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1 Exam 01

1.1 Summary

Exam 01 is based on Chapters 01, 02 and 06.
Chapter 01 focuses on first-order ODEs. The main two techniques for finding

the general solutions of first-order ODEs are separation of variables and the inte-
grating factor. Specifically, separation of variables is useful for solving “separable”
ODEs, which are ODEs that can be written in the form

dy

dx
= f (x) g (y) , (1)

where f (x) is a function of x and g (y) is a function of y. The integrating factor is
helpful for solving first-order linear ODEs, which are ODEs that take the form

p1 (x) y
′ + p0 (x) y = q (x) . (2)

The method of the integrating factor requires putting the first-order linear ODE in
“standard form,” or in other words, writing it in the form

y′ + p (x) y = r (x) . (3)

At this point, the integrating factor can be defined as

µ (x) = e
∫
p(x) dx. (4)

From here, one can multiply the integrating factor by both sides of the standard
form equation and get

µ (x) y′ + µ (x) p (x) y = µ (x) r (x) . (5)

By design, the left hand side of this equation is d
dx

(µ (x) y), and so y can be found
by integrating both sides.

These two main techniques also open up the possibility of solving a broader
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class of ODEs than just separable and linear first order ODEs. To do this, we dis-
cussed substitution methods. Substitution methods are used to re-write a first order
ODE in such a form that it can be solved by either separation of variables or the
integrating factor. There is an extremely wide variety of types of substitution prob-
lems.

Two families of substitution problems that were of particular interest to us were
the “Bernoulli substitutions” and “homogeneous substitutions.” The Bernoulli sub-
stitution is only useful in solving “Bernoulli equations,” which are ODEs that can
be written in the form

y′ + p (x) y = q (x) yn, (6)

where n 6= 1. In these situations, we make the substitution v = y1−n. When this
substitution is implemented, the equation can be re-written as a first-order linear
ODE whose dependent variable is v:

v = y1−n ⇒ y = v
1

1−n

y′ = 1
1−nv

n
1−nv′

(7)

1
1−nv

n
1−nv′ + p (x) v

1
1−n = q (x) v

n
1−n

v′ + (1− n) p (x) v = (1− n) q (x)
. (8)

From here, the ODE can be solved as a linear first-order equation.
Homogeneous substitutions are useful for ODEs that can be written as

y′ = f
(y
x

)
, (9)

where f is a differentiable function. In these cases, we make the substitution v = y
x
:

v = y
x
⇒ y = vx

y′ = v′x+ v
(10)

v′x+ v = f (v) . (11)

From here, the equation is either separable or linear, and so it can be solved by
either separation of variables or the integrating factor.
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Finally, we also discussed methods for graphing all of the solution curves of
a first order autonomous ODE y′ = f (y). This required finding the equilibrium
solutions (which are those constant solutions for which y′ = 0) and then choosing
values for the initial condition that lie on either side of the equilibrium solutions.
Determining the value of y′ at these initial conditions allowed us to construct the
phase diagram, which served as the y-axis of our graphs.

Chapters 02 and 06 were a study of linear ODEs with constant coefficients:

any
(n) + an−1y

(n−1) + ...+ a1y
′ + a0y = f (t) , (12)

where a0, a1, ..., an−1, and an are constants. Linear ODEs of first order (with either
constant or non-constant coefficients) could be solved using the integrating factor,
but for this portion of the class, we were mainly interested in ODEs with orders
higher than one.

Chapter 02 was about solving linear ODEs with constant coefficients by using
the fact that the general solution to any linear ODE with constant coefficients can
be written as

y = yC + yp, (13)

where yC is the complementary solution and yp is any particular solution whatso-
ever.

