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0 Introduction

0.1 Motivation

Imagine pouring water from a vessel. Let’s suppose the vessel has a single
opening, below every other point in the vessel. How quickly does the water escape?

This problem is primitive enough that ancient humans certainly thought about
it. However, answering it is not necessarily easy. After some thinking, you may
realize that the rate at which the water leaves the vessel is not constant; the rate at

which the volume of the water within the vessel decreases is dependent upon how

much water is left in the vessel at any given time.

Here’s another (recently relevant) problem: a disease spreads among a popula-
tion of organisms. What is the rate at which the disease finds new hosts? (In other
words, how many new infections occur per day?)

Again, the question is primitive enough that ancient humans considered it (even
without a reasonable theory of germs, they noticed that diseases were contagious).
However, again, the answer is not easy. With some thought, we can realize that the
rate of infection is not constant; the rate at which the disease spreads is dependent

upon how many organisms in the population are already infected.

The common theme in these two parables is the following: the rate of change
of a certain variable is dependent upon the value of that variable at any given time.
This is exactly the sort of problem that the theory of differential equations was
created to solve.

0.2 Multivariable functions

First, let’s address a small matter of terminology. Calculus III is not a prerequi-
site for this course, so I won’t assume that you already know the material discussed
in that class. There is, however, a matter that we must discuss. In Calculus I and
Calculus II, you considered only functions of the form y = f(x). These are called
“single-variable functions.” In these functions, the value of the dependent variable
(usually called “y”) is completely determined by the value of the single independent
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variable (usually called “x”). For example, if you give me a function like

y =
sin−1 (ex)

x2 + ln |x|
, (1)

and you ask me to find a value for y, then I need only ask you which value of x
you’d like me to consider. Once you tell me a value for x, I just put it into the
function above, and figure out the numbers.

On the other hand, suppose you give me an expression like

z = x2 + y2, (2)

and then tell me to find a value for z. Here, giving me just a value for x would not
be sufficient; there are plenty of z values that correspond to any particular value for
x. In this case, you’d have to specify the values of both x and y. For this reason,
we’d say that z is a “function of two [independent] variables.” The typical notation
for this is z = f (x, y), where, in this example, f (x, y) = x2 + y2.

By extension, given any positive integer n, it is certainly possible to define a
function of n many variables. In this class and Calculus III, this n is usually either
two or three, though.

Given a function f of n many variables, f may depend on each of the variables
in different ways. For example, suppose you give me the three-variable function

f (x, y, z) = x2y +
z

y
− cos (xy + z) , (3)

and you ask me the rate at which the function changes as its independent variables
(x, y and z) change. In that case, I’d need you to be more specific. In the case
of a one-variable function, this question can be answered by the derivative. For
a multi-variable function, though, it’s not immediately clear which variable we’re
considering.

So, suppose you tell me that you want to know how quickly f changes as x
changes. In that case, you’re asking about the “partial derivative of f with respect
to x.” This value is denoted by the symbols ∂f

∂x
. It’s computed in exactly the same

way as you would compute a single-variable derivative if the other variables (y and
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z) were constants:
∂f

∂x
= 2xy + y sin (xy + z) . (4)

Similarly, there are partial derivatives of f with respect to y and z:

∂f

∂y
= x2 − z

y2
+ x sin (xy + z) (5)

∂f

∂z
=

1

y
+ sin (xy + z) . (6)

There are also higher order partial derivatives, in the same way that single-variable
functions have higher order derivatives.

These are concepts that we’ll also need later on, so don’t hesitate to refer to this
section again later.

0.3 What is a solution?

If you look back at the problems given in the motivation, you’ll quickly realize
that they can’t be completely answered by just one single number. For example,
if we’re talking about the rate at which water leaves a vessel, if I just tell you
“The water leaves the vessel at 6.5 mL/s,” then you might rightly think that I don’t
understand the nuance of the question. Perhaps the rate at which the water leaves
the vessel is 6.5 mL/s at some point in time, but that doesn’t tell you anything about
any other point in time. It would be far more helpful if I gave you a function that
can compute the rate of drainage at any particular time. For this sort of reason,
the solution to a differential equation will always be a function, not merely a real

number.

