
3 y(x) = 1

x3(x+C)3

y2 (xy′ + y)
√
1 + x4 = x implicit: 2x3y3 = 3

√
1 + x4 + C

(39)

Bernoulli equations can always be solved via the substitution v = y1−n. We
demonstrate the method for the case of x2y′ + 2xy = 5y4:

1. Write the equation in the standard form to which the definition refers:

y′ +
2

x
y =

5

x2
y4. (40)

2. Identify the n to which the definition refers, and state the intended substitu-
tion v = y1−n:

v = y1−4 = y−3. (41)

3. Solve for y and y′ in terms of v and v′:

y = v−
1
3

y′ = −1
3
v−

4
3v′
. (42)

4. Rewrite the equation with this information:

−1

3
v−

4
3v′ +

2

x
v−

1
3 =

5

x2
v−

4
3 . (43)

5. Cancel the coefficient of v′ to find a first order linear ODE:

v′ − 6

x
v = −15

x2
(44)
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6. Solve as usual for v:

ρ(x) = e
�
− 6

x
dx = x−6

x−6v′ − 6x−7v = −15x−8
d
dx

(x−6v) = −15x−8

x−6v = 15
7
x−7 + C1

v = 15
7
x−1 + C1x

6

(45)

7. Revert to y and solve for y(x) (as much as possible):

y−3 = 15
7x

+ C1x
6

y3 = 1
15
7x

+C1x6
= 7x

15+C2x7

y(x) = 3

√
7x

15+C2x7
.

(46)

2.4.3 Order-reducing substitutions

See Section 3.1 for methods of solving second order equations by first-order
methods using substitutions.
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3 Second Order Ordinary Differential Equations

3.1 Substitution methods

Some second order ODEs can be solved using methods from the theory of first
order ODEs. If a second order ODE is of the form F (x, y′, y′′) = 0 or the form
F (y, y′, y′′) = 0, then it may be possible to do a substitution and solve the second-
order equation as a sequence of two first-order equations. If neither of these is the
case (id est, the equation can only be written as F (x, y, y′, y′′) = 0), then no such
thing is possible in general.

3.1.1 Non-autonomous reducible ODEs

Let’s begin with the simpler case: F (x, y′, y′′) = 0. Here are some examples,
and their general solutions.

xy′′ − y′ = 0 y(x) = C1x
2 + C2

xy′′ + y′ = 4x y(x) = x2 + C1 ln(x) + C2

x2y′′ + 3xy′ = 2 y(x) = ln |x|+ C1

x2
+ C2

y′′ = (x+ y′)2 y(x) = ln
∣∣ sec (x+ C1)

∣∣− x2 + C2

(47)

The strategy in this case is to make the substitution v(x) = y′. We demonstrate
this procedure for the case of y′′ − x

1−x2y
′ = 1√

1−x2 :

1. Substitute v(x) = y′, so that v′(x) = y′′:

v′ − x

1− x2
v =

1√
1− x2

. (48)
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2. Solve as usual for v(x):

ρ(x) = e
�
− x

1−x2
dx

= e
1
2
ln |1−x2| =

√
1− x2.√

1− x2v′ − x√
1−x2v = 1

d
dx

(
v
√
1− x2

)
= 1

v
√
1− x2 = x+ C1

v = x√
1−x2 +

C1√
1−x2 .

(49)

3. Revert to y′ and solve as usual for y (as much as possible):

y′ = x√
1−x2 +

C√
1−x2

y =

�
x√
1−x2 dx+ C1

�
1√

1−x2 dx

y(x) = −
√
1− x2 + C1sin

−1x+ C2.

(50)

3.1.2 Autonomous reducible ODEs

The case of F (y, y′, y′′) = 0 is a bit more non-intuitive. Here are some exam-
ples, and their general solutions.

yy′′ + (y′)2 = yy′ y(x) = ±
√
C1ex + C2

y′′ + 4y = 0 y(x) = C1 sin(2x) + C2 cos(2x)

yy′′ + (y′)2 = 0 y(x) = ±
√
C1x+ C2

y′′ = 2yy′ y(x) = C1 tan (C1x+ C2)

(51)

For this type of problem, the strategy is to substitute v(y) = y′, which is just
subtly different from the previous strategy. We demonstrate for the case of the dif-
ferential equation yy′′ = 3(y′)2:
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1. Write the intended substitution v(y) = y′ and solve for y′′:

v(y) = y′

dv
dx

= dv
dy

dy
dx

d
dx
y′ = dv

dy
y′

y′′ = v′v

. (52)

2. Rewrite the original ODE with this information:

yvv′ = 3v2

yv′ = 3v
. (53)

3. Solve as usual for v(y):

1
v
v′ = 3 1

y�
1
v
dv = 3

�
1
y
dy

ln |v| = 3 ln |y|+ A1

v(y) = A2y
3

. (54)

4. Revert to y′ and solve for y(x) (as much as possible):

y′ = A2y
3

y−3y′ = A2�
y−3 dy =

�
A2 dx

−1
2
y−2 = A2x+B1

y−2 = A3x+B2

y2 = 1
A3x+B2

y(x) = ± 1√
A3x+B2

.

(55)
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3.2 Linear, homogeneous, with constant coefficients

In Section 2.2, we discussed first order equations that happened to be linear:

y′ + p(x)y = q(x). (56)

As we’ve discussed, the integration factor provides a simple and complete method
of solution for any and every differential equation of such a form.

As with first order ODEs, we will take some time to restrict our attention second
order equations that happen to be linear:

y′′ + p1(x)y
′ + p2(x)y = q(x). (57)

However, even in the linear case, the theory of second order ODEs can be much
more difficult to handle than that of first order ODEs. In order to approach these
problems, we will first consider only those linear second order ODEs in which p1(x)
and p2(x) are both constants:

y′′ + ay′ + by = q(x). (58)

Even this is not enough. We will need one more restriction to introduce the theory
of second order ODEs.

Definition 3.1 A linear differential equation

y(n) + pn−1(x)y
(n−1) + ...+ p1(x)y

′ + p0(x)y = q(x) (59)

with solution y(x) is homogeneous provided that q(x) = 0 for all x.

(Note that this definition is completely unrelated to Definition 2.6. The author ex-

presses his condolences.)

In particular, a second order linear ODE is homogeneous provided that it can be
written in the form

y′′ + p1(x)y
′ + p2(x)y = 0. (60)
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To reiterate, the characteristic that makes a linear ODE with solution y(x) homoge-
neous or not is whether there is a nonzero term that contains neither y nor any of its
derivatives.

For now, we will only be concerned with linear, homogeneous second order
ODEs with constant coefficients:

y′′ + ay′ + by = 0. (61)

Note that most of these ODEs cannot be solved by order-reducing substitutions.
Here are some examples, and their general solutions:

4y′′ + 4y′ + y = 0 y(x) = (c1 + c2x) e
− 1

2
x

y′′ + 11y′ = 0 y(x) = c1 + c2e
−11x

y′′ − y = 0 y(x) = c1e
x + c2e

−x

y′′ + y = 0 y(x) = c1 cos(x) + c2 sin(x)

y′′ + y′ + y = 0 y(x) = e−
1
2
x
(
c1 cos

(√
3
2
x
)
+ c2 sin

(√
3
2
x
))

y′′ + y′ − y = 0 y(x) = c1e
−1+

√
5

2
x + c2e

−1−
√
5

2
x

y′′ − y′ + y = 0 y(x) = e
1
2
x
(
c1 cos

(√
3
2
x
)
+ c2 sin

(√
3
2
x
))

y′′ − y′ − y = 0 y(x) = c1e
1+
√
5

2
x + c2e

1−
√
5

2
x

y′′ − y′ − 2y = 0 y(x) = c1e
−x + c2e

2x

y′′ + y′ − 2y = 0 y(x) = c1e
x + c2e

−2x

y′′ − y′ + 2y = 0 y(x) = e
1
2
x
(
c1 cos

(√
7
2
x
)
+ c2 sin

(√
7
2
x
))

y′′ + y′ + 2y = 0 y(x) = e−
1
2
x
(
c1 cos

(√
7
2
x
)
+ c2 sin

(√
7
2
x
))

y′′ + 2y′ + y = 0 y(x) = (c1 + c2x) e
−x

y′′ + 5y′ + 6y = 0 y(x) = c1e
−3x + c2e

−2x

y′′ + y′ − 6y = 0 y(x) = c1e
−3x + c2e

2x

y′′ − 5y′ + 6y = 0 y(x) = c1e
3x + c2e

2x

y′′ − y′ − 6y = 0 y(x) = c1e
3x + c2e

−2x

(62)

Notice that very small differences between two ODEs can cause the solutions to
be wildly different. (Conversely, notice that sometimes, large differences can cause
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the solutions to be eerily similar!) This is just one of many mathematical instances
of the butterfly effect.

The method of solving linear ODEs with constant coefficients hinges on find-
ing the “characteristic equation” of the ODE, which we demonstrate for the case of
y′′ − 2y′ − 8y = 0:

1. Assume that y = erx is a solution to the differential equation for some
unknown value of r:

d2

dx2
(erx)− 2 d

dx
(erx)− 8 (erx) = 0

r2erx − 2rerx − 8erx = 0

erx (r2 − 2r − 8) = 0

. (63)

2. Divide both sides by erx to get the characteristic equation:

r2 − 2r − 8 = 0. (64)

3. Find the roots of the characteristic equation. (In this case, we can factor the
characteristic equation, but this is not always possible.)

(r − 4) (r + 2) = 0,

r1 = 4, r2 = −2
. (65)

4. If the roots are real and unequal, proceed to Section 3.2.1. If the roots are
repeated (equal), proceed to Section 3.2.2. If the roots are complex, proceed to
Section 3.2.3.

3.2.1 Real distinct roots

If the characteristic equation has real valued roots r1 and r2, where r1 6= r2,
then the general solution is simply

y(x) = c1e
r1x + c2e

r2x. (66)
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For example, in the case of y′′ − 2y′ − 8y = 0, the roots are r1 = 4 and r2 = −2.
Thus, the general solution of y′′ − 2y′ − 8y = 0 is

y(x) = c1e
4x + c2e

−2x. (67)

3.2.2 Repeated roots

If the characteristic equation has exactly one root r, then the general solution is

y(x) = (c1 + c2x) e
rx. (68)

For example, in the case of y′′ + 6y + 9 = 0, the only root is r = 4. Thus, the
general solution of y′′ + 6y + 9 = 0 is

y(x) = (c1 + c2x) e
3x. (69)

3.2.3 Complex roots

If the characteristic equation has two complex roots, then they take the form
r1 = a+ bi and r2 = a− bi. In this case, the general solution is

y(x) = eax (c1 cos (bx) + c2 sin (bx)) . (70)

For example, in the case of y′′ − 2y′ + 10 = 0, the roots are r1 = 1 + 6i and
r2 = 1− 6i. Thus, the general solution of y′′ − 2y′ + 10 = 0 is

y(x) = ex (c1 cos (6x) + c2 sin (6x)). (71)
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3.3 Linear, non-homogeneous, with constant coefficients

The theory of second order linear ODEs with constant coefficients which are
not homogeneous can be handled together with higher-order ODEs with constant
coefficients. For these techniques, refer to Section 4.2.
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3.4 Linear, homogeneous, with non-constant coefficients

3.4.1 Solutions by power series

The power series method of solving differential equations is as follows: assume
that the solution y is a power series, and then attempt to determine its coefficients.
We place this topic in a section on non-constant coefficients because that is the
situation in which power series methods are most effective.

So, first of all, what is a power series?

Definition 3.2 A power series in the variable x is a function g with independent

variable x of the form

g(x) =
∞∑
n=0

cn(x− a)n,

where a is a real number and, for each integer n, cn is a real number.

If a function is equal to a particular power series, then we call that equality “a power
series representation” of the function. Many of the functions that are important to
us will have representations as power series. Here are the most essential examples:

ex =
∞∑
n=0

xn

n!

sinx =
∞∑
n=0

(−1)n x2n+1

(2n+1)!

cosx =
∞∑
n=0

(−1)n x2n

(2n)!

1
1−x =

∞∑
n=0

xn for 0 ≤ |x| < 1

. (72)

These equations, and many more, can be figured out through the use of Taylor
series.

Definition 3.3 Let f be a function defined on the real line, and let a be a real value.

The Taylor series of f centered at x = a is the power series

∞∑
n=0

1

n!
f (n) (a) (x− a)n.
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If a = 0, we call this the Maclaurin series of f .

As you may know, with every series, there are issues of convergence that must
be addressed. However, we will not concern ourselves much with the radii of con-
vergence of the power series we deal with in this document; that would be a better
topic for a textbook than for a handbook on ODEs. It will be enough for us to sim-
ply note that some ODEs cannot be solved by power series.

The method of power series hinges on the following theorem.