The complementary solution is the general solution of the associated homoge-
neous equation:

any
(n) + an−1y

(n−1) + ...+ a1y
′ + a0y = 0. (14)

As the associated homogeneous equation is, by design, homogeneous, we spent the
first few sections of Chapter 2 on solving linear homogeneous ODEs with constant
coefficients. This involved constructing the characteristic equation of the homoge-
neous ODE by asserting the solution y = ert:

anr
nert + an−1r

n−1ert + ...+ a1re
rt + a0e

rt = 0

ert (anr
n + an−1r

n−1 + ...+ a1r + a0) = 0

anr
n + an−1r

n−1 + ...+ a1r + a0 = 0

. (15)
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Solving this polynomial equation gave values for the roots r. From these values,
we constructed n linearly independent basis solutions y1, y2, ..., yn, although the
exact method for doing so depended on whether the characteristic polynomial’s
roots were distinct and real, repeated, or non-real. The general solution of such a
homogeneous ODE was then the set of all linear combinations of the basis solutions:

y = c1y1 + c2y2 + ...+ cnyn. (16)

At this point, we were able to construct the complementary solution yC of any
linear ODE with constant coefficients. The only remaining task was to construct
a particular solution, yp. The method we used for this was called the “method of
undetermined coefficients.” It involved making a “guess” for the structure of yp
based on the inhomogeneous term, f (t). The exact form of the guess depended
on the form of the function f (t). We also studied the case of “duplication,” in
which the guess fails because it shares nonzero functions with the complementary
solution yC . In these cases, we modified the guess by multiplying by factors of the
independent variable. Once the guess was finalized, it contained several unknown
constants, which we needed to determine. This was accomplished by substituting
the guess back into the original ODE. Typically, the task of finding the constants
also hinged on the linear independence of several functions.

Chapter 06 was about solving linear ODEs with constant coefficients by the
Laplace transform method. These methods came with the advantage that the inho-
mogeneous term f (t) did not have to be continuous (or even a function) in order
to work. The technique involved taking the Laplace transform of both sides of the
equation:

L
(
any

(n) + an−1y
(n−1) + ...+ a1y

′ + a0y
)
= L (f (t)) . (17)

As the Laplace transform is a linear operator, this can be re-written as

anL
(
y(n)
)
+ an−1L

(
y(n−1)

)
+ ...+ a1L (y′) + a0L (y) = F (s) . (18)
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From here, we could find the Laplace transform of any derivative of y in terms of
the Laplace transform of y. As a result, the left side of the equation would become
an expression involving only constants and L (y) = Y (s). We then solved for Y ,
reducing the problem to finding the inverse Laplace transform of Y . This typically
required referring to a table of Laplace transforms, which will be provided during
the exam.

As previously mentioned, the Laplace transform method does not require the
inhomogeneous term f (t) to be a continuous function. Two expressions that were
of particular interest to us as the inhomogeneous term are the unit step function:

u (t) =

0 if t < 0

1 if 0 ≤ t
, (19)

and the Dirac delta, δ (t). We did not dwell on the theoretical underpinnings of
how the Dirac delta could possibly exist or even what it actually is, but we simply
defined the expression as having the property that for any continuous function f (t)
and any real-valued constant a,∫ ∞

0

f (t) δ (t− a) dt = f (a) . (20)

In particular, this meant that L (δ (t− a)) = e−as.
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1.2 Practice problems

1.
y′ = 2x

y′ = x2y

y′ = xy4

(x2 + 1) y′ = 1

y′ tan(x) = 2(y − 1)

y′ = 2xy
y+1

(1 + x)2y′ = (1 + y)2

y′ + y = 0

(21)

2.
y′ − tan(x)y = 2 sin(x)

xy′ + 2 ln(x)y = x2−ln(x)

y′ + 1
x
y = ex

(22)

3.
y′ =

√
x+ y + 1

(ln y)2 +
(
y′

y

)
= 1

y2y′ + 2xy3 = 6x

y′ = y + y3

(2x sin(y) cos(y)) y′ = 4x2 + sin2y

(x2 + 1) sec(y)y′ + sin(y) = 2 cos(y)

y′ tan(y) + 2xe(x
2) = xe(x

2) csc(y)