Generally speaking, a differential equation is any equation that describes a
function’s derivatives. This equation describes a certain property of a function.
We say that a function is a solution of that differential equation if it does have that
property.

Here’s an example of a differential equation: y′ = x2y. The idea here is that y is
the dependent variable, which is determined completely by the independent variable
x. This equation describes the following property of a function: its first derivative is
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equal to the product of itself and the square of its independent variable. A solution

of such an equation would be a function. For example, y = e
1
3
x3 is a solution of this

ODE, because it satisfies the aformentioned property; its first derivative is x2 times
the original function.

0.4 Classification, and why it’s important

Classifying differential equations means coming up with a term for each type of
differential equation, and (if possible) a strategy for finding the solution. The key
here is that the classifying term should be applied unambiguously. That is, if two
mathematicians look at the same differential equation (perhaps simplified or written
in a different way), then they ought to come up with the same terms to describe it.

At this point, a very natural question may come to mind: why bother learning
this terminology? Indeed, when dealing with regular algebraic equations that don’t
involve derivatives, there is very little, if any need for classification. The reason
for this is simple: the essential strategy of solving an algebraic equation is almost
always the same: get the variable by itself on one side of the equation.

However, for differential equations, the situation is not so simple. There is no
single method or strategy for solving differential equations. This is reminiscent of
something you’ve learned before. Consider the following integrals:

�
x

x+ 1
dx

�
x2ex dx

�
1

x2 + 5x+ 6
dx (7)

A different method is necessary for evaluating each of these. Therefore, we’ve
come up with terms like “u-substitution,” “integration by parts,” and “integration
by partial fractions,” in order to quickly refer to these strategies. This necessity is
exactly the reason that classification of differential equations is so important; each
classification needs to be solved using a different method.

Our first step in classifying differential equations is to state the number of inde-
pendent variables that we expect in the solution. To be more specific: if the function
is a single-variable function, and the equation relates the function to its derivative
(and/or the second derivative, and/or the third derivative, and/or so on), then we call
it an ordinary differential equation.
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Definition 0.1 An ordinary differential equation (ODE) is a differential equation

in which the solution has only one independent variable.

By contrast, if an equation relates a multi-variable function to its partial derivatives
(and/or its second partial derivatives, and/or its third partial derivatives, and/or so
on), then we call it a partial differential equation.

Definition 0.2 A partial differential equation (PDE) is a differential equation in

which the solution could have more than one independent variable.

The following are examples of ordinary differential equations, with an example of
a solution associated to each one.

y′ = 3x2 + 5 y = x3 + 5x+ 3

y′ = 2y y(x) = e2x

y′′ = −y y(x) = cos x
d2x
dt2

+ 9x = 10 cos (2t) x(t) = 2 cos (2t)

. (8)

The following are examples of some famous partial differential equations, with their
names:

∂2f
∂x2

+ ∂2f
∂y2

+ ∂2f
∂z2

= 0 (Laplace’s equation)
∂u
∂t

= ∂2u
∂x2

(Heat equation)
i~∂ψ

∂t
= − ~2

2m
∂2ψ
∂x2

+ V ψ (Schrödinger equation)

(9)

In general, the theory of partial differential equation is much harder than the theory
of ordinary differential equations. We will not consider partial differential equations
in this class.

The next step in classification is “order.” This refers to the highest derivative
that is present in the equation.

Definition 0.3 The order of a differential equation is the highest order of all of the

derivatives upon which it depends.

Here are some examples:
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y′ =
√
x+ y first order

y′′ = x
y

second order

y′y = sin (x2 + y) first order
y′′y + (y′)2 = 0 second order
y′′′′′′′′′′′′′′′′′′′ = x nineteenth order

. (10)

As the last example above demonstrates, it is an eyesore to write many primes for a
high-order derivative. In general, for dealing with higher order derivatives than the
second derivative, we will write y(3) instead of y′′′, y(4) instead of y′′′′, and so on.