Theorem 3.4 If
∞∑
n=0

anx
n =

∞∑
n=0

bnx
n,

for all real values of x, then for each integer n ≥ 0, an = bn.

In particular, if b0 = b1 = ... = 0, then a0 = a1 = ... = 0.
Here are some examples of linear, homogeneous ODEs with non-constant coef-

ficients, and their general solutions:

(x− 3)y′ + 2x = 0 y(x) = c0
∞∑
n=0

(n+ 1)
(
x
3

)n
(2x− 1)y′ + 2y = 0 y(x) = c0

1−2x

(x− 2)y′ + y = 0 y(x) = 2c0
2−x

(x2 + 1) y′′ + 6xy′ + 4y = 0 y(x) = c0
∞∑
n=0

(−1)n (n+ 1)x2n + c1
3

∞∑
n=0

(−1)n (2n+ 3)x2n+1

(x2 − 3) y′′ + 2xy′ = 0 y(x) = c0 + c1
∞∑
n=0

x2n+1

3n(2n+1)

(x2 − 1) y′′ − 6xy′ + 12y = 0 y(x) = c0 (1 + 6x2 + x4) + c1 (x+ x3)
(73)

We describe the procedure for solving such problems below for the cases of four
different ODEs.

To solve y′′ + 4y = 0 (note that this ODE can be solved by other methods as
well):
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1. Assume that y =
∑∞

n=0 cnx
n is a solution to the ODE for some unknown

values of the cn. In that case, y′ =
∑∞

n=0 ncnx
n−1 and y′′ =

∑∞
n=0 n(n− 1)cnx

n−2,
so in this case, we get the equation

∞∑
n=0

n (n− 1) cnx
n−2 + 4

∞∑
n=0

cnx
n = 0. (74)

2. Distribute.

∞∑
n=0

n (n− 1) cnx
n−2 +

∞∑
n=0

4cnx
n = 0. (75)

3. Shift the indices of the sums so that the exponents of x are the same. In this
case, we need to shift the indices of the term

∞∑
n=0

n (n− 1) cnx
n−2 (76)

so that the exponent of x will be n. First, we note that the 0 and 1 terms will both
be zero, so

∞∑
n=0

n (n− 1) cnx
n−2 =

∞∑
n=2

n (n− 1) cnx
n−2. (77)

We now make the substitution m = n− 2, the current exponent of x. When n = 2,
m = 0, so

∞∑
n=2

n (n− 1) cnx
n−2 =

∞∑
m=0

(m+ 2) (m+ 1) cm+2x
m. (78)

This same sum can be written as

∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n, (79)

since m and n are just names of the index counting the terms. Thus, the equation
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becomes
∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n +

∞∑
n=0

4cnx
n = 0. (80)

4. Combine the sums and like terms.

∞∑
n=0

((n+ 2) (n+ 1) cn+2 + 4cn)x
n = 0. (81)

5. By the theorem, the coefficients must now be zero. In this case, for n ≥ 0,

(n+ 2)(n+ 1)cn+2 + 4cn = 0. (82)

6. Find a relationship among the coefficients. (This is called a “recurrence
relation.”)

(n+ 2)(n+ 1)cn+2 = −4cn
cn+2 =

−4
(n+2)(n+1)

cn
. (83)

7. If the original ODE has order r, then regard the coefficients c0, c1, ..., cr−1 as
arbitrary constants, and determine the values of the other constants in terms of them
using the recurrence relation. In this case, c0 and c1 are arbitrary. As for any other
constants, the recurrence relation implies

c0 c1

c2 =
−4

(2)(1)
c0 c3 =

−4
(3)(2)

c1

c4 =
42

(4)(3)(2)(1)
c0 c5 =

42

(5)(4)(3)(2)

c6 =
−43

(6)(5)(4)(3)(2)
c0 c7 =

−43
(7)(6)(5)(4)(3)(2)(1)

c8 =
44

(8)(7)(6)(5)(4)(3)(2)
c0 c9 =

44

(9)(8)(7)(6)(5)(4)(3)(2)
...

...

. (84)

These equations can be summarized as follows:

c2k =
(−1)k4k
(2k)!

c0, c2k+1 =
(−1)k4k
(2k+1)!

c1. (85)

8. Write y =
∑∞

n=0 cnx
n with this insight about the cn. In this case, the value

of n will depend on whether n is even or odd. If n is even, then n = 2k for some
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integer k, and cn = c0. If n is odd, then n = 2k+1 for some integer k, and cn = c1.
Thus,

y(x) =
∞∑
n=0

cnx
n =

∞∑
k=0

c2kx
2k +

∞∑
k=0

c2k+1x
2k+1

= c0

∞∑
k=0

(−1)k4k

(2k)!
x2k + c1

∞∑
k=0

(−1)k4k

(2k + 1)!
x2k+1. (86)

9. Determine whether any familiar power series occur in y(x). In this case, we
note that

y(x) = c0

∞∑
k=0

(−1)k (2x)
2k

(2k)!
+

1

2
c1

∞∑
k=0

(−1)k (2x)
2k+1

(2k + 1)!
. (87)

We know that cosx =
∑∞

n=0 (−1)
n x2n

(2n)!
and sinx =

∑∞
n=0 (−1)

n x2n+1

(2n+1)!
, so

y(x) = c0 cos (2x) +
1
2
c1 sin (2x) . (88)

To solve (x2 + 2) y′′ + 4xy′ + 2y = 0:
1. Assume that y =

∑∞
n=0 cnx

n is a solution to the ODE for some unknown
values of the cn. In that case, y′ =

∑∞
n=0 ncnx

n−1 and y′′ =
∑∞

n=0 n(n− 1)cnx
n−2,

so in this case, we get the equation

(
x2 + 2

) ∞∑
n=0

n (n− 1) cnx
n−2 + 4x

∞∑
n=0

ncnx
n−1 + 2

∞∑
n=0

cnx
n = 0. (89)

2. Distribute.

∞∑
n=0

n (n− 1) cnx
n +

∞∑
n=0

2n (n− 1) cnx
n−2 +

∞∑
n=0

4ncnx
n +

∞∑
n=0

2cnx
n = 0 (90)

3. Shift the indices of the sums so that the exponents of x are the same. In this
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case, we need to shift the indices of the term

∞∑
n=0

2n (n− 1) cnx
n−2 (91)

so that the exponent of x will be n. First, we note that the 0 and 1 terms will both
be zero, so

∞∑
n=0

2n (n− 1) cnx
n−2 =

∞∑
n=2

2n (n− 1) cnx
n−2. (92)

We now make the substitution m = n− 2, the current exponent of x. When n = 2,
m = 0, so

∞∑
n=2

2n (n− 1) cnx
n−2 =

∞∑
m=0

2 (m+ 2) (m+ 1) cm+2x
m. (93)

This same sum can be written as

∞∑
n=0

2 (n+ 2) (n+ 1) cn+2x
n, (94)

since m and n are just names of the index counting the terms. Thus, the equation
becomes

∞∑
n=0

n (n− 1) cnx
n+

∞∑
n=0

2 (n+ 2) (n+ 1) cn+2x
n+

∞∑
n=0

4ncnx
n+

∞∑
n=0

2cnx
n = 0.

(95)
4. Combine the sums and like terms.

∞∑
n=0

(n (n− 1) cn + 2 (n+ 2) (n+ 1) cn+2 + 4ncn + 2cn)x
n = 0. (96)

5. By the theorem, the coefficients must now be zero. In this case, for n ≥ 0,

n (n− 1) cn + 2 (n+ 2) (n+ 1) cn+2 + 4ncn + 2cn = 0. (97)

6. Find a relationship among the coefficients. (This is called a “recurrence

27



relation.”)

(n2 − n) cn + 2 (n+ 2) (n+ 1) cn+2 + (4n+ 2) cn = 0

(n2 + 3n+ 2) cn + 2 (n+ 2) (n+ 1) cn+2 = 0

2 (n+ 2) (n+ 1) cn+2 = − (n2 + 3n+ 2) cn

cn+2 = − n2+3n+2
2(n+2)(n+1)

cn

cn+2 = − (n+2)(n+1)
2(n+2)(n+1)

cn = −1
2
cn.

. (98)

7. If the original ODE has order r, then regard the coefficients c0, c1, ..., cr−1 as
arbitrary constants, and determine the values of the other constants in terms of them
using the recurrence relation. In this case, c0 and c1 are arbitrary. As for any other
constants, the recurrence relation implies

c0 c1

c2 =
−1
2
c0 c3 =

−1
2
c1

c4 =
1
4
c0 c5 =

1
4
c1

c6 =
−1
8
c0 c7 =

−1
8
c1

c8 =
1
16
c0 c9 =

1
16
c1

...
...

. (99)

These equations can be summarized as follows:

c2k =
(−1)k
2k

c0, c2k+1 =
(−1)k
2k

c1. (100)

8. Write y =
∑∞

n=0 cnx
n with this insight about the cn. In this case, the value

of n will depend on whether n is even or odd. If n is even, then n = 2k for some
integer k, and cn = c0. If n is odd, then n = 2k+1 for some integer k, and cn = c1.
Thus,

y(x) =
∞∑
n=0

cnx
n =

∞∑
k=0

c2kx
2k +

∞∑
k=0

c2k+1x
2k+1

= c0

∞∑
k=0

(−1)k

2k
x2k + c1

∞∑
k=0

(−1)k

2k
x2k+1. (101)
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9. Determine whether any familiar power series occur in y(x). In this case, we
notice that

y(x) = c0

∞∑
k=0

(
−x

2

2

)k
+ c1

∞∑
k=0

x

(
−x

2

2

)k
. (102)

We know that 1
1−x =

∑∞
n=0 x

n, so this is

y(x) = c0

1−
(
−x2

2

) + c1x

1−
(
−x2

2

) = 2c0+2c1x
2+x2

. (103)

To solve y′′ + xy′ + y = 0:
1. Assume that y =

∑∞
n=0 cnx

n is a solution to the ODE for some unknown
values of the cn. In that case, y′ =

∑∞
n=0 ncnx

n−1 and y′′ =
∑∞

n=0 n(n− 1)cnx
n−2,

so in this case, we get the equation

∞∑
n=0

n (n− 1) cnx
n−2 + x

∞∑
n=0

ncnx
n−1 +

∞∑
n=0

cnx
n = 0. (104)

2. Distribute.

∞∑
n=0

n (n− 1) cnx
n−2 +

∞∑
n=0

ncnx
n +

∞∑
n=0

cnx
n = 0. (105)

3. Shift the indices of the sums so that the exponents of x are the same. In this
case, we need to shift the indices of the term

∞∑
n=0

n (n− 1) cnx
n−2 (106)

so that the exponent of x will be n. First, we note that the 0 and 1 terms will both
be zero, so

∞∑
n=0

n (n− 1) cnx
n−2 =

∞∑
n=2

n (n− 1) cnx
n−2. (107)

We now make the substitution m = n− 2, the current exponent of x. When n = 2,
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m = 0, so

∞∑
n=2

n (n− 1) cnx
n−2 =

∞∑
m=0

(m+ 2) (m+ 1) cm+2x
m. (108)

This same sum can be written as

∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n, (109)

since m and n are just names of the index counting the terms. Thus, the equation
becomes

∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n +

∞∑
n=0

ncnx
n +

∞∑
n=0

cnx
n = 0. (110)

4. Combine the sums and like terms.

∞∑
n=0

((n+ 2) (n+ 1) cn+2 + ncn + cn)x
n = 0. (111)

5. By the theorem, the coefficients must now be zero. In this case, for n ≥ 0,

(n+ 2) (n+ 1) cn+2 + ncn + cn = 0. (112)

6. Find a relationship among the coefficients. (This is called a “recurrence
relation.”)

(n+ 2) (n+ 1) cn+2 + (n+ 1) cn = 0

(n+ 2) (n+ 1) cn+2 = − (n+ 1) cn

cn+2 =
−1
n+2

cn

. (113)

7. If the original ODE has order r, then regard the coefficients c0, c1, ..., cr−1 as
arbitrary constants, and determine the values of the other constants in terms of them
using the recurrence relation. In this case, c0 and c1 are arbitrary. As for any other
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constants, the recurrence relation implies

c0 c1

c2 =
−1
2
c0 c3 =

−1
3
c1

c4 =
1

(2)(4)
c0 c5 =

1
(3)(5)

c1

c6 =
−1

(2)(4)(6)
c0 c7 =

−1
(3)(5)(7)

c1

c8 =
1

(2)(4)(6)(8)
c0 c9 =

1
(3)(5)(7)(9)

c1
...

...