2yy′ ln (y2 − 4) = (y2 − 4)
√
e2x + e−2x + 2

(23)
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4.
xy2y′ = x3 + y3

xy′ = y + 2
√
xy

(x+ y)y′ = x− y
(x− y)y′ = x+ y

(x2 − y2) y′ = 2xy

xy′ = y +
√
x2 + y2

yy′ + x =
√
x2 + y2

(24)

5.
3y2y′ + y3 = e−x

xy′ + 6y = 3xy
4
3

y2 (xy′ + y)
√
1 + x4 = x

x2y′ + 2xy = 5y4

(25)

6.
6.1. Plot the solution curves of the autonomous ODE y′ = 3y2 − 15y.
6.2. Plot the solution curves of the autonomous ODE y′ = 3− y.
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7.
4y′′ + 4y′ + y = 0

y′′ + 11y′ = 0

y′′ − y = 0

y′′ + y = 0

y′′ + y′ + y = 0

y′′ + y′ − y = 0

y′′ − y′ + y = 0

y′′ − y′ − y = 0

y′′ − y′ − 2y = 0

y′′ + y′ − 2y = 0

y′′ − y′ + 2y = 0

y′′ + y′ + 2y = 0

y′′ + 2y′ + y = 0

y′′ + 5y′ + 6y = 0

y′′ + y′ − 6y = 0

y′′ − 5y′ + 6y = 0

y′′ − y′ − 6y = 0

(26)

8.
y(4) − 5y′′ + 6y = 0

y(3) − y′ = 0

y(3) + y′ = 0

y(3) − 3y′′ + 2y′ = 0

y(5) − 15y(4) + 85y(3) − 225y′′ + 274y′ − 120y = 0

y(100) = 0

y(3) − 3y′′ + 3y′ − y = 0

y(4) − 3y(3) + 3y′′ − y′ = 0

y(6) − 6y(5) + 25y(4) = 0

y(5) − 2y(4) + y(3) = 0

y(4) + 2y′′ + y = 0

y(5) + 3y(4) + 3y(3) + y′′ − 4y′ + 2y = 0

y(4) − y = 0
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9.
y′′ − 2y′ − 3y = e4x

y′′ − 2y′ − 3y = e−x

y(4) − 2y′′ + y = cos(3x)

y(3) + y′′ − y′ − y = ex + e−x

y′′ + 5y′ + 6y = (x+ 1)3

y′′ + 2y′ + 5y = ex sinx

y′′ + 3y′ + 4y = 3x+ 2

y′′ + 2y′ + 2y = sin (3x)

y′′ − 3y′ + 2y = e−x − 10 cos (3x)

y′′ − 4y′ + 4y = e2x

y′′ + 9y = cos (3x) + sin (3x)

y(4) − y = 5

y(3) + y′′ = 3ex + 4x2

y(4) − 4y′′ = x2

. (27)

10.
x′′ + 4x = 0

x(0) = 5, x′(0) = 0

x′′ − x′ − 2x = 0

x(0) = 0, x′(0) = 2

x′′ + x = sin (2t)

x(0) = 0, x′(0) = 0

x′′ + x = cos (3t)

x(0) = 1, x′(0) = 0

x′′ + 4x = 2

x (0) = 3, x′ (0) = −1
y′′ − 10y′ + 9y = 5t

y (0) = −1, y′ (0) = 2

y′ + 9y = u (t− 1)

y (0) = 1

x′′ − x = (t2 − 1)u (t− 1)

x(0) = 1, x′(0) = 1

(28)
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11.
x′′ + 4x = δ(t))

x(0) = 0, x′(0) = 0

x′′ + 2x′ + x = t+ δ(t)