Here are some more examples:

y(4) + y′′ + y = ex fourth order
y(3) + x2y′′ + xy′ + y = 0 third order

y′ + esinxy = 1
x−lnx first order

1
y′′

+ 1
y′
+ 1

y
= tan−1x second order

y(100) + xy(75) + x2y(50) + x3y(25) + y′ = y200 one hundredth order

x3y′ − e(y(5)) = 1
x

fifth order
(y′ + y)2 = 1− x first order

x2y′′ + 2xy′ + y = 16y2 second order
y(3) +

(
x2 + xy(3)

)4
= sec(x) third order

cos (xy′′ + πy) = y(4) fourth order

(11)
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1 First order equations

1.1 Integrals as solutions

The truth is that you’ve already dealt with some differential equations without
realizing it. For example, if I seek a function which satisfies the differential equa-
tion y′ = 1

x2+1
, then, based on your experiences in Calculus I and II, you should

recognize that any solution of this ODE will be an antiderivative of 1
x2+1

. So, you
compute an integral: �

1

x2 + 1
dx = tan−1x+ C. (12)

At this point, I ask “What is C?” As you know your calculus, you tell me that C is
just any constant; any constant value for C would be a solution of the ODE that I
presented.

In some sense, you’ve given me more than I’ve asked for in this example. I
only wanted some function that satisfied my differential equation, but you found
all of the functions that satisfy my differential equation. Technically, you’ve given
me a description of the set of all solutions of my ODE. In the theory of differential
equations, we have a term for this kind of answer.

Definition 1.1 The general solution of a differential equation is a full description

of the set of all functions that are solutions of the differential equation.

On the other hand, giving me just one function that satisfies a differential equation
is far less information. When we wish to emphasize that a single function (and not
a set of functions) is a solution to a differential equation, we will call it a “particular
solution,” to distinguish it from the general solution. For example, the function
y = tan−1x− 1000 is a particular solution to the ODE y′ = 1

x2+1
.

At this point, I’d like you to come to the realization that all of the integration
techniques that you learned in Calculus II were just methods of finding the general
solutions to first order ODEs of the form

dy

dx
= f (x) , (13)
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where f is some function. (In the example above, f(x) = 1
x2+1

.) Therefore, now
would be a good time to refresh yourself on the material on integration techniques
from Calculus II, if you haven’t thought of those in a while.

There’s one more piece of basic terminology that will appear throughout the
course.

Definition 1.2 An initial value problem (IVP) is an nth-order differential equation

coupled with n required values for the solution and its derivatives at some values

of the independent variables.

Since we’re on the topic of first-order ODEs, we’ll begin with those. An IVP for
a first-order ODE would look like a first order ODE together with a condition that
the function have a particular y-value at a particular x-value.

Example 1.3 (Exercise 1.1.2) Solve the following initial value problem:

dy
dx

= x2 + x

y(1) = 3
(14)

The standard technique of finding the solution to an IVP is simple: find the

general solution, and then find a particular solution that satisfies the condition. In

this case, the general solution is an indefinite integral:

y =

�
x2 + x dx =

1

3
x3 +

1

2
x2 + C. (15)

From here, we must recognize that not all of these solutions will satisfy the condition

y(1) = 3. This allows us to set up an equation for C:

3 = y(1) =
1

3
(1)3 +

1

2
(1)2 + C =

5

6
+ C. (16)

From this, we deduce that C = 13
6

. Thus,

y = 1
3
x3 + 1

2
x2 + 13

6
(17)

is the particular solution of the ODE that solves that IVP. �
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1.2 Slope fields

In general, every first-order ODE can be written as

dy

dx
= f (x, y) , (18)

where f is some appropriate function of both x and y. In the previous section (and
Calculus II), we only looked at the case that f doesn’t actually depend on y. From
now on, we’ll be looking at the more general situation that y′ could, in fact, depend
on y.

1.2.1 Slope fields

As previously mentioned, there are many different functions that satisfy any
given ODE. In fact, for any ODE, there are infinitely many particular solutions.
(This can also be phrased as: the general solution describes an infinite set of func-
tions.) How can one visualize an infinitely large set of functions? One way is by
constructing a diagram called a slope field.