. (114)

These equations can be summarized as follows:

c2k =
(−1)k
2kk!

c0 c2k+1 =
(−1)k2kk!
(2k+1)!

c1. (115)

(Note: many authors refer to (2k+1)
2kk!

as (2k + 1)!!, the so-called “double factorial.”)
8. Write y =

∑∞
n=0 cnx

n with this insight about the cn. In this case, the value
of n will depend on whether n is even or odd. If n is even, then n = 2k for some
integer k, and cn = c0. If n is odd, then n = 2k+1 for some integer k, and cn = c1.
Thus,

y(x) =
∞∑
n=0

cnx
n =

∞∑
k=0

c2kx
2k +

∞∑
k=0

c2k+1x
2k+1

= c0

∞∑
k=0

(−1)k

2kk!
x2k + c1

∞∑
k=0

(−1)k2kk!
(2k + 1)!

x2k+1. (116)

9. Determine whether any familiar power series occur in y(x). In this case, we
do not recognize either of the power series appearing in the solution, so there is
nothing more to do:

y(x) = c0
∞∑
k=0

(−1)k
2kk!

x2k + c1
∞∑
k=0

(−1)k2kk!
(2k+1)!

x2k+1 . (117)

To solve (x2 − 1) y′′ + 4xy′ + 2y = 0:
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1. Assume that y =
∑∞

n=0 cnx
n is a solution to the ODE for some unknown

values of the cn. In that case, y′ =
∑∞

n=0 ncnx
n−1 and y′′ =

∑∞
n=0 n(n− 1)cnx

n−2,
so in this case, we get the equation

(
x2 − 1

) ∞∑
n=0

n (n− 1) cnx
n−2 + 4x

∞∑
n=0

ncnx
n−1 + 2

∞∑
n=0

cnx
n = 0. (118)

2. Distribute.

∞∑
n=0

n (n− 1) cnx
n−

∞∑
n=0

n (n− 1) cnx
n−2 +

∞∑
n=0

4ncnx
n+

∞∑
n=0

2cnx
n = 0. (119)

3. Shift the indices of the sums so that the exponent on each x is n. In this case,
we need to shift the indices of the term

∞∑
n=0

n (n− 1) cnx
n−2 (120)

so that the sum will be of the form
∑∞

n=0 anx
n. First, we note that the 0 and 1 terms

are both zero, so

∞∑
n=0

n (n− 1) cnx
n−2 =

∞∑
n=2

n (n− 1) cnx
n−2. (121)

We now make the substitution m = n− 2, the exponent on x. When n = 2, m = 0,
so

∞∑
n=2

n (n− 1) cnx
n−2 =

∞∑
m=0

(m+ 2) (m+ 1) cm+2x
m. (122)

This same sum can be written as

∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n, (123)
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since m and n are just names of the index. Thus, the equation becomes

∞∑
n=0

n (n− 1) cnx
n −

∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n +

∞∑
n=0

4ncnx
n +

∞∑
n=0

2cnx
n = 0.

(124)
4. Combine the sums and like terms.

∞∑
n=0

(n (n− 1) cn − (n+ 2) (n+ 1) cn+2 + 4ncn + 2cn)x
n = 0. (125)

5. By the theorem, the coefficients must now be zero. In this case, for n ≥ 0,

n (n− 1) cn − (n+ 2) (n+ 1) cn+2 + 4ncn + 2cn = 0. (126)

6. Find a relationship among the coefficients. (This is called a “recurrence
relation.”)

(n2 − n) cn − (n+ 2) (n+ 1) cn+2 + 4ncn + 2cn = 0

(n2 + 3n+ 2) cn − (n+ 2) (n+ 1) cn+2 = 0

(n+ 2) (n+ 1) cn+2 = (n2 + 3n+ 2) cn

cn+2 =
(n+2)(n+1)
n2+3n+2

cn = (n+2)(n+1)
(n+2)(n+1)

cn = cn

. (127)

7. If the original ODE has order r, then regard the coefficients c0, c1, ..., cr−1 as
arbitrary constants, and determine the values of the other constants in terms of them
using the recurrence relation. In this case, c0 and c1 are arbitrary, and

c0 = c2 = c4 = c6 = c8 = ...

c1 = c3 = c5 = c7 = c9 = ...
. (128)

8. Write y =
∑∞

n=0 cnx
n with this insight about the cn. In this case, the value

of n will depend on whether n is even or odd. If n is even, then n = 2k for some
integer k, and cn = c0. If n is odd, then n = 2k+1 for some integer k, and cn = c1.
Thus,

y(x) =
∞∑
n=0

cnx
n =

∞∑
k=0

c2kx
2k+

∞∑
k=0

c2k+1x
2k+1 =

∞∑
k=0

c0x
2k+

∞∑
k=0

c1x
2k+1. (129)
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9. Determine whether any familiar power series occur in y(x). In this case, we
note that

y(x) = c0

∞∑
k=0

(
x2
)k

+ c1x
∞∑
k=0

(
x2
)k
. (130)

We recognize that
∑∞

k=0 x
k = 1

1−x . Therefore,
∑∞

k=0 (x
2)
k
= 1

1−x2 . Thus,

y(x) = c0
1

1−x2 + c1x
1

1−x2 = c0+c1x
1−x2 . (131)
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4 Higher Order Ordinary Differential Equations

4.1 Linear, homogeneous, with constant coefficients

In section 2.2, we defined what is meant by an ODE being linear (this is Defini-
tion 2.3). So far, we’ve dealt with two orders of linear ODEs:

y′ + p(x)y = q(x) first order
y′′ + p1(x)y

′ + p0(x)y = q(x) second order
(132)

In this section, we’ll take the next logical steps forward:

y(3) + p2(x)y
′′ + p1(x)y

′ + p0(x)y = q(x) third order
y(4) + p3(x)y

(3) + p2(x)y
′′ + p1(x)y

′ + p0(x)y = q(x) fourth order
y(5) + p4(x)y

(4) + p3(x)y
(3) + p2(x)y

′′ + p1(x)y
′ + p0(x)y = q(x) fifth order

... (you get the idea)
(133)

However, just as we needed to make the additional assumptions of homogeneity and
constant coefficients in Section 3.2, we also need those assumptions here. There-
fore, for now, we’ll only deal with ODEs that look like:

y(3) + a2y
′′ + a1y

′ + a0y = 0

y(4) + a3y
(3) + a2y

′′ + a1y
′ + a0y = 0

y(5) + a4y
(4) + a3y

(3) + a2y
(2) + a1y

′ + a0y = 0
...

, (134)

where all of the coefficients ai are constants.
On the following page are some examples, and their general solutions.
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y(4) − 5y′′ + 6y = 0 y(x) = c1e
2x + c2e

−2x + c3e
3x + c4e

−3x

y(3) − y′ = 0 y(x) = c1 + c2e
x + c3e

−x

y(3) + y′ = 0 y(x) = c1 + c2 cosx+ c3 sinx

y(3) − 3y′′ + 2y′ = 0 y(x) = c1 + c2e
x + c3e

2x

y(5) − 15y(4) + 85y(3) − 225y′′ + 274y′ − 120y = 0 y(x) = c1e
x + c2e

2x + c3e
3x + c4e

4x + c5e
5x

y(100) = 0 y(x) = c0 + c1x+ c2x
2 + ...+ c98x

98 + c99x
99

y(3) − 3y′′ + 3y′ − y = 0 y(x) = (c1 + c2x+ c3x
2) ex

y(4) − 3y(3) + 3y′′ − y′ = 0 y(x) = (c1 + c2x+ c3x
2) ex + c4

y(6) − 6y(5) + 25y(4) = 0 y(x) = c1 + c2x+ c3x
2 + c4x

3

+e3x (c4 cos(4x) + c5 sin(4x))

y(5) − 2y(4) + y(3) = 0 y(x) = c1 + c2x+ c3x
2 + c4e

x + c5xe
x

y(4) + 2y′′ + y = 0 y(x) = (c1 + c2x) cosx+ (c3 + c4x) sinx

y(5) + 3y(4) + 3y(3) + y′′ − 4y′ + 2y = 0 y(x) = ex (c1 + c2x+ c3 cosx+ c4 sinx) + c5e
−x

y(4) − y = 0 y(x) = c1e
x + c2e

−x + c3 cosx+ c4 sinx

Thankfully, the methods of solving linear homogeneous ODEs with constant
coefficients that have orders greater than two are almost identical to those for order
two. We describe the procedure below for the cases of four different ODEs.

To solve 9y(3) + 12y′′ + 4y′ = 0:
1. Assume that y = erx is a solution to the differential equation for some

unknown value of r to find the characteristic equation:

9 d3

dx3
(erx) + 12 d2

dx2
(erx) + 4 d

dx
(erx) = 0

9r3rrx + 12r2erx + 4rerx = 0

erx (9r3 + 12r2 + 4r) = 0

9r3 + 12r2 + 4r = 0

. (135)
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2. Find the roots of the characteristic equation:

r (9r2 + 12r + 4) = 0

r
(
r + 2

3

) (
r + 2

3

)
= 0

(136)

The number of times a root repeats is called the multiplicity of the root. (In other
words, the multiplicity of a root k is the number of times the factor r − k appears
in the complete factorization of the equation.) In this example, the roots are:

r1 = 0 with multiplicity 1

r2 = −2
3

with multiplicity 2
. (137)

3. Write the linearly independent particular solutions that span the general so-
lution (this may involve multiplying erx by x some number of times in order to
compensate for multiplicities greater than 1). In general, there must be as many
linearly independent solutions as the order of the equation. In this case, the order is
3, so we need 3 solutions based on the roots of the characteristic equation:

y1(x) = e0x = 1 corresponding to r1 = 0

y2(x) = e−
2
3
x corresponding to r2 = −2

3

y3(x) = xe−
2
3
x corresponding to r2 = −2

3

(138)

4. The general solution is formed by linear combinations of these solutions:

y(x) = c1y1(x) + c2y2(x) + c3y3(x)

y(x) = c1 + c2e
− 2

3
x + c3xe

− 2
3
x

(139)

To solve y(4) = 16y:
1. Assume that y = erx is a solution to the differential equation for some
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unknown value of r to find the characteristic equation:

d4

dx4
(erx) = 16 (erx)

r4erx = 16erx

erx (r4 − 16) = 0

r4 − 16 = 0

. (140)

2. Find the roots of the characteristic equation:

(r2 − 4) (r2 + 4) = 0

(r − 2) (r + 2) (r − 2i) (r + 2i)
. (141)

In this example, the roots are:

r1 = 2 with multiplicity 1

r2 = −2 with multiplicity 1

r3 = 2i with multiplicity 1

r4 = −2i with multiplicity 1

. (142)

3. Write the linearly independent particular solutions that span the general so-
lution. In this case, the order is 4, so we need 4 solutions based on the roots of the
characteristic equation:

y1(x) = e2x corresponding to r1 = 2

y2(x) = e−2x corresponding to r2 = −2
y3(x) = cos (2x) corresponding to r3 = 2i and r4 = −2i
y4(x) = sin (2x) corresponding to r3 = 2i and r4 = −2i

. (143)

4. The general solution is formed by linear combinations of these solutions:

y(x) = c1y1(x) + c2y2(x) + c3y3(x) + c4y4

y(x) = c1e
2x + c2e

−2x + c3 cos (2x) + c4 sin (2x)
. (144)

38



To solve y(4) + 18y′′ + 81y = 0:
1. Assume that y = erx is a solution to the differential equation for some

unknown value of r to find the characteristic equation:

d4

dx4
(erx) + 18 d2

dx2
(erx) + 81 (erx) = 0

r4erx + 18r2erx + 81erx = 0

erx (r4 + 18r2 + 81) = 0

r4 + 18r2 + 81 = 0

. (145)

2. Find the roots of the characteristic equation:

(r2 + 9) (r2 + 9) = 0

(r − 3i) (r + 3i) (r − 3i) (r + 3i)
. (146)

In this example, the roots are:

r1 = 3i with multiplicity 2

r2 = −3i with multiplicity 2
. (147)

3. Write the linearly independent particular solutions that span the general so-
lution. In this case, the order is 4, so we need 4 solutions based on the roots of the
characteristic equation:

y1(x) = cos (3x) corresponding to r1 = 3i and r2 = −3i
y2(x) = sin (3x) corresponding to r1 = 3i and r2 = −3i
y3(x) = x cos (3x) corresponding to r1 = 3i and r2 = −3i
y4(x) = x sin (3x) corresponding to r1 = 3i and r2 = −3i

. (148)

4. The general solution is formed by linear combinations of these solutions:

y(x) = c1y1(x) + c2y2(x) + c3y3(x) + c4y4

y(x) = (c1 + c3x) cos (2x) + (c2 + c4x) sin (2x)
. (149)
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To solve y(6) + 4y(5) + 13y(4):
1. Assume that y = erx is a solution to the differential equation for some

unknown value of r to find the characteristic equation:

d6

dx6
(erx) + 4 d5

dx5
(erx) + 13 d4

dx4
(erx) = 0

r6erx + 4r5erx + 13r4erx = 0

erx (r6 + 4r5 + 13r4) = 0

r6 + 4r5 + 13r4 = 0

. (150)

2. Find the roots of the characteristic equation:

r4 (r2 + 4r + 13) = 0

r4 (r + 2− 3i) (r + 2 + 3i)
. (151)

In this example, the roots are:

r1 = 0 with multiplicity 4

r2 = −2 + 3i with multiplicity 1

r3 = −2− 3i with multiplicity 1

. (152)

3. Write the linearly independent particular solutions that span the general so-
lution. In this case, the order is 6, so we need 6 solutions based on the roots of the
characteristic equation:

y1(x) = e0x = 1 corresponding to r1 = 0

y2(x) = xe0x = x corresponding to r1 = 0

y3(x) = x2e0x = x2 corresponding to r1 = 0

y4(x) = x3e0x = x3 corresponding to r1 = 0

y5(x) = e−2x cos (3x) corresponding to r2 = −2 + 3i and r3 = −2− 3i

y6(x) = e−2x sin (3x) corresponding to r2 = −2 + 3i and r3 = −2− 3i

.