x(0) = 0, x′(0) = 1

x′′ + 4x = δ(t) + δ (t− π)
x(0) = 0, x′(0) = 0

x′′ + 4x′ + 4x = 1 + δ (t− 2)

x(0) = 0, x′(0) = 0

x′′ + 2x′ + 2x = 2δ (t− π)
x(0) = 0, x′(0) = 0

x′′ + 4x′ + 5x = δ (t− π) + δ (t− 2π)

x(0) = 0, x′(0) = 2

(29)
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1.3 Answers

1.
y(x) = x2 + C

y(x) = Ce
1
3
x3

y(x) = 8
(C−3x2)

y(x) = tan−1x+ C

y(x) = 1 + Csin2x

implicit: y + ln |y| = x2 + C

y(x) = x+1
C2(x+1)+1

− 1

y(x) = Ce−x

(30)

2.
y(x) = C sec(x)− cos(x)

y(x) =
(
1
2
x2 + C

)
x− ln(x)

y(x) = x−1
x
ex + C

x

(31)

3.
y(x) =

(
1
2
x+ C

)2 − x− 1

y(x) = esin(C±x)

y(x) =
3
√
3 + Ce−3(x2)

implicit: y2 = Ce2x

1−Ce2x

implicit: sin2y = 4x2 + Cx

implicit: tan(y) = Ce−tan
−1(x) + 2

implicit: sec(y) = e

(
e(x

2)
) (

C + 1
2
e(x

2)
)

implicit: y2 = e±
√
ex+e−x+C + 4

(32)
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4.
y(x) = x 3

√
C + 3 ln |x|

y(x) = x(C + ln |x|)2

implicit: y2 + 2xy − x2 = C

implicit: tan−1
(
y
x

)
= ln

(√
x2 + y2

)
+ C

implicit: y = C (x2 + y2)

implicit: y +
√
x2 − y2 = Cx2

implicit: y2 = C3
2 − 2C3x

(33)

5.
y(x) = e−3x(x+ C)3

y(x) = 1
x3(x+C)3

implicit: 2x3y3 = 3
√
1 + x4 + C

y(x) = 3

√
7x

15+C2x7

(34)

6.
6.1.
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6.2.
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7.
y(x) = (c1 + c2x) e

− 1
2
x

y(x) = c1 + c2e
−11x

y(x) = c1e
x + c2e

−x

y(x) = c1 cos(x) + c2 sin(x)

y(x) = e−
1
2
x
(
c1 cos

(√
3
2
x
)
+ c2 sin

(√
3
2
x
))

y(x) = c1e
−1+

√
5

2
x + c2e

−1−
√
5

2
x

y(x) = e
1
2
x
(
c1 cos

(√
3
2
x
)
+ c2 sin

(√
3
2
x
))

y(x) = c1e
1+
√
5

2
x + c2e

1−
√
5

2
x

y(x) = c1e
−x + c2e

2x

y(x) = c1e
x + c2e

−2x

y(x) = e
1
2
x
(
c1 cos

(√
7
2
x
)
+ c2 sin

(√
7
2
x
))

y(x) = e−
1
2
x
(
c1 cos

(√
7
2
x
)
+ c2 sin

(√
7
2
x
))

y(x) = (c1 + c2x) e
−x

y(x) = c1e
−3x + c2e

−2x

y(x) = c1e
−3x + c2e

2x

y(x) = c1e
3x + c2e

2x

y(x) = c1e
3x + c2e

−2x
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8.