Consider the ODE y′ = f (x, y). This equation completely describes the slope
of the tangent line (that is, the derivative) to a solution curve at any point based only
on the x- and y-coordinates of that point. For example, given a solution to the ODE
y′ = x − y, we can figure out the slope of the tangent line to the solution curve
at any point (x, y) simply by computing x − y. In other words, the slope of the
tangent line is a function of the variables x and y. We can visualize the behavior of
the ODE by simply computing x − y at every point, and then drawing a small line
segment with the slope x− y at those points. This is called a slope field. The slope
field of y′ = x− y is pictured below.
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To summarize: a slope field is a diagram of tiny line segments whose slopes
correspond to the value of dy

dx
at any point (x, y). These tiny line segments are,

literally, pieces of tangent lines to solution curves.

1.2.2 Existence and uniqueness

Another way to visualize the behavior of an ODE is simply to graph all of the
solutions in the plane at the same time. The following diagram shows many solution
curves to the ODE y′ = 2y + x (overlayed onto a slope field):
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We notice two things here. First, it seems that for any and every point in the plane,
there is a solution curve which passes through that point. Second, none of the
solution curves cross each other (they certainly come close to each other, but they
never overlap). To rephrase: for every point (a, b) in the plane, there exists a unique
solution curve that passes through the point (a, b). To rephrase again, given any
point (a, b), the following IVP has exactly one solution:

y′ = 2y + x

y(a) = b
. (19)

Does this always happen?
The answer is no. For example, the following IVP has no solution:

xy′ = 1

y(0) = 0
. (20)
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On the other hand, the IVP
y′ = 2

√
|y|

y(0) = 0
(21)

has at least two solutions: one is y = 0, and another is

y(x) =

x2 if x ≥ 0

−x2 if x < 0
. (22)

So, the world is not perfect. Some IVPs have no solution, and some have more
than one. In that case, when can we be sure that an IVP will have a unique solution?
One answer is given by Picard’s theorem.

Theorem 1.4 (Picard’s theorem) Let y′ = f (x, y) be an ODE, and let (a, b) be

any point in the xy-plane. If f is continuous (as a function of two variables) in a

neighborhood of (a, b) and the partial derivative ∂f
∂y

is continuous (as a function of

two variables) in a neighborhood of (a, b), then the IVP

y′ = f (x, y)

y (a) = b

has a unique solution (on some interval).

What is a “neighborhood?” It’s the interior of a rectangle contained in the xy-
plane. In other words, if the region of continuity of f and ∂f

∂y
contains a rectangle

that contains the point (a, b), then the IVP will have a unique solution.
This theorem has theoretical significance: it indicates that for ODEs that satisfy

the hypothesis of Picard’s theorem, the solution curves will never overlap. However,
it isn’t particularly easy to find problems that relate to the theorem, and it is my
opinion that those that do relate aren’t particularly enlightening. Therefore, we will
not dwell on this theorem too much, despite its importance.
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1.3 Separable equations

Now, let’s discuss how to solve ODEs of the form y′ = f (x, y). At first, it
might seem like we could just do what we did in Section 1.1, but that won’t work
here. Let’s consider what would happen if we tried to take the definite integral:

y =

�
f (x, y) dx. (23)

Alright, so this tells us that in order to find y, we need the integral of f (x, y). How-
ever, this requires putting y in terms of x (because the two are not both independent
variables; y is dependent upon x). Of course, if we had that information, then we’d
already be done.

There are different strategies for different types of ODEs, so we’ll have to dis-
cuss them one at a time. (See, classification is important!)

1.3.1 Separable equations

We begin our study of the general solutions of non-trivial first-order ODEs by
considering the classification called “separable equations.”

Definition 1.5 Let y′ = f (x, y) be an ODE. We say that y′ = f (x, y) is a separa-

ble ODE provided that there exist functions g and h such that f (x, y) = g (x)h (y).