(153)
4. The general solution is formed by linear combinations of these solutions:

y(x) = c1y1(x) + c2y2(x) + c3y3(x) + c4y4 + c5y5 + c6y6

y(x) = c1 + c2x+ c3x
2 + c4x

3 + e−2x (c5 cos(3x) + c6 sin(3x))
. (154)
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4.2 Linear, non-homogeneous, with constant coefficients

Now we begin to strip away some of the assumptions that we previously made
in order to simplify our analysis of ODEs. We will now deal with linear ODEs with
constant coefficients which are not necessarily homogeneous:

any
(n) + an−1y

(n−1) + ...+ a2y
′′ + a1y

′ + a0y = q(x), (155)

where q(x) is some function that depends only on the independent variable x. Here
are some examples, and their general solutions:

y′′ − 2y′ − 3y = e4x y(x) = c1e
−x + c2e

3x + 1
5
e4x

y′′ − 2y′ − 3y = e−x y(x) = c1e
−x + c2e

3x − 1
4
xe−x

y(4) − 2y′′ + y = cos(3x) y(x) = (c1 + c2x) e
x + (c3 + c4x) e

−x + 1
82
cos (3x)

y(3) + y′′ − y′ − y = ex + e−x y(x) = c1e
x + (c2 + c3x) e

−x + 1
4
xex − 1

4
x2e−x

y′′ + 5y′ + 6y = (x+ 1)3 y(x) = c1e
−2x + c2e

−3x + 1
6
x3 + 1

12
x2 + 7

36
x− 5

216

y′′ + 2y′ + 5y = ex sinx y(x) = e−x (c1 cos (2x) + c2 sin (2x)) + ex
(
− 4

65
cosx+ 7

65
sinx

)
.

(156)
We first introduce some terminology that will make the discussion of the proce-

dures of these ODEs a bit less cumbersome.

Definition 4.1 Let

pn(x)y
(n) + pn−1(x)y

(n−1) + ...+ p2(x)y
′′ + p1(x)y

′ + p0(x)y − q(x) = 0

be a linear ODE with solution y(x). The inhomogeneous term(s) of this ODE is the

function q(x).

In other words, the inhomogeneous term of a linear ODE is the function of x which
is not multiplied by y or any of the derivatives of y. Here are some examples of

41



linear ODEs, with their inhomogeneous terms stated alongside them.

y′′ + 6y′ + 9y = sinx Inhomogeneous term: sinx

x2y′ + 3xy = 1 Inhomogeneous term: 1
1
x
y(15) + 1

x2
y(10) + 1

x3
y(5) + 1

x4
y + 1

x5
= 0 Inhomogeneous term: 1

x5

y(4) + y′′ − 2y = 0 Inhomogeneous term: 0
y′′ = 4y + 16 Inhomogeneous term: 16

y(3) = x2 sinx+ ex Inhomogeneous terms: x2 sinx+ ex

x2 + y′′ + xy = x3 Inhomogeneous terms: x3 − x2

.

(157)
To clarify: the statement “this ODE is homogeneous” is exactly equivalent to “the
inhomogeneous term of this ODE is zero.” In order to distinguish the inhomoge-
neous term(s), we often write linear ODEs with the inhomogeneous term(s) on the
right side, and everything else on the left side.

We’ll look at two main methods of solving non-homogeneous ODEs with con-
stant coefficients: the method of undetermined coefficients, and the method of
Laplace transforms.
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4.2.1 Method of undetermined coefficients

Next, we need a term to specify the ODE that results when you set the inhomo-
geneous term(s) to zero:

Definition 4.2 Let

pn(x)y
(n) + pn−1(x)y

(n−1) + ...+ p2(x)y
′′ + p1(x)y

′ + p0(x)y = q(x)

be a linear ODE with solution y(x) and inhomogeneous term(s) q(x). The associ-

ated homogeneous equation of this ODE is the homogeneous ODE

pn(x)y
(n) + pn−1(x)y

(n−1) + ...+ p2(x)y
′′ + p1(x)y

′ + p0(x)y = 0.

It will also be helpful to come up with a name for the general solution of the asso-
ciated homogeneous equation:

Definition 4.3 The complementary solution of a linear ODE is the general solution

of the associated homogeneous equation of the ODE.

Therefore, the complementary solution of an ODE is the solution you get by setting
the inhomogeneous term(s) to zero. Note the unfortunate, but important point that
the complementary solution of an ODE is not a solution of the ODE itself, unless

the ODE in question is homogeneous!

The theory of linear ODEs revolves around the following theorem.

Theorem 4.4 If pn(x)y(n)+pn−1(x)y(n−1)+...+p2(x)y′′+p1(x)y′+p0(x)y = q(x)

is a linear ODE, and yP (x) is any solution whatsoever of the ODE, then the general

solution of the ODE is y(x) = yC(x) + yP (x), where yC(x) is the complementary

solution of the ODE.

This powerful theorem tells us that the problem of solving an inhomogeneous linear
ODE with constant coefficients can be broken into two parts: solving the associated
homogeneous equation, and finding any solution. The problem of solving the asso-
ciated homogeneous equation is exactly the topic of Section 4.1. Therefore, we will
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spend the remainder of this section on figuring out how to determine the particular
solution of a non-homogeneous ODE.

The strategy of figuring out the particular solution of a non-homogeneous ODE
is called the “method of undetermined coefficients.” Its core is this: take a guess
at the solution with arbitrary coefficients, based solely on the inhomogeneous term,
and then solve for the coefficients.

How does one know what guess to make? In Math 306, we will deal only with
inhomogeneous terms which involve exponentials, polynomials and/or sine and co-
sine functions. By restricting our attention to these, we can make very reliable
guesses as to what the particular solution will be. The following is a summary of
our strategy:

If the inhomogeneous term is: then make this guess:
ekx yt(x) = Aekx

a polynomial of degree m yt(x) = Amx
m + Am−1x

m−1 + ...+ A2x
2 + A1x+ A0

sin(kx) or cos(kx) yt(x) = A cos(kx) +B sin(kx)

A product of the functions above A product of the guesses above
A sum of the functions above A sum of the guesses above

.

(158)
Here are some examples of non-homogeneous ODEs, and the initial guess that
should be made to solve them:

y′′ − 2y′ − 3y = e4x yt(x) = Ae4x

y(4) − 2y′′ + y = cos(3x) yt(x) = A cos(3x) +B sin(3x)

y′′ − y′ − 2y = x2 + 4 yt(x) = Ax2 +Bx+ C

y′′ + 5y′ + 6y = (x+ 1)3 yt(x) = Ax3 +Bx2 + Cx+D

y(3) − 16y′′ + 64y′ = ex cosx yt(x) = (A cosx+B sinx) ex

y′′ + 3y′ + 2y = ex (x2 + cos(2x)) yt(x) = (Ax2 +Bx+ C +D cos(2x) + E sin(2x)) ex

y′′ + 2y′ + 5y = x2ex yt(x) = (Ax2 +Bx+ C) ex

y(4) + 32y′′ + 256y = x2 sinx yt(x) = (Ax2 +Bx+ C) (D cosx+ E sinx)

y(4) − y = cos(2x)− x yt(x) = A cos(2x) +B sin(2x) + Cx+D

.

(159)
These guesses have varying effectiveness depending on whether the inhomoge-
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neous terms share terms with the complementary solution, a phenomenon known
as “duplication.” We will describe the procedure for both cases below.

Case of non-duplication

In this case, the initial guess is the correct one, and so the method goes
smoothly. We describe the procedure in the case of y(4) − 8y′′ + 16y = x cosx:

1. Find the complementary solution of the ODE:

y4 − 8y′′ + 16y = 0

r4 − 8r2 + 16 = 0

(r2 − 4)
2
= 0

(r + 2)2(r − 2)2 = 0

yC(x) = (c1 + c2x) e
2x + (c3 + c4x) e

−2x

. (160)

2. Guess the solution based on the inhomogeneous term(s). In this case, the
inhomogeneous term is x cosx. The factor x, a polynomial of degree 1, corresponds
to the initial guess yt(x) = Ax + B, and the factor cosx corresponds to the initial
guess yt(x) = C cosx+D sinx. Therefore, the guess corresponding to the product
x cosx will be the product of these two guesses:

yt(x) = (Ax+B) (C cosx+D sinx)

(Equivalently,) yt(x) = A cosx+Bx cosx+ C sinx+Dx sinx
(161)

3. Assume that yt is a solution and subsitute it into the original ODE:

yt
(4)− 8y′′t +16yt = ((A− 4D) cosx+Bx cosx+ (4B + C) sinx+Dx sinx)

− 8 ((2D − A) cosx−Bx cosx− (2B + C) sinx−Dx sinx)

+ 16 (A cosx+Bx cosx+ C sinx+Dx sinx)

= (25A− 20D) cosx+ 9Bx cosx+ (20B + 25C) sinx+ 25Dx sinx (162)
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4. Set this equal to the inhomogeneous terms and use the linear independence
of the functions to equate the coefficients:

(25A− 20D) cosx+ 9Bx cosx+ (20B + 25C) sinx+ 25Dx sinx = x cosx

25A− 20D = 0

25B = 1

20B + 25C = 0

25D = 0

.

(163)
5. Solve the system for the coefficients:

A = 0

B = 1
25

C = − 4
125

D = 0

. (164)

6. Write the particular solution using the newly found coefficients:

yP (x) = 0 cosx+
1

25
x cosx− 4

125
sinx+ 0x sinx. (165)

7. Write the general solution using Theorem 4.4:

y(x) = (c1 + c2x) e
2x + (c3 + c4x) e

−2x + 1
25
x cosx− 4

125
sinx. (166)

Case of duplication

When given a linear ODE with constant coefficients, it is necessary to find
the complementary solution before beginning to choose a guess for a particular
solution. For example, take y′′+ y′− 6y = e2x. The initial guess would be yt(x) =
Ae2x. However, the complementary solution of this ODE is yC(x) = c1e

−3x+c2e
2x.

Thus, our guess yt will be a solution of the associated homogeneous ODE, since
yt = 0e−3x + Ae2x for some real value A. Ergo, plugging this guess into the
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original ODE will always give us zero! Observe:

y′′t + y′t − 6yt = e2x

d2

dx2
(Ae2x) + d

dx
(Ae2x)− 6 (Ae2x) = e2x

4Ae2x + 2Ae2x − 6Ae2x = e2x

0 = e2x (WHAT?!)

(167)

In these situations, the initial guess cannot work, so we must modify the guess.
To clarify, the situation above, called “duplication,” occurs whenever one can

choose the arbitrary constants in the initial guess so that the initial guess is a solution
of the associated homogeneous equation. For example, in the case of the non-
homogeneous linear ODE y(4) − y = x2 + cosx, the complementary solution is

yC(x) = c1e
−x + c2e

x + c3 cosx+ c4 sinx. (168)

The initial guess for the particular solution is

yt(x) = Ax2 +Bx+ C +D cosx+ E sinx. (169)

Now, if one chooses A = 0, B = 0, C = 0, D = 1 and E = 1, then this becomes

yt(x) = cos x+ sinx, (170)

which is described in the complementary solution yC(x).
Here are some examples of non-homogeneous ODEs which have duplication,

and the appropriate refined guess that should be used to find a particular solution:

y(4) + 2y(3) + (π2 + 1) y′′ = e−x sin (πx) yt(x) = xe−x (A cos (πx) +B sin (πx))

y(4) + 8y′′ + 16y = cos(2x) yt(x) = Ax2 cos(2x) +Bx2 sin(2x)

y(4) + 9y′′ = (x2 + 1) sin(3x) yt(x) = x (Ax2 +Bx+ C) (D cos(3x) + E sin(3x))

y(5) − y(3) = ex + 2x2 − 5 yt(x) = Axex + x3 (Bx2 + Cx+D)
(171)

We describe the procedure of altering the initial guess in order to produce an appro-
priate guess in the case of three different ODEs.
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To solve y′′ − 2y′ − 3y = e−x:
1. Find the complementary solution:

r2 − 2r − 3 = 0

(r − 3) (r + 1) = 0

yC(x) = c1e
3x + c2e

−x

. (172)

2. Guess the solution based on the inhomogeneous term(s):

yt(x) = Ae−x (173)

3. Multiply each term of the guess yt that appears in the complementary solution
by x. Repeat this step until the guess is no longer a solution of the associated
homogeneous equation:

yt(x) = Ae−x

yt(x) = Axe−x
. (174)

4. As before, assume that this new yt is a solution and substitute it into the
original ODE:

y′′t −2y′t−3yt =
(
A(x− 2)e−x

)
−2
(
A(1− x)e−x

)
−3
(
Axe−x

)
= (0x−4)Ae−x.