y(x) = c1e
2x + c2e

−2x + c3e
3x + c4e

−3x

y(x) = c1 + c2e
x + c3e

−x

y(x) = c1 + c2 cosx+ c3 sinx

y(x) = c1 + c2e
x + c3e

2x

y(x) = c1e
x + c2e

2x + c3e
3x + c4e

4x + c5e
5x

y(x) = c0 + c1x+ c2x
2 + ...+ c98x

98 + c99x
99

y(x) = (c1 + c2x+ c3x
2) ex

y(x) = (c1 + c2x+ c3x
2) ex + c4

y(x) = c1 + c2x+ c3x
2 + c4x

3 + e3x (c4 cos(4x) + c5 sin(4x))

y(x) = c1 + c2x+ c3x
2 + c4e

x + c5xe
x

y(x) = (c1 + c2x) cosx+ (c3 + c4x) sinx

y(x) = ex (c1 + c2x+ c3 cosx+ c4 sinx) + c5e
−x

y(x) = c1e
x + c2e

−x + c3 cosx+ c4 sinx

9.

y(x) = c1e
−x + c2e

3x + 1
5
e4x

y(x) = c1e
−x + c2e

3x − 1
4
xe−x

y(x) = (c1 + c2x) e
x + (c3 + c4x) e

−x + 1
82
cos (3x)

y(x) = c1e
x + (c2 + c3x) e

−x + 1
4
xex − 1

4
x2e−x

y(x) = c1e
−2x + c2e

−3x + 1
6
x3 + 1

12
x2 + 7

36
x− 5

216

y(x) = e−x (c1 cos (2x) + c2 sin (2x)) + ex
(
− 4

65
cosx+ 7

65
sinx

)
y(x) = c1e

− 3
2
x sin

(√
7
2
x
)
+ c2e

− 3
2
x cos

(√
7
2
x
)
+ 3

4
x− 1

16

y (x) = c1e
−x sinx+ c2e

−x cosx− 7
85
sin (3x)− 6

85
cos (3x)

y (x) = c1e
x + c2e

2x + 1
2
e−x + 7

13
cos (3x) + 9

13
sin (3x)

y (x) = c1e
2x + c2xe

2x + 1
2
x2e2x

y (x) = c1 cos (3x) + c2 sin (3x) +
1
6
x sin (3x)− 1

6
x cos (3x)

y (x) = 5
4
e−x + ex + 2 cosx− 4

y (x) = c1 + c2x+ c3e
−x + 3

2
ex + 4x2 − 4

3
x3 + 1

3
x4

y (x) = c1e
2x + c2e

−2x + c3 + c4x− x2

16
− x4

48

.
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10.
x(t) = 5 cos (2t)

x(t) = 2
3
e2t − 2

3
e−t

x(t) = 2
3
sin (t)− 1

3
sin (2t)

x(t) = −1
8
cos (3t) + 1

8
cos (t)

x(t) = 3 cos (2t) + 1
2
sin (2t)

y(t) = 50
81

+ 5
9
t+ 31

81
e9t − 2et

y(t) =
(
1
9
+ 8

9
e−9t

)
u (t− 1)

x(t) = et + (2et−1 − t2 − 1)u (t− 1)

(35)

11.
x(t) = 1

2
sin (2t)

x(t) = t− 2 + (3t+ 2) e−t

x(t) = 1
2
(1 + u (t− π)) sin (2t)

x(t) = 1
4
+ 1

4
e−2t (4e4u (t− 2) (t− 2)− 2t− 1)

x(t) = −2u (t− π) e−t+π sin t
x(t) = −1

3
u (t− 3π) sin (3t)− 1

18
sin2 (3t)

x(t) = (2− e2πu (t− π) + e4πu (t− 2π)) e−2t sin t

(36)
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2 Exam 02

2.1 Summary

Exam 02 is based on Chapters 07 and 03.
Chapter 07 was about series methods for solving second order linear homoge-

neous ODEs. A linear homogeneous ODE with constant coefficients can be far
more easily solved using the techniques of Chapters 02 or 06, but such ODEs with
non-constant coefficients can be significantly more difficult. Series methods are
complicated, so typically they are only used as a kind of last resort when other
methods cannot be applied.