In general, separable equations are among the easiest types of differential equations
to solve. They are solved by the method of “separation of variables.” To do this, we
start by writing the ODE in the form prescribed by Definition 1.5:

dy
dx

= g (x)h (y) (24)

Move everything involving y to the same side as y′, and everything involving x to
the other side:

1

h (y)

dy

dx
= g (x) (25)

13



We now integrate both sides:

�
1

h (y)
dy =

�
g (x) dx. (26)

From here, we will be able to find an algebraic equation that relates y to x.

Example 1.6 (Exercise 1.3.2) Solve y′ = x2y.

This equation is separable, so we begin by putting it into Leibniz notation:

dy

dx
= x2y. (27)

First, if y = 0, then the equation is satisfied. (This is a trivial, pathological case.)

Assume now that y 6= 0. We move everything involving y to the left:

1

y

dy

dx
= x2. (28)

Now we integrate: �
1

y
dy =

�
x2 dx (29)

This yields

ln |y|+ C1 =
1

2
x2 + C2, (30)

where C1 and C2 are arbitrary constants of integration. This gives us

|y| = e
1
2
x2+C2−C1 . (31)

We note that this means

y = ±eC2−C1e
1
2
x2 . (32)

We define C3 = ±eC2−C1 , which could be any nonzero real number. (In fact, even if

C3 is zero, then the following will still be true.) This gives us

y = C3e
1
2
x2 , (33)

which is the general solution. �
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Note: I was unreasonably careful in this last example. In the solution above, I
held that C1 and C2 are not literally the same, and so I gave them different symbols.
However, the truth is that while they may not be numerically equal, they are still
just constants. For this reason, many mathematicians would just call both of them
by the same symbol. (Usually, they choose “C.”) I tend to avoid this conflation,
but it’s common enough that if you discuss differential equations with anyone, then
you could expect them to not care about any differences between the constants.
Moreover, I won’t deduct points from your work if you don’t bother to give the
constants different names.

Example 1.7 (Exercise 1.3.5) Solve y′ = xy + x+ y + 1.

This isn’t in the right form to separate variables, so we start by re-writing the

ODE:
dy

dx
= x (y + 1) + (y + 1) = (x+ 1) (y + 1) . (34)

Now, we can proceed with separation: if y 6= −1, then

1

y + 1

dy

dx
= x+ 1, (35)

so �
1

y + 1
dy =

�
x+ 1 dx. (36)

This gives us

ln |y + 1| = 1

2
x2 + x+ C1. (37)

Ergo,

|y + 1| = e
1
2
x2+x+C1 , (38)

and so

y + 1 = ±eC1e
1
2
x2+x. (39)

Defining C2 = ±eC1 , this becomes the general solution

y = C2e
1
2
x2+x − 1 . (40)

�
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Example 1.8 (Exercise 1.3.8) Solve dy
dx

= y2+1
x2+1

.

This is a separable equation:

1

y2 + 1

dy

dx
=

1

x2 + 1
. (41)

Thus, �
1

y2 + 1
dy =

�
1

x2 + 1
dx, (42)

and so

tan−1y = tan−1x+ C (43)

Thus, our general solution is

y = tan (tan−1x+ C) . (44)

�

1.3.2 Implicit solutions

In the course of solving ODEs, it may occasionally happen that we come to
an algebraic equation that we cannot solve. In these cases, we simply leave the
equation, calling it an “implicit [general] solution.”

Example 1.9 (Exercise 1.3.1) Solve y′ = x
y
.

We need to realize that
dy

dx
= x

(
1

y

)
. (45)

Therefore,

y
dy

dx
= x, (46)

and so �
y dy =

�
x dx. (47)

This gives us
1

2
y2 =

1

2
x2 + C1. (48)
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Thus,

y2 = x2 + 2C1. (49)

Defining C2 = 2C1,

y2 = x2 + C2 . (50)

is an implicit form of our general solution. �

Example 1.10 (Exercise 1.3.105) Solve y′ = sinx
cos y

.

We separate variables:

cos y
dy

dx
= sinx, (51)

so �
cos y dy =

�
sinx dx. (52)

This gives us

sin y = C − cosx . (53)

At this point, there isn’t much more that we can do to solve for y, so we leave this

and consider it an implicit solution.