(175)
5. As before, set this equal to the inhomogeneous term(s) and solve for the

constants:
−4Ae−x = e−x

A = −1
4

yP (x) = −1
4
e−x

y(x) = c1e
3x + c2e

−x − 1
4
e−x.

(176)

To solve y(4) − y = x2 + cosx:
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1. Find the complementary solution:

r4 − 1 = 0

(r + 1) (r − 1) (r + i) (r − i) = 0

yC(x) = c1e
−x + c2e

x + c3 cosx+ c4 sinx

. (177)

2. Guess the solution based on the inhomogeneous term(s):

yt(x) =
(
Ax2 +Bx+ C

)
+ (D cosx+ E sinx) (178)

3. Multiply each term of the guess yt that appears in the complementary solution
by x. Repeat this step until the guess is no longer a solution of the associated
homogeneous equation:

yt(x) = (Ax2 +Bx+ C) + (D cosx+ E sinx)

yt(x) = (Ax2 +Bx+ C) + x (D cosx+ E sinx)
. (179)

4. As before, assume that this new yt is a solution and substitute it into the
original ODE:

yt
(4) − yt = (Dx cosx+ 4D sinx+ Ex sinx− 4E cosx)

−
(
Ax2 +Bx+ C +Dx cosx+ Ex sinx

)
= −Ax2 −Bx− C − 4E cosx+ 4D sinx+ 0x cosx+ 0x sinx (180)

5. As before, set this equal to the inhomogeneous term(s) and solve for the
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constants:

−Ax2 −Bx− C − 4E cosx+ 4D sinx+ 0x cosx+ 0x sinx = x2 + cosx

−A = 1

−B = 0

−C = 0

−4E = 1

4D = 0

yP (x) = (−x2 + 0x+ 0) + x
(
0 cosx− 1

4
sinx

)
yC(x) = c1e

−x + c2e
x + c3 cosx+ c4 sinx− x2 − 1

4
x sinx.

(181)

To solve y(3) + y′′ − y′ − y = x+ e−x:
1. Find the complementary solution:

r3 + r2 − r − 1 = 0

(r + 1)2 (r − 1) = 0

yC(x) = c1e
x + (c2 + c3x) e

−x

. (182)

2. Guess the solution based on the inhomogeneous term(s):

yt(x) = (Ax+B) +
(
Ce−x

)
(183)

3. Multiply each term of the guess yt that appears in the complementary solution
by x. Repeat this step until the guess is no longer a solution of the associated
homogeneous equation:

yt(x) = (Ax+B) + (Ce−x)

yt(x) = (Ax+B) + x (Ce−x)

yt(x) = (Ax+B) + x2 (Ce−x)

. (184)

4. As before, assume that this new yt is a solution and substitute it into the
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original ODE:

yt
(3) + y′′t − y′t − yt =

(
Ce−x

(
−x2 + 6x− 6

))
+
(
Ce−x

(
x2 − 4x+ 2

))
−
(
A+ Ce−x

(
−x2 + 2x

))
−
(
Ax+B + Ce−xx2

)
= − (A+B)− Ax+ Ce−x

(
0x2 + 0x− 4

)
(185)

5. As before, set this equal to the inhomogeneous term(s) and solve for the
constants:

−(A+B)− Ax− 4Ce−x = x+ e−x

−(A+B) = 0

−A = 1

−4C = 1

yP (x) = (−x+ 1)− 1
4
x2e−x

y(x) = c1e
x + (c2 + c3x) e

−x − x+ 1− 1
4
x2e−x.

(186)
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4.2.2 Laplace transform methods

In solving linear ODEs, the characteristic equation carries immense power, be-
cause it allows us to turn a differential equation into an algebraic equation. By then
solving the algebraic equation, we can solve the differential equation. In this sec-
tion, we’ll discuss another way of turning a linear ODE into an algebraic equation,
using a concept known as the Laplace transform.

Finding Laplace transforms

First, of course, what is a Laplace transform?

Definition 4.5 Let f(t) be a function defined for t ≥ 0. The Laplace transform of

f is a function F (s) defined as follows:

F (s) =

� ∞
0

e−stf(t) dt.

Notice that the definition of the Laplace transform is dependent on an improper
integral. Since improper integrals do not always converge, the Laplace transform
does not necessarily exist for all values of s.

We will often denote the Laplace transform of a function f(t) as L (f(t)). This
notation has a slight disadvantage: the Laplace transform of a function f(t) has a
different independent variable than t. We call this new independent variable s, but
“s” does not appear in the expression “L (f(t)).”

One can easily verify the following theorem using the properties of integrals.

Theorem 4.6 Given functions f(t) and g(t), and constants a and b,

L (af(t) + bg(t)) = aL (f(t)) + bL (g(t)) ,

for all s values such that L (f(t)) and L (g(t)) both exist.

We say that the Laplace transform is a “linear” operation because of this theorem.
Here are some examples of functions, and their Laplace transforms:
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f(t) = 1 F (s) = 1
s

for s > 0

f(t) = eat, for a real value a F (s) = 1
s−a for s > a

f(t) = tn, for an integer n ≥ 0 F (s) = n!
sn+1 for s > 0

f(t) = cos (kt) , for a real value k F (s) = s
s2+k2

for s > 0

f(t) = sin (kt) , for a real value k F (s) = k
s2+k2

for s > 0

(187)

Each of these can be derived from the definition and/or from the linearity of the
Laplace transform.

We will now demonstrate how to find the Laplace transform of a given function
by proving two of the above equations. First, we find L (eat) for any real value a:

L
(
eat
)
=

� ∞
0

e−steat dt =

� ∞
0

e(a−s)t dt =
1

a− s
e(a−s)t

∣∣∣∣∞
0

. (188)

By definition of the improper integral, this is

L
(
eat
)
=

1

a− s

(
lim
t→∞

e(a−s)t − e(a−s)0
)
=

1

a− s

(
lim
t→∞

e(a−s)t − 1
)
. (189)

If s < a, then this limit is ∞, and so the integral diverges. If s = a, then 1
a−s is

undefined. Yet if s > a, then

L
(
eat
)
=

1

a− s
(0− 1) =

1

s− a
. (190)

Next, we will find L (cos (kt)) for any real value k:

L (cos (kt)) =
� ∞
0

e−st cos (kt) dt. (191)

We proceed by integration by parts. We set u = cos (kt), so that dv = e−st dt.
Therefore du = −k sin (kt) dt and v = −1

s
e−st, and so

� ∞
0

e−st cos (kt) dt = −1

s
e−st cos (kt)

∣∣∣∣∞
0

− k

s

� ∞
0

e−st sin (kt) dt. (192)
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First, let’s evaluate −1
s
e−st cos (kt)

∣∣∞
0

. This is

−1

s
e−st cos (kt)

∣∣∣∣∞
0

=
1

s
e−st cos (kt)

∣∣∣∣0
∞

=
1

s
− lim

t→∞

1

s
e−st cos (kt) . (193)

Now, given any t, −1 ≤ cos (kt) ≤ 1. Thus, − e−st

s
≤ 1

s
e−st cos (kt) ≤ e−st

s
. Given

that s > 0, lim
t→∞
− e−st

s
= 0 = lim

t→∞
e−st

s
. Therefore, the squeeze theorem indicates

that lim
t→∞

1
s
e−st cos (kt) = 0. We deduce that

� ∞
0

e−st cos (kt) dt =
1

s
− k

s

� ∞
0

e−st sin (kt) dt. (194)

Now we use integration by parts on
�∞
0
e−st sin (kt) dt. Setting u = sin (kt),

dv = e−st dt, so du = k cos (kt) dt and v = −1
s
e−st. Thus,

� ∞
0

e−st cos (kt) dt =
1

s
− k

s

(
−1

s
e−st sin (kt)

∣∣∣∣∞
0

+
k

s

� ∞
0

e−st cos (kt) dt

)
.

(195)
By applying the squeeze theorem again, we can find that −1

s
e−st sin (kt)

∣∣∞
0

= 0.
Ergo, � ∞

0

e−st cos (kt) dt =
1

s
− k2

s2

� ∞
0

e−st cos (kt) dt. (196)

This implies that (
1 +

k2

s2

) � ∞
0

e−st cos (kt) =
1

s
. (197)

Thus,

L (cos (kt)) =
� ∞
0

e−st cos (kt) dt =
1

s
(
1 + k2

s2

) =
s

s2 + k2
. (198)

As you can see, in computing Laplace transforms from the definition, some func-
tions are easier than others. It is important to note that finding the Laplace transform
of f (t) = tn for n ≥ 0 uses the principle of mathematical induction; if you are not
familiar with mathematical induction, then the author does not suggest attempting
to derive it.
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There is one more type of function that will be of interest to us.

Definition 4.7 The unit step function is the piecewise function

u(t) =

0 for t < 0

1 for t ≥ 0
.

Notice that, for any real value a,

u(t− a) =

0 for t < a

1 for t ≥ a
. (199)

Let’s try to figure out the Laplace transform of the function u(t− a) for a ≥ 0.
By definition,

F (s) = L (u (t− a)) =
� ∞
0

e−stu (t− a) dt. (200)

We can split this into two integrals to evaluate:

F (s) =

� a

0

e−stu (t− a) dt+

� ∞
a

e−stu (t− a) dt (201)

On the interval [0, a], u(t− a) = 0, and on the interval [a,∞), u(t− a) = 1. Thus,

F (s) =

� a

0

e−st(0) dt+

� ∞
a

e−st(1) dt = 0 +

� ∞
a

e−st dt

= −1

s
e−st

∣∣∣∣∞
a

=
1

s
e−st

∣∣∣∣a
∞

= lim
b→∞

1

s
e−st

∣∣∣∣a
b

= lim
b→∞

1

s

(
e−sa − e−sb

)
=

1

s
e−sa − 1

s
lim
b→∞

e−sb (202)

The limit lim
b→∞

e−sb has a finite value if and only if s > 0. In that case, the limit is
zero, and so

L (u (t− a)) = F (s) =
1

s
e−as for s > 0. (203)
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Existence of Laplace transforms

We’ve seen that the Laplace transform of a function won’t be defined over all
real numbers. Is it possible that the Laplace transform would fail to exist every-

where? Indeed, it is possible. For example, the Laplace transform of e(t
2) would

not exist for any real number, because the integral
�∞
0
e−ste(t

2) dt will always fail
to converge. In this sort of case, we’d say that e(t

2) does not have a Laplace trans-
form.

So, which functions can we count on to have a Laplace transform? The class of
functions that do not grow faster than exponential functions would qualify. We give
them a name.

Definition 4.8 Let f(t) be a function defined on the real line. We say that f is of

exponential order provided that there exist non-negative constants M , c and T such

that for all t ≥ T , |f(t)| ≤Mect.

In other words, f is of exponential order if lim
t→∞

f(t)
ect

is finite for some non-negative
constant c.

Theorem 4.9 If a function f(t) is piecewise continuous for t ≥ 0 and f is of expo-

nential order, then L (f(t)) exists.

Of course, this means that we can only use Laplace transform methods to solve
ODEs when we’re dealing with piecewise continuous functions of exponential or-
der.

Laplace transforms and initial value problems

Are Laplace transforms useful for solving ODEs? Well of course; I wouldn’t be
writing about it here if they weren’t, you dullard. The Laplace transform techniques
of solving ODEs revolve around the following theorem.