Given an ODE of the form

p (x) y′′ + q (x) y′ + r (x) y = 0, (37)

a given value x = a may be either an “ordinary point” or a “singular point” of the
ODE, depending on whether p (a) = 0 or not. If x = a is an ordinary point of the
ODE, then there will exist at least one power series solution centered at x = a:

y =
∞∑
n=0

cn(x− a)n. (38)

On the other hand, if x = a is a singular point, then such a solution is not guaran-
teed. If the value x = a is a “regular singular point,” (which means that the limits
lim
x→a

(x− a) q(x)
p(x)

and lim
x→a

(x− a)2 r(x)
p(x)

are both finite), then there will exist at least
one solution that is a “Frobenius series:”

y =
∞∑
n=0

cnx
n+r, (39)

where c0 = 1 and r is a real number.
In general, when attempting to find a solution of an ODE using series methods,

one must propose the solution of the appropriate form, take several derivatives,
and then put this equation back into the original ODE. When one combines like
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terms, this results in a power series which is equal to 0 for all values of x; in other
words, a power series whose coefficients are all 0. This gives a system of infinitely
many equations, known as the “recurrence relation” of the ODE. One then uses this
information to find the coefficients cn in terms of c0 and c1. This is the general
solution.

Chapter 03 concerned systems of ODEs. We began our study of systems by first
observing that every scalar ODE can be re-written as a first order linear system of
ODEs. From here, we mainly concerned ourselves with solving first-order linear
systems of ODEs with constant coefficients by the eigenvalue method. These were
systems of the form

−→z ′ = A−→z , (40)

where A was an n× n matrix. (We mainly only concerned ourselves with the case
where n = 2.) This method involved several steps, always beginning with finding
the characteristic polynomial of the matrix: det (A− λIn). The types of roots of
the characteristic polynomial (the eigenvalues) then determined our next steps.

If the eigenvalues were distinct real numbers λ1 and λ2, the situation was mostly
straightforward. In that case, we needed to find the eigenvectors of A correspond-
ing to each eigenvalue. These were nonzero vectors −→v1 and −→v2 that satisfied the
equations

(A− λ1)−→v1 =
−→
0

(A− λ2)−→v2 =
−→
0
. (41)

We then selected two eigenvectors for each eigenvalue to create the basis solutions

−→z1 (t) = −→v1eλ1t
−→z2 (t) = −→v2eλ2t

. (42)

If the eigenvalues of the matrix were complex numbers λ = a ± ib, then as
usual, the (complex) eigenvectors −→v1 corresponding to one of the eigenvalues had
to be found, and we needed to consider the product

−→v1e(a+ib)t. (43)
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At this point, the task was to find the real and imaginary parts of this vector. This
was accomplished by using Euler’s formula. Once the real and imaginary parts
were found, they formed separate real vector-valued basis solutions of the ODE.

Finally, if the eigenvalues of the matrix were repeated real numbers, then we
needed to first find the “defect” of the eigenvalue. This was the difference between
the algebraic multiplicity (which is just the multiplicity of the value as a root of
the characteristic polynomial) and the geometric multiplicity (which is the number
of free variables in the set of eigenvectors corresponding to the eigenvalue). If this
defect was zero, then there would exist enough linearly independent eigenvectors to
construct all of the basis solutions. On the other hand, if the defect was larger than
zero, then we would need to consider “generalized eigenvectors” of ranks higher
than one. A rank k generalized eigenvector −→vk is a vector that matches both of the
following descriptions:

(A− λIn)k−→vk =
−→
0 and (A− λIn)k−1−→vk 6=

−→
0 . (44)

For a 2× 2 matrix, this required finding a nonzero vector −→v2 that was not an eigen-
vector such that (A− λI2)2−→v2 =

−→
0 . At this point, we needed an eigenvector that

was “compatible” with our choice of −→v2 in the sense that −→v1 = (A− λI2)−→v2 . From
here, the two basis solutions could be constructed as