Note: it is not necessarily valid to write

y = sin−1 (C − cosx) . (54)

This is because the arcsine function only returns values between −π
2

and π
2
. Unless

it is known that y is in this interval, we cannot be sure of this equation. �

1.3.3 Examples of separable equations

Definition 1.11 A function f is exponential provided that there exists a nonzero

real constant k such that f is a solution of y′ = ky. If k > 0, then f is called an

exponential growth. If k < 0, then f is called an exponential decay.

Example 1.12 Let k be a nonzero real constant. Find the general solution of the

ODE y′ = ky.

17



This is a separable equation:

1

y

dy

dx
= k. (55)

We integrate, getting �
1

y
dy =

�
k dx, (56)

which implies that

ln |y| = kx+ C1. (57)

Thus,

y = ±eC1ekx. (58)

Defining C2 = eC1 gives us the following general solution:

y = C2e
kx . (59)

�
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1.4 Linear equations and the integrating factor

Not all first-order ODEs are separable. For example,

y′ + 6y = ex (60)

is not a separable ODE, since we cannot write y′ as a product of a function that
depends on x and a function that depends on y.

The next classification of first-order ODEs that can be easily solved are lin-
ear first-order ODEs. However, we’ll be dealing with linear ODEs throughout the
course, so we’ll begin by defining what a linear ODE is in general.

Definition 1.13 Given any non-negative integer i, the ith order basic differential

operator is the operator di

dxi
.

(For notation, we often denote f by d0

dx0
f , calling it the “zeroth derivative of f .”)

Definition 1.14 Let f1, f2, ..., fn be mathematical objects, and let S be a set of

mathematical objects. A linear combination of f1, f2, ..., and fn with coefficients in

S is any expression of the form s1f1+ s2f2+ ...+ snfn, where s1, s2, ..., and sn are

elements of S.

For example,
3 sinx+ 2 cosx (61)

is “a linear combination of the functions sinx and cosx with constant coefficients.”
As another example,

x2

(
1 0

3 1

)
+ x−1

(
0 1

4 3

)
+ 2x

(
8 −1
1 0

)
(62)

is “a linear combination of 2× 2 matrices with functions of x as coefficients.”
As another example,

x4 − 3x3 + 6x2 − 2x+ 1 (63)
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is “a linear combination of 1, x, x2, x3, and x4 with constant coefficients.” (In fact,
every nth degree polynomial is, by definition, a linear combination of 1, x, x2, ..., xn

with constant coefficients).

Definition 1.15 A linear differential operator is a linear combination of basic dif-

ferential operators with differentiable functions as coefficients.

For example,

L = x2
d2

dx2
− 2x

d

dx
− x d0

dx0
(64)

is a linear differential operator.

Definition 1.16 A linear ODE is an ODE of the form L (y) = q (x), where L is a

linear differential operator and q is any function of x.

For right now, we’ll only be concerned with first-order linear ODEs in this sec-
tion. These look like

p2 (x) y
′ + p1 (x) y = q (x) , (65)

where p2, p1 and q are functions of x. (Here p2 must not be constantly zero.) An
example could be

xy′ + x2y = ex. (66)

On the other hand, the following are examples of non-linear first-order ODEs:

yy′ = x

(y′)2 = y
1
y′
+ 1

y
= x

. (67)

The method of solving first-order linear ODEs uses the following technique.
First, we put the equation into the following standard form:

y′ + p(x)y = q(x). (68)

Next, we define an “integrating factor” as follows:

ρ (x) = e
�
p(x) dx. (69)
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Note that ρ′(x) = ρ (x) p (x). We multiply this integrating factor by both sides of
the equation:

ρ (x) y′ + ρ (x) p (x) y = ρ (x) q (x) . (70)

Now the left side of the equation is the result of a product rule:

d

dx
(ρ (x) y) = ρ (x) q (x) . (71)

From here, we can integrate both sides with respect to x and solve for y.

Example 1.17 (Exercise 1.4.4) Solve y′ + xy = x.