Theorem 4.10 If a function f(t) is piecewise smooth for t ≥ 0 and f is of expo-

nential order, then

L (f ′(t)) = sL (f(t))− f(0). (204)
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Similarly,

L (f ′′(t)) = sL (f ′(t))− f ′(0)

= s (sL (f(t))− f(0))− f ′(0)

= s2L (f(t))− sf(0)− f ′(0), (205)

and so on.
Therefore, if we’re given an intial value problem (that is, an nth order ODE in

f where the values f(0), f ′(0), f ′′(0), ..., f (n)(0) are given), then we can take the
Laplace transform of both sides. For example, given the intial value problem

x′′ + 3x′ + 2x = t;

x(0) = 0

x′(0) = 2

, (206)

We can take the Laplace transform of both sides of the ODE:

L (x′′ + 3x′ + 2x) = L (t) . (207)

By the linearity of the Laplace transform, this is

L (x′′) + 3L (x′) + 2L (x) = L (t) . (208)

The theorem above indicates that this can be written as

(
s2L(x)− sx(0)− x′(0)

)
+ 3 (sL (x)− x(0)) + 2L (x) = L (t) . (209)

Let’s denote L(x) = X(s). Since we have that x(0) = 0 and x′(0) = 2, this
becomes (

s2X(s)− 2
)
+ 3 (sX(s)) + 2X(s) = L(t). (210)

We know that L(t) = 1
s2

, so

s2X − 2 + 3sX + 2X =
1

s2
. (211)
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We isolate X: (
s2 + 3s+ 2

)
X =

1

s2
+ 2, (212)

and so

X(s) =
1
s2
+ 2

s2 + 3s+ 2
=

1

s2 (s+ 2) (s+ 1)
+

2

(s+ 2) (s+ 1)
. (213)

Now, we have the Laplace transform of the solution. If we can just figure out
which function has a Laplace transform of 1

s2(s+2)(s+1)
+ 2

(s+2)(s+1)
, then we’ll be

able to find x and solve the problem. Therefore, we seek the inverse Laplace trans-

form of 1
s2(s+2)(s+1)

+ 2
(s+2)(s+1)

.
Here are some examples of initial value problems involving linear ODEs with

constant coefficients, and the Laplace transforms of their solutions:

x′′ + 4x = 0 X(s) = 5s
s2+4

x(0) = 5, x′(0) = 0

x′′ − x′ − 2x = 0 X(s) = 2
s2−s−2

x(0) = 0, x′(0) = 2

x′′ + x = sin (2t) X(s) = 2
(s2+1)(s2+4)

x(0) = 0, x′(0) = 0

x′′ + x = cos (3t) X(s) = s
(s2+9)(s2+1)

+ s
s2+1

x(0) = 1, x′(0) = 0

(214)

In the same way that finding an antiderivative is much harder than finding a
derivative, finding the inverse Laplace transform is much harder than finding the
Laplace transform. Ultimately, every method of doing so boils down to dissolving
the function in question into parts that resemble the Laplace transforms of familiar
functions.

Here are some examples of functions, and their inverse Laplace transforms:

58



F (s) = −5
s

f(t) = −5
F (s) = s+k

s2+4
f(t) = cos (2t) + sin (2t)

F (s) = 1
s5

f(t) = 1
24
t4

F (s) = 1
5−s f(t) = −e5t

F (s) = e−5s+1
s

f(t) = u (t− 5) + 1

F (s) = k
(s−2)2+π2 f(t) = e2t sin (πt)

F (s) = s2+1
s3−2s2−8s f(t) = −1

8
+ 17

24
e4t + 5

12
e−2t

F (s) = 1
s(s−3) f(t) = 1

3
(e3t − 1)

F (s) = 1
s(s2+4)

f(t) = 1
4
(1− cos (2t))

F (s) = 1
s2(s2+1)

f(t) = t− sin t

F (s) = 1
s2(s2−1) f(t) = et−e−t

2
− t

F (s) = 3
2s−4 f(t) = 3

2
e2t

F (s) = 1
s2+4s+4

f(t) = te−2t

F (s) = 1
s3−5s2 f(t) = 1

25
(e5t − 5t− 1)

F (s) = 5s−6
s2−3s f(t) = 2 + 3e3t

F (s) = s
(s−3)(s2+1)

f(t) = 1
10
(3e2t + sin t− 3 cos t)

(215)

Notice that for each of these examples, lim
s→∞

F (s) = 0. Indeed, this is how it must
be. If f(t) is of exponential order, then lim

s→∞
L (f (t)) = 0.

Theorems on Laplace transforms

Before going further, let’s discuss a few important theorems that can assist us in
finding inverse Laplace transforms. Using the fundamental theorem of calculus, it
is possible to prove the following theorem.

Theorem 4.11 If f(t) is a piecewise continuous function for t ≥ 0 and f is of

exponential order, then

L
(� t

0

f (r) dr

)
=
L (f(t))

s

for s > 0.
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The theorem implies that the inverse Laplace transform of L(f(t))
s

is
� t
0
f(u) du. For

example, L−1
(
1
s

)
=

� t
0
1 du = t.

The next theorem can be proven directly from the definition of the Laplace
transform.

Theorem 4.12 Let f be a function defined on the real line. If F (s) = L (f(t))
exists, then

L
(
eatf(t)

)
= F (s− a).

This theorem implies that if L (f(t)) = F (s), then L−1 (F (s− a)) = eatf(t). For
example, L−1

(
6

(s−10)4

)
= e10tL−1

(
6
s4

)
= e10tt3. On the other hand, we also have

the following theorem.

Theorem 4.13 Let f be a function defined on the real line, and let a be a real value.

If F (s) = L (f(t)) exists, then

L (u (t− a) f (t− a)) = e−asF (s),

where u(t) is the unit step function.

This theorem implies that L−1 (e−asF (s)) = u (t− a) f (t− a). For example,
L−1

(
e−2s s

s2+9

)
= u (t− 2) cos (3t).

What is L (f(t)g(t))? The answer is not L (f(t))L (g(t)). However, the next
theorem will give us something to help with this issue. First, we must define a new
concept.

Definition 4.14 Let f and g be piecewise continuous functions defined on the real

line. The convolution of f and g is a function h(t) defined for t ≥ 0 as

h(t) =

� t

0

f(r)g (t− r) dr.

We denote the convolution of f and g by f ∗ g. Note that f ∗ g = g ∗ f .
The following theorem reveals that convolution behaves like multiplication of

Laplace transforms.
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Theorem 4.15 If f and g are piecewise continuous functions that are of exponen-

tial order, then

L (f(t) ∗ g(t)) = L (f(t))L (g(t)) . (216)

This theorem implies that L−1 (L (f(t))L (g(t))) = f(t) ∗ g(t). For example,
L−1

(
s

s2+1
s

s2+4

)
= cos (t) ∗ cos (2t).

The Dirac delta function

What function would have a Laplace transform of F (s) = 1? As it turns out,
no function of exponential order could actually satisfy this condition, since, as we
mentioned before, lim

s→∞
F (s) = 0. Nevertheless, we will now define the “Dirac

delta function,” which is not a function, but rather a thing satisfying some particular
properties.

Definition 4.16 Let a ≥ 0. The Dirac delta function centered at a is an operation

δa(t) such that for any function f(t),

� ∞
0

f(t)δa(t) dt = f(a).

This property, which we take as the definition of the symbol δa(t), is sometimes
called the “sifting property” of δa(t).

Based on this, we describe L (δa(t)) as follows:

L (δa(t)) =
� ∞
0

e−stδa(t) dt = e−sa. (217)

Therefore, if a = 0, then L (δ0(t)) = 1. The symbol δ0(t) is often written as δ(t),
and δa(t) is understood via the relationship δa(t) = δ(t− a).

In applications, δa(t) is typically used to describe an effect that lasts for approx-
imately no time, like a sudden voltage spike in an electrical circuit, or the force of a
bat hitting a baseball. This causes δa(t) to commonly appear as the inhomogeneous
term of an ODE:

ax′′ + bx′ + cx = δa(t). (218)
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In such cases, we must proceed by Laplace transform methods, since no other
method can make sense of δa(t).

Here are some examples of initial value problems that involve delta functions,
and their solutions:

x′′ + 4x = δ(t) x(t) = 1
2
sin (2t)

x(0) = 0, x′(0) = 0

x′′ + 2x′ + x = t+ δ(t) x(t) = t− 2 + (3t+ 2) e−t

x(0) = 0, x′(0) = 1

x′′ + 4x = δ(t) + δ (t− π) x(t) = 1
2
(1 + u (t− π)) sin (2t)

x(0) = 0, x′(0) = 0

x′′ + 4x′ + 4x = 1 + δ (t− 2) x(t) = 1
4
+ 1

4
e−2t (4e4u (t− 2) (t− 2)− 2t− 1)

x(0) = 0, x′(0) = 0

x′′ + 2x′ + 2x = 2δ (t− π) x(t) = −2u (t− π) e−t+π sin t
x(0) = 0, x′(0) = 0

x′′ + 4x′ + 5x = δ (t− π) + δ (t− 2π) x(t) = (2− e2πu (t− π) + e4πu (t− 2π)) e−2t sin t

x(0) = 0, x′(0) = 2
(219)

Worked examples

To solve x′′ + x = cos (3t) with x(0) = 1 and x′(0) = 0:
1. Take the Laplace transform of both sides (let L(x) = X(s)):

L (x′′ + x) = L (cos (3t)) . (220)

2. Use the linearity of the Laplace transform to distribute the operator among
the terms:

L (x′′) + L(x) = L (cos (3t)) . (221)
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3. Use the fact that L(x′) = sL(x)− x(0), as many times as necessary:

(s2X − sx(0)− x′(0)) +X = L (cos (3t))
(s2X − s− 0) +X = L (cos (3t))

. (222)

4. Find the Laplace transform of the inhomogeneous term:

s2X − s+X =
s

s2 + 9
(223)

5. Solve for X(s):
(s2 + 1)X − s = s

s2+9

(s2 + 1)X = s
s2+9

+ s

X(s) = 1
s2+1

(
s

s2+9
+ s
) (224)

6. Find the inverse Laplace transform of X(s). In this case, we first distribute:

X(s) =
s

(s2 + 1) (s2 + 9)
+

s

s2 + 1
. (225)

We recognize s
s2+1

as the Laplace transform of cos t. As for the other term, we use
partial fraction decomposition:

s

(s2 + 1) (s2 + 9)
=
As+B

s2 + 1
+
Cs+D

s2 + 9
(226)

This gives the solutions A = 1
8
, B = 0, C = −1

8
and D = 0. Thus,

X(s) =
s

8 (s2 + 1)
− s

8 (s2 + 9)
+

s

s2 + 1
=

9

8

s

s2 + 1
− 1

8

s

s2 + 9
. (227)

We recognize s
s2+9

as the Laplace transform of cos (3t). Thus,

x(t) = L−1 (X(s)) = 9
8
cos t− 1

8
cos (3t) . (228)

To solve x(3) + x′′ − 6x′ = 0 with x(0) = 0, x′(0) = 1 and x′′(0) = 1:
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1. Take the Laplace transform of both sides (let L(x) = X(s)):

L
(
x(3) + x′′ − 6x′

)
= L (0) . (229)

2. Use the linearity of the Laplace transform to distribute the operator among
the terms:

L
(
x(3)
)
+ L (x′′)− 6L (x′) = L (0) . (230)

3. Use the fact that L(x′) = sL(x)− x(0), as many times as necessary:

(s3X − s2x(0)− sx′(0)− x′′(0)) + (s2X − sx(0)− x′(0))− 6 (sX − x(0)) = L (0)
(s3X − s− 1) + (s2X − 1)− 6 (sX) = L (0)

.