−→z1 = −→v1eλt
−→z2 = (−→v1 t+−→v2) eλt

. (45)
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2.2 Practice problems

(x2 + 1) y′′ + 6xy′ + 4y = 0

(x2 − 3) y′′ + 2xy′ = 0

(x2 − 1) y′′ − 6xy′ + 12y = 0

(x2 + 1) y′′ − 4xy′ + 6y = 0

(x2 + 2) y′′ + 4xy′ + 2y = 0

y′′ + 2xy′ + 4y = 0

(46)

2x2y′′ + 7xy′ + 2y = 0

2x2y′′ − 3xy′ + 2y = 0

5x2y′′ + y = 0

7x2y′′ + xy′ + y = 0

(47)

−→z ′ =

(
2 2

9 −1

)
−→z

−→z ′ =

(
−5 1

4 −2

)
−→z

−→z ′ =

(
−2 1

0 −3

)
−→z

−→z ′ =

(
−50 20

100 −60

)
−→z

(48)

−→z ′ =

(
−3 −2
9 3

)
−→z

−→z ′ =

(
1 −2
2 1

)
−→z

−→z ′ =

(
3 9

−4 −3

)
−→z

(49)
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−→z ′ =

(
−12 0

0 −12

)
−→z

−→z ′ =

(
7 1

−4 3

)
−→z

−→z ′ =

(
−6 9

−1 −12

)
−→z

−→z ′ =

(
5 1

−4 1

)
−→z

(50)
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2.3 Answers

y = c0
∞∑
n=0

(−1)n (n+ 1)x2n + c1
∞∑
n=0

(−1)n (2n+ 3)x2n+1

y = c0 + c1
∞∑
n=0

x2n+1

3n(2n+1)

y = c0 (1 + 6x2 + x4) + c1 (x+ x3)

y = c0 (1− 3x2) + c1
(
x− 1

3
x3
)

y = c0+c1x
2+x2

y = c0

(
1 +

∞∑
n=1

(−2)n
(2n−1)(2n−3)...(3)(1)x

2n

)
+ c1

∞∑
n=0

(−1)n
n!

x2n+1

(51)

y = c0x
−2 + c1x

− 1
2

y = c0x
2 + c1x

1
2

y = c0x
1
2
+
√
5

10 + c1x
1
2
−
√
5

10

y = c0x
3
7
+
√
2

7 + c1x
3
7
−
√
2
7

(52)

−→z (t) = c1

(
2

3

)
e5t + c2

(
1

−3

)
e−4t

−→z (t) = c1

(
1

−1

)
e−6t + c2

(
1

4

)
e−t

−→z (t) = c1

(
1

0

)
e−2t + c2

(
1

−1

)
e−3t

−→z (t) = c1

(
1

2

)
e−10t + c2

(
2

−5

)
e−100t

(53)

−→z (t) = c1

(
cos (3t) + sin (3t)

−3 cos (3t)

)
+ c2

(
sin (3t)− cos (3t)

−3 sin (3t)

)
−→z (t) = c1e

t

(
− sin (2t)

cos (2t)

)
+ c2e

t

(
cos (2t)

sin (2t)

)
−→z (t) = c1

(
3 cos

(
3
√
3t
)

− cos
(
3
√
3t
)
−
√
3 sin

(
3
√
3t
))+ c2

(
3 sin

(
3
√
3t
)

√
3 cos

(
3
√
3t
)
− sin

(
3
√
3t
))

(54)
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−→z (t) = c1

(
1

0

)
e−12t + c2

(
0

1

)
e−12t

−→z (t) = c1

(
1

−2

)
e5t + c2

(
t

−2t+ 1

)
e5t

−→z (t) = c1

(
3

−1

)
e−9t + c2

(
3t+ 1

−t

)
e−9t

−→z (t) = c1

(
1

−2

)
e3t + c2

(
1
2
+ t

−2t

)
e3t

(55)
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