This one is already in standard form, so we define the integrating factor:

ρ (x) = e
�
x dx = e

1
2
x2 . (72)

We multiply this by both sides:

e
1
2
x2y′ + e

1
2
x2xy = xe

1
2
x2 . (73)

Now we recognize that the left hand side is the derivative of ρ (x) y:

d

dx

(
e

1
2
x2y
)
= xe

1
2
x2 . (74)

We now cancel the derivative by taking the integral of both sides:

e
1
2
x2y =

�
xe

1
2
x2 dx (75)

This gives us

e
1
2
x2y = e

1
2
x2 + C, (76)

and so

y = 1 + Ce−
1
2
x2 (77)

is our general solution. �
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Example 1.18 (Exercise 1.4.165) Solve the following IVP:

x2y′ + xy = 1

y(1) = 3
. (78)

(Assume here that x > 0.)

Before we can define the integrating factor, we first need to put this into standard

form by re-writing the equation so that the coefficient of y′ is 1:

y′ +
1

x
y =

1

x2
(79)

Now we define the integrating factor:

ρ (x) = e
�

1
x

dx = elnx = x. (80)

We multiply this by the entire standard form:

xy′ + y =
1

x
(81)

Again, the left side is a product rule:

d

dx
(xy) =

1

x
. (82)

We integrate to cancel the derivative:

xy =

�
1

x
dx = lnx+ C. (83)

Thus, the general solution is

y =
lnx+ C

x
. (84)

From here, the initial condition implies that

3 = y(1) =
ln 1 + C

1
= C, (85)

22



and so the particular solution that satisfies the IVP is

y = lnx+3
x

. (86)

�

Example 1.19 (Exercise 1.4.163) Solve the following IVP:

y′ + (cosx) y = 2 cos x

y (π) = 5
. (87)

As the ODE is in standard form, we can define the integrating factor:

ρ (x) = e
�
cosx dx = esinx. (88)

Now we multiply:

esinxy′ + esinx (cosx) y = 2esinx cosx. (89)

Again, the left side is the result of the product rule:

d

dx

(
esinxy

)
= 2esinx cosx. (90)

We integrate:

esinxy =

�
2esinx cosx dx = 2esinx + C. (91)

Now we solve for y to get the following general solution:

y = 2 + Ce− sinx. (92)

As for the initial condition:

5 = y (π) = 2 + Ce− sinπ = 2 + C. (93)
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This reveals that C = 3, and so the particular solution that satisfies the IVP is

y = 2esinx + 3 . (94)

�

Example 1.20 (Exercise 1.4.168) Solve y′ = x− 2y. We put this into standard

form, so that y and y′ are on the same side of the equation:

y′ + 2y = x. (95)

We now define the integrating factor:

ρ (x) = e
�
2 dx = e2x. (96)

We multiply this by the standard form:

e2xy′ + 2e2xy = xe2x. (97)

Again, the left side is a product rule:

d

dx

(
e2xy

)
= xe2x. (98)

We integrate:

e2xy =

�
xe2x dx =

1

4
e2x (2x− 1) + C. (99)

Thus, the general solution is

y = 1
4
(2x− 1) + Ce−2x . (100)

�

Example 1.21 (Exercise 1.4.162) Solve xy′ + 2y = 5
√
x.

We first put this in standard form:

y′ +
2

x
y = 5x−

1
2 . (101)
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We define the integrating factor:

ρ (x) = e
�

2
x

dx = e2 ln |x| = |x|2 = x2. (102)

We multiply to get

x2y′ + 2xy = 5x
3
2 . (103)

We recognize that the left side is a result of the product rule:

d

dx

(
x2y
)
= 5x

3
2 . (104)

Integrating,

x2y =

�
5x

3
2 dx = 2x

5
2 + C, (105)

and so our general solution is

y = 2
√
x+ C

x2
. (106)

�
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1.5 Substitution

As in solving integrals, it is sometimes a good strategy to change to a different
variable in order to solve an ODE. The best way to learn this is by example.

1.5.1 Substitution

Example 1.22 (Exercise 1.5.5) Solve y′ = (x+ y − 1)2.