(231)
4. Find the Laplace transform of the inhomogeneous term:

s3X − s− 1 + s2X − 1− 6sX = 0 (232)

5. Solve for X(s):

(s3 + s2 − 6s)X − s− 2 = 0

(s3 + s2 − 6s)X = s+ 2

X(s) = s+2
s3+s2−6s

(233)

6. Find the inverse Laplace transform of X(s). In this case, we factor the
denominator:

X(s) =
s+ 2

s (s+ 3) (s− 2)
(234)

Now we proceed by partial fraction decomposition:

s+ 2

s (s+ 3) (s− 2)
=
A

s
+

B

s+ 3
+

C

s− 2
. (235)

This gives the solution A = −1
3
, B = − 1

15
and C = 2

5
. Thus,

X(s) = −1

3

1

s
− 1

15

1

s+ 3
+

2

5

1

s− 2
. (236)
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We recognize 1
s

as the Laplace transform of 1, 1
s+3

as the Laplace transform of e−3t,
and 1

s−2 as the Laplace transform of e2t. Thus,

x(t) = L−1 (X(s)) = −1
3
− 1

15
e−3t + 2

5
e2t . (237)

To solve x′′ + 2x′ + x = δ(t)− δ (t− 2) with x(0) = 2 and x′(0) = 2:
1. Take the Laplace transform of both sides (let L(x) = X(s)):

L (x′′ + 2x′ + x) = L (δ(t)− δ(t− 2)) . (238)

2. Use the linearity of the Laplace transform to distribute the operator among
the terms:

L (x′′) + 2L (x′) + L (x) = L (δ (t))− L (δ (t− 2)) . (239)

3. Use the fact that L (x′) = sL(x)− x(0), as many times as necessary:

(s2X − sx(0)− x′(0)) + 2 (sX − x(0)) +X = L (δ(t))− L (δ(t− 2)

(s2X − 2s− 2) + 2 (sX − 2) +X = L (δ(t))− L (δ(t− 2)
. (240)

4. Find the Laplace transform of the inhomogeneous term:

s2X − 2s− 2 + 2sX − 4 +X = 1− e−2s. (241)

5. Solve for X(s):

(s2 + 2s+ 1)X − 2s− 6 = 1− e−2s

(s2 + 2s+ 1)X = 7 + 2s− e−2s

X(s) = 7+2s−e−2s

s2+2s+1

. (242)

6. Find the inverse Laplace transform of X(s). In this case, we first split the
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fraction into three parts:

X(s) =
7

(s+ 1)2
+

2s

(s+ 1)2
− e−2s

(s+ 1)2
. (243)

We now use partial fraction decomposition to write 2s
(s+1)2

= 2
s+1
− 2

(s+1)2
:

X(s) =
7

(s+ 1)2
+

2

s+ 1
− 2

(s+ 1)2
− e−2s 1

(s+ 1)2

=
5

(s+ 1)2
+

2

s+ 1
− e−2s 1

(s+ 1)2
. (244)

We recognize 1
(s+1)2

as 1
s2

shifted by−1. We recognize 1
s+1

as the Laplace transform
of e−t. We recognize e−2s 1

(s+1)2
as e−2s times 1

s
shifted by −1. Therefore,

x(t) = L−1 (X(s)) = 5e−tt+ 2e−t − u(t− 2)e−(t−2) (t− 2) . (245)
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5 Systems of Ordinary Differential Equations

In this section, we’ll deal with the situation of having more than one dependent
variable with one independent variable.

5.1 Eigenvalue methods for homogeneous linear systems

In this section, we’ll study a particular class of systems of ODEs: the “homoge-
neous linear systems.”

Definition 5.1 A homogeneous linear system of ODEs is a system of n ODEs in

some independent variables x1, x2, ..., xn and dependent variable t such that each

ODE in the system can be expressed in the form x′i = ai1x1 + ai2x2 + ... + ainxn

for some functions ai1, ai2, ..., ain of t.

These are systems of equations that look like:

x′1 = a11x1 + a12x2 + ...+ a1nxn

x′2 = a21x1 + a22x2 + ...+ a2nxn
...

x′n = an1x1 + an2x2 + ...+ annxn

(246)

We will only deal with situations in which each aij is a constant.
Here are some examples of homogeneous systems of ODEs, and their general

solutions:
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x′ = 2x+ 2y

y′ = 9x− y
has the general solution:

x(t) = 2c1e
5t + c2e

−4t

y(t) = 3c1e
5t − 3c2e

−4tx′ = −5x+ y

y′ = 4x− 2y
has the general solution:

x(t) = c1e
−6t + c2e

−t

y(t) = −c1e−6t + 4c2e
−t

x′1 = x1 − x2
x′2 = −x1 − x3
x′3 = −x2 + x3

has the general solution:
x1(t) = c1e

−t + c2e
t + c3e

2t

x2(t) = 2c1e
−t − c3e2t

x3(t) = c1e
−t + c2e

t + c3e
2t

x′ = −5x− 6y + 3z

y′ = 3x+ 4y − 3z

z′ = −2z

has the general solution:
x(t) = c1e

−2t + c3e
t

y(t) = c2e
−2t − c3et

z(t) = (c1 + 2c2) e
−2t

(247)
Given a homogeneous system of ODEs, we can save some ink by writing it in
matrix form:

x′1 = a11x1 + a12x2 + ...+ a1nxn

x′2 = a21x1 + a22x2 + ...+ a2nxn
...

x′n = an1x1 + an2x2 + ...+ annxn

→


x′1

x′2
...
x′n

 =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
an1 an2 ... ann



x1

x2
...
xn


(248)

We will often abbreviate this even further by defining the following:

−→x =


x1

x2
...
xn

 and −→x ′ =


x′1

x′2
...
x′n

 (249)
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Continuing the examples:

−→x ′ =

(
−2 1

0 −3

)
−→x solution: −→x (t) =

(
c1

0

)
e−2t +

(
c2

−c2

)
e−3t

−→x ′ =

(
−50 20

100 −60

)
−→x solution: −→x (t) =

(
c1

2c1

)
e−10t +

(
2c2

−5c2

)
e−100t

−→x ′ =

(
−12 0

0 −12

)
−→x solution: −→x (t) =

(
c1

c2

)
e−12t

−→x ′ =

(
3 6

−6 15

)
−→x solution: −→x (t) =

(
c2 − 6c1

−6c1

)
e9t +

(
−6c2
−6c2

)
te9t

−→x ′ =

(
1 −4
4 9

)
−→x solution: −→x (t) =

(
c2 − 4c1

4c1

)
e5t +

(
−4c2
4c2

)
te9t

−→x ′ =

(
−3 −2
9 3

)
−→x solution: −→x (t) =

(
c1 − c2
−3c1

)
cos (3t) +

(
c1 + c2

−3c2

)
sin (3t)

−→x =

1 −1 1

0 1 2

0 0 1

−→x solution: −→x (t) =

−2c1 + c2

2c2

c3

 et +

−2c2 + c3

2c3

0

 tet +

−c30
0

 t2et

(250)
In the same way that finding the characteristic equation was the key to finding

solutions to linear, homogeneous ODEs with constant coefficients, so will we also
need to find the characteristic equation of the coefficient matrix in order to solve
linear homogeneous systems of ODEs with constant coefficient matrices. However,
just as before, the steps following that will depend on what kinds of roots the char-
acteristic equation has. We’ll consider three cases: real and distinct roots, repeated
real roots, and complex roots.

5.1.1 Real and distinct eigenvalues

If the roots of the characteristic equation are real and distinct, then the process
of finding the general solution is quite simple: find the eigenvectors corresponding
to each eigenvalue λi, select one eigenvector −→vi for each, and then linearly inde-
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pendent solutions of the system will be in the form

−→x 1 =
−→v1eλ1t

−→x 2 =
−→v2eλ2t
...

−→x n = −→vneλnt

. (251)

We demonstrate the procedure below in the case of −→x ′ = A−→x , where

A =

5 1 3

1 7 1

3 1 5

 : (252)

1. Find the characteristic equation of the matrix by setting det (A− λIn) = 0

and solving for λ:

0 = det (A− λI3) =

∣∣∣∣∣∣∣
5− λ 1 3

1 7− λ 1

3 1 5− λ

∣∣∣∣∣∣∣ = −λ3 + 17λ2 − 84λ+ 108. (253)

2. Find the roots of the characteristic equation (that is, the eigenvalues of the
matrix). In this case, we solve the cubic equation by guessing (yes, literally guess-
ing) the solution λ = 2. From here, we can use polynomial division to find that the
equation becomes

0 = −λ3 + 17λ2 − 84λ+ 108 = − (λ− 2)
(
λ2 − 15λ+ 54

)
= − (λ− 2) (λ− 6) (λ− 9) . (254)

Therefore, the eigenvalues are λ1 = 2, λ2 = 6, and λ3 = 9, all with multiplicity 1.

3. For each eigenvalue λi, find the eigenvectors associated to that eigenvalue
by solving the equation (A− λiIn)−→v =

−→
0 for −→v 6= −→0 . (Note that this is the

same as solving A−→v = λi
−→v for −→v 6= −→0 .) In problems with matrices larger than

2×2 matrices, this usually involves Gauss-Jordan elimination; for more information
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about Gauss-Jordan elimination, see the document “Rudimentary Matrix Algebra.”
In this case, for λ1 = 2:

(A− 2I3)
−→v 1 =

3 1 3

1 5 1

3 1 3


a1b1
c1

 =

0

0

0


3 1 3 0

1 5 1 0

3 1 3 0

 R3→R3−R1−−−−−−−→

3 1 3 0

1 5 1 0

0 0 0 0

 R1→R1−3R2−−−−−−−→

0 −14 0 0

1 5 1 0

0 0 0 0


R1→− 1

14
R1−−−−−−−→

0 1 0 0

1 5 1 0

0 0 0 0

 R2→R2−5R1−−−−−−−→

0 1 0 0

1 0 1 0

0 0 0 0

 R1↔R2−−−−→

1 0 1 0

0 1 0 0

0 0 0 0


1 0 1

0 1 0

0 0 0


a1b1
c1

 =

0

0

0


a1 + c1 = 0, b1 = 0

(255)
This tells us that the eigenvectors of A corresponding to λ1 = 2 are all vectors of
the form

−→v 1 =

a1b1
c1

 =

 r

0

−r

 , (256)
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where r is any nonzero real number. For λ2 = 6:

(A− 6I3)
−→v 2 =

−1 1 3

1 1 1

3 1 −1


a2b2
c2

 =

0

0

0


−1 1 3 0

1 1 1 0

3 1 −1 0

→
0 2 4 0

1 1 1 0

0 −2 −4 0

→
1 1 1 0

0 1 2 0

0 0 0 0

→
1 0 −1 0

0 1 2 0

0 0 0 0


1 0 −1
0 1 2

0 0 0


a2b2
c2

 =

0

0

0


a2 − c2 = 0

b2 + 2c2 = 0
(257)

Thus the eigenvectors corresponding to λ2 = 6 are all vectors of the form

−→v 2 =

a2b2
c2

 =

 s

−2s
s

 , (258)

where s is any nonzero real number. Finally, for λ3 = 9,

(A− 9I3)
−→v 3 =

−4 1 3

1 −2 1

3 1 −4


a3b3
c3

 =

0

0

0


−4 1 3 0

1 −2 1 0

3 1 −4 0

→
0 −7 7 0

1 −2 1 0

0 7 −7 0

→
1 −2 1 0

0 1 −1 0

0 0 0 0

→
1 0 −1 0

0 1 −1 0

0 0 0 0


1 0 −1
0 1 −1
0 0 0


a3b3
c3

 =

0

0

0


a3 − c3 = 0, b3 − c3 = 0

.

(259)

72



Thus, the eigenvectors corresponding to λ3 = 9 are all vectors of the form

−→v 3 =

a3b3
c3

 =

tt
t

 , (260)

where t is any nonzero real number.

4. For each eigenvalue, select a single fixed eigenvector. The choice is com-
pletely arbitrary. For this case, we’ll select r = 1, s = 1 and t = 1, so that

−→v 1 =

 1

0

−1

 −→v 2 =

 1

−2
1

 −→v 3 =

1

1

1

. (261)

5. The chosen eigenvalue-eigenvector pairs form n linearly independent solu-
tions:

−→x 1(t) =
−→v 1e

λ1t =

 1

0

−1

 e2t

−→x 2(t) =
−→v 2e

λ2t =

 1

−2
1

 e6t

−→x 3(t) =
−→v 3e

λ3t =

1

1

1

 e9t

, (262)

allowing us to construct the general solution as their linear combinations:

−→x (t) = c1

 1

0

−1

 e2t + c2

 1

−2
1

 e6t + c3

1

1

1

 e9t (263)
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5.1.2 Repeated eigenvalues

If the characteristic equation has repeated roots, then the situation can be a bit
more nuanced. First of all, if all eigenvalues are complete (that is, none are defec-
tive), then the situation proceeds as before. For more information about complete
and defective eigenvalues, see the document “Rudimentary Matrix Algebra.”

We demonstrate the procedure for repeated complete eigenvalues below in the
case of −→x ′ = A−→x , where

A =

 9 4 0

−6 −1 0

6 4 3

 : (264)

1. Find the characteristic equation of the matrix by setting det (A− λIn) = 0

and solving for λ:

0 = det (A− λI3) =

∣∣∣∣∣∣∣
9− λ 4 0

−6 −1− λ 0

6 4 3− λ

∣∣∣∣∣∣∣ = −(λ− 3)2 (λ− 5) (265)

2. Find the roots of the characteristic equation. In this case, the eigenvalues are
λ1 = 3, with multiplicity 2, and λ2 = 5, with multiplicity 1.

3. For each eigenvalue λi, find the eigenvectors associated to that eigenvalue by
solving the equation (A− λiIn)−→v =

−→
0 for −→v 6= −→0 . In this case, for λ1 = 3:

(A− 3I3)
−→v =

 6 4 0

−6 −4 0

6 4 0


ab
c

 =

0

0

0


1 2

3
0

0 0 0

0 0 0


ab
c

 =

0

0

0


a+ 2

3
b = 0

. (266)
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Thus, the eigenvectors corresponding to λ1 = 3 are all vectors of the form

−→v =

ab
c

 =

−
2
3
b

b

c

 , (267)

where b and c are not both zero. For λ2 = 5:

(A− 5I3)
−→u =

 4 4 0

−6 −6 0

6 4 −2


rs
t

 =

0

0

0


1 0 −1
0 1 1

0 0 0


rs
t

 =

0

0

0


r − t = 0, s+ t = 0

. (268)

Thus, the eigenvectors corresponding to λ2 = 5 are all vectors of the form

−→u =

rs
t

 =

 r

−r
r

 , (269)

where r is any nonzero real number.