This ODE is neither separable nor linear. In order to solve it, we define the

following substitution:

v(x) = x+ y − 1. (107)

In order to work with this, we need to put y′ in terms of this variable:

v′(x) = 1 + y′ (108)

Thus, the ODE can be re-written as

v′ − 1 = v2. (109)

We can use separation of variables here:

�
1

v2 + 1
dv =

�
dx, (110)

and so

tan−1v = x+ C. (111)

Therefore,

v = tan (x+ C) . (112)

We now reverse the substitution:

x+ y − 1 = tan (x+ C) . (113)
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This gives us the following general solution:

y = 1− x+ tan (x+ C) . (114)

�

Example 1.23 (Exercise 1.5.152) Solve y′ =
√
x+ y − 5.

We make the substitution

v(x) = x+ y − 5

v′ (x) = 1 + y′
. (115)

This allows us to re-write the ODE as

v′ − 1 =
√
v. (116)

By separation of variables:

�
1√
v + 1

dv =

�
dx. (117)

Bu u-substitution, this becomes

2
√
v − ln

(√
v + 1

)
= x+ C. (118)

At this point, we reverse the substitution to get an implicit general solution:

2
√
x+ y − 5− ln

(√
x+ y − 5 + 1

)
= x+ C . (119)

�

Example 1.24 (Exercise 1.5.104) Solve 2yy′ = ey
2−x2 + 2x.

We define the substitution

v (x) = y2 − x2

v′ (x) = 2yy′ − 2x
. (120)
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From here, the ODE becomes

v′ = ev. (121)

This can be solved by separation of variables:

�
e−v dv =

�
dx. (122)

Therefore,

−e−v = x+ C1, (123)

where C1 is an arbitrary real constant. Defining C2 = −C1, this becomes

e−v = C2 − x. (124)

Solving for v gives us

v = − ln
∣∣C2 − x

∣∣. (125)

We now reverse the substitution to get an implict form of the general solution:

y2 − x2 = − ln
∣∣C2 − x

∣∣ . (126)

�

1.5.2 Bernoulli equations

Some substitution problems are more predictable.

Definition 1.25 A Bernoulli differential equation is any ODE that can be written

in the form L (y) = q (x) yn, where L is a linear differential operator, and q is any

differentiable function.

Bernoulli equations can always be solved by making the substitution v = y1−n.
Doing this will allow you to re-write the equation as a first-order linear ODE.

Example 1.26 (Exercise 1.5.151) Solve x2y′ = y2 + 3xy.
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First, we re-write this as

y′ − 3

x
y =

1

x2
y2. (127)

This is a Bernoulli equation with n = 2. We make the following substitution:

v (x) = y1−2 = y−1

v′ (x) = −y−2y′
. (128)

The latter equation implies that v′ = −v2y′, or in other words, y′ = −v−2v′. Now

we can re-write the equation as

−v−2v′ − 3

x
v−1 =

1

x2
v−2. (129)

We multiply everything by −v2 to get

v′ +
3

x
v =

1

x2
, (130)

which is a first-order linear ODE in standard form. Using the integrating factor, we

get the general solution

v =
C

x3
+

1

2x
. (131)

We now reverse the substitution:

y−1 =
C

x3
+

1

2x
, (132)

which gives us the general solution

y = 1
C
x3

+ 1
2x

= 2x3

C+x2
. (133)

�

Example 1.27 (Exercise 1.5.158) Solve y4y′ = −3x2y5 + x2.

We re-write this as

y′ + 3x2y = x2y−4. (134)
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This is a Bernoulli equation with n = −4. From here, we make the substitution

v(x) = y1−(−4) = y5.

v′(x) = 5y4y′.
(135)

The latter equation gives us y′ = 1
5
y−4v′ = 1

5
v−

4
5v′, and so the equation can be

re-written as
1

5
v−

4
5v′ + 3x2v

1
5 = x2v−

4
5 . (136)

We multiply everything by 5v
4
5 to get

v′ + 15x2v = 5x2, (137)

which is a first-order linear ODE in standard form. We use the method of the

integrating factor to get the general solution

v =
1

3
+ Ce−5x

3

. (138)

We reverse the substitution to