4. For each eigenvalue λi, find the defect of λi. In this case, the eigenvectors
corresponding to λ1 = 3, which has multiplicity 2, have two free variables, and
so the eigenspace of λ1 = 3 has dimension 2. Therefore, the defect of λ1 = 3 is
2− 2 = 0. On the other hand, the eigenvectors corresponding to λ2 = 5, which has
multiplicity 1, have one free variable, and so the eigenspace of λ2 = 5 has dimen-
sion 1. Therefore, the defect of λ2 = 5 is 1− 1 = 0.

5. If the defect of each eigenvalue is zero, then the general solution can be
constructed only from the eigenvectors. In that case, for each eigenvalue, select as
many linearly independent eigenvectors as the dimension of its eigenspace. For this

75



case, we’ll select b = 3 and c = 0 for one eigenvector of λ1 = 3, b = 0 and c = 1

for the other eigenvector of λ1 = 3, and r = 1 for the eigenvector of λ2 = 5:

−→v 1 =

−23
0

 , −→v 2 =

0

0

1

 , −→u =

 1

−1
1

. (270)

6. If no eigenvalues are defective, then construct the linearly independent solu-
tions in the form −→v eλt:

−→x 1(t) =
−→v 1e

λ1t =

−23
0

 e3t

−→x 2(t) =
−→v 2e

λ1t =

0

0

1

 e3t

−→x 3(t) =
−→u eλ2t =

 1

−1
1

 e5t

. (271)

7. Construct the general solution as linear combinations of these linearly inde-
pendent solutions:

−→x (t) = c1

−23
0

 e3t + c2

0

0

1

 e3t + c3

 1

−1
1

 e5t (272)

On the other hand, if there exist defective eigenvalues, then we need a concept
known as a “generalized eigenvector.”

Definition 5.2 Let A be an n × n matrix. Given an eigenvalue λ of A, a gener-

alized eigenvector of A with rank k corresponding to λ is a vector −→v k such that
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(A− λIn)k−→v k =
−→
0 .

In this case, we cannot construct the general solution using just eigenvectors alone,
so we need to use these objects. In general, solutions gotten from generalized eigen-
vectors will look different from those gotten from eigenvectors; for a rank k gener-
alized eigenvector, the solution it produces looks like

−→x k(t) =

(
1

(k − 1)!
−→v 1t

k−1 + ...+
1

2!
−→v k−2t

2 +
1

1!
−→v k−1t+

1

0!
−→v k

)
eλt. (273)

We demonstrate the strategy for defective eigenvalues below, in the specific case
of −→x ′ = A−→x , where

A =

 1 0 0

−2 −2 −3
2 3 4

 : (274)

1. Find the characteristic equation of A:

0 = det (A− λI3) =

∣∣∣∣∣∣∣
1− λ 0 0

−2 −2− λ −3
2 3 4− λ

∣∣∣∣∣∣∣ = −(λ− 1)3. (275)

2. Find the roots of the characteristic equation, the eigenvalues of A. In this
case, the only eigenvalue is λ = 1, with multiplicity 3.

3. Find the eigenvectors corresponding to each eigenvalue λi by solving the
equation (A− λiIn)−→v =

−→
0 for −→v 6= −→0 . In our case, for λ = 1:

(A− 1I3)
−→v =

 0 0 0

−2 −3 −3
2 3 3


ab
c

 =

0

0

0


1 3

2
3
2

0 0 0

0 0 0


ab
c

 =

0

0

0


a+ 3

2
b+ 3

2
c = 0

, (276)
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and so the eigenvectors corresponding to λ = 1 are all vectors of the form

−→v =

−
3
2
(b+ c)

b

c

 , (277)

where b and c are not both zero.

4. For each eigenvalue λi, find the defect of λi. In this case, λ = 1 has an
eigenspace of dimension 2, but multiplicity 3, so the defect of λ = 1 is 3− 2 = 1.

5. For each eigenvalue λi that has a nonzero defect d, find the rank d + 1

generalized eigenvectors corresponding to λi. In our case, we need to find the
rank 2 generalized eigenvectors corresponding to λ = 1. This requires solving the
equation

(A− 1I3)
2−→v 2 =

−→
0 0 0 0

−2 −3 −3
2 3 3


2a2b2

c2

 =
−→
0

0 0 0

0 0 0

0 0 0


a2b2
c2

 =

0

0

0


. (278)

This particular equation is satisfied for any choice of a2, b2 and c2.

6. Select a single generalized eigenvector corresponding to each defective eigen-
value. In this case, we select (arbitrarily)

−→v 2 =

1

0

0

 . (279)

7. For each defective eigenvalue λi, create a chain of generalized eigenvectors
down to an eigenvector −→v 1 by defining −→v k−1 = (A− λiIn)−→v k for each k. In this
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case, we define

−→v 1 = (A− 1I3)
−→v 2 =

 0 0 0

−2 −3 −3
2 3 3


1

0

0

 =

 0

−2
2

 . (280)

8. For each eigenvalue, select eigenvectors that are linearly independent from
the −→v 1 gotten by these chains. In our case, all eigenvectors corresponding to λ = 1

are of the form

−→v =

−
3
2
(b+ c)

b

c

 , (281)

so we select b = 2 and c = 0 to find the eigenvector

−→u =

−32
0

 , (282)

which is linearly independent from the generalized eigenvector −→v 1.

9. Write the linearly independent solutions corresponding to each eigenvector
and generalized eigenvector. In this case, these are

−→x 1(t) =
−→u eλt =

−32
0

 et

−→x 2(t) =
−→v 1e

λt =

 0

−2
2

 et

−→x 3(t) = (−→v 1t+
−→v 2) e

λt =

 1

−2t
2t

 et

(283)
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10. Write the general solution as the linear combinations of these solutions:

−→x (t) = c1

−32
0

 et + c2

 0

−2
2

 et + c3

 1

−2t
2t

 et (284)

5.1.3 Complex eigenvalues

If the characteristic equation has complex roots, then the situation is quite sim-
ilar, except that one must use Euler’s formula to find real-valued solutions. We
demonstrate the procedure below in the case of −→x ′ = A−→x , where

A =

 2 1 −1
−4 −3 −1
4 4 2

 : (285)

1. Find the characteristic equation of A:

0 = det (A− λI3) =

∣∣∣∣∣∣∣
2− λ 1 −1
−4 −3− λ −1
4 4 2− λ

∣∣∣∣∣∣∣ = −λ3 + λ2 − 4λ+ 4. (286)

2. Find the roots of the characteristic equation, the eigenvalues of A:

0 = −λ3 + λ2 − 4λ+ 4 = − (λ− 1)
(
λ2 + 4

)
. (287)

In this case we have the eigenvalues λ1 = 1 and λ2 = ±2i, each with multiplicity 1.

3. For each eigenvalue λi, find the eigenvectors associated to λi. In this case,
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for λ1 = 1:

(A− 1I3)
−→v 1 =

 1 1 −1
−4 −4 −1
4 4 1


a1b1
c1

 =

0

0

0


1 1 0

0 0 1

0 0 0


a1b1
c1

 =

0

0

0


a1 + b1 = 0, c1 = 0

, (288)

and so the eigenvectors corresponding to λ1 = 1 are all vectors of the form

−→v 1 =

 r

−r
0

 , (289)
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where r is any nonzero real number. For λ2 = 2i:

(A− 2iI3)
−→v 2 =

2− 2i 1 −1
−4 −3− 2i −1
4 4 2− 2i


a2b2
c2

 =

0

0

0


R1→(2+2i)R1−−−−−−−−→

 8 2 + 2i −2− 2i 0

−4 −3− 2i −1 0

4 4 2− 2i 0

 R1→R1−2R3−−−−−−−→

 0 −6 + 2i −6 + 2i 0

−4 −3− 2i −1 0

4 4 2− 2i 0


R2→R2+R3−−−−−−−→

0 −6 + 2i −6 + 2i 0

0 1− 2i 1− 2i 0

4 4 2− 2i 0

 R2→ 1
1−2i

R2

−−−−−−−→

0 −6 + 2i −6 + 2i 0

0 1 1 0

4 4 2− 2i 0


R1→R1−(−6+2i)R2−−−−−−−−−−−→

0 0 0 0

0 1 1 0

4 4 2− 2i 0

 R3→ 1
4
R3−−−−−→

0 0 0 0

0 1 1 0

1 1 1
2
− 1

2
i 0


R3→R3−R2−−−−−−−→

0 0 0 0

0 1 1 0

1 0 −1
2
− 1

2
i 0

 R1↔R3−−−−→

1 0 −1
2
− 1

2
i 0

0 1 1 0

0 0 0 0


1 0 −1

2
(1 + i)

0 1 1

0 0 0


a2b2
c2

 =

0

0

0


a2 − 1

2
(1 + i) c2 = 0, b2 + c2 = 0

,

(290)
so the eigenvectors corresponding to λ2 = ±2i are of the form

−→v 2 =


1
2
(1 + i) s

−s
s

 , (291)

where s is any nonzero real number.

4. Select a single eigenvector for each eigenspace. The choice is completely
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arbitrary. In this case, we choose r = 1 and s = 2, so that

−→v 1 =

 1

−1
0

 , −→v 2 =

1 + i

−2
2

 (292)

5. Multiply the complex eigenvector by eλit, using Euler’s formula:

−→v 2e
λ2t =

1 + i

−2
2

 e(2i)t =

1 + i

−2
2

 (cos (2t) + i sin (2t))

=

cos (2t) + i sin (2t) + i cos (2t) + i2 sin (2t)

−2 cos (2t)− 2i sin (2t)

2 cos (2t) + 2i sin (2t)



=

cos (2t)− sin (2t) + i (cos (2t) + sin (2t))

−2 cos (2t) + i (−2 sin (2t))
2 cos (2t) + i (2 sin (2t))



=

cos (2t)− sin (2t)

−2 cos (2t)
2 cos (2t)

+ i

cos (2t) + sin (2t)

−2 sin (2t)
2 sin (2t)

 . (293)

6. Form the linearly independent solutions corresponding to the complex eigen-
value(s) by taking the real and imaginary parts of the product:

−→x 2(t) =

cos (2t)− sin (2t)

−2 cos (2t)
2 cos (2t)


−→x 3(t) =

cos (2t) + sin (2t)

−2 sin (2t)
2 sin (2t)


. (294)

7. Form the other linearly independent solutions corresponding to the other
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eigenvalue(s):

−→x 1(t) =

 1

−1
0

 et

−→x 2(t) =

cos (2t)− sin (2t)

−2 cos (2t)
2 cos (2t)


−→x 3(t) =

cos (2t) + sin (2t)

−2 sin (2t)
2 sin (2t)


. (295)

8. Form the general solution as the linear combinations of the linearly indepen-
dent solutions:

−→x (t) = c1

 1

−1
0

 et + c2

cos (2t)− sin (2t)

−2 cos (2t)
2 cos (2t)

+ c3

cos (2t) + sin (2t)

−2 sin (2t)
2 sin (2t)


(296)

5.1.4 Additional worked examples

−→x ′ =

(
1 −2
2 1

)
︸ ︷︷ ︸

A

−→x (297)

1. First, we seek the characteristic polynomial:

0 = det (A− λI2) =

∣∣∣∣∣1− λ −2
2 1− λ

∣∣∣∣∣ = λ2 − 2λ+ 5 (298)

2. Next, we find the roots of the characteristic polynomial, the eigenvalues of
the matrix:

λ =
− (−2)±

√
(−2)2 − 4 (1) (5)

2 (1)
= 1± 2i. (299)
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3. We seek the eigenvalues corresponding to λ = 1± 2i:

(A− (1 + 2i) I2)
−→v =

(
−2i −2
2 −2i

)(
a

b

)
=

(
0

0

)
(
−2i −2 0

2 −2i 0

)
R2→ 1

2
R2−−−−−→

(
−2i −2 0

1 −i 0

)
R1→R1+2iR2−−−−−−−−→

(
0 0 0

1 −i 0

)
R1↔R2−−−−→

(
1 −i 0

0 0 0

)
(
1 −i
0 0

)(
a

b

)
=

(
0

0

)
a− ib = 0

. (300)

Therefore, the eigenvectors corresponding to λ = 1± 2i are of the form

−→v =

(
ir

r

)
, (301)

where r is any nonzero real number.

4. We select the eigenvector corresponding to r = 1:

−→v =

(
i

1

)
(302)

5. We multiply the complex eigenvector −→v and eλt:

−→v eλt =

(
i

1

)
e(1+2i)t (303)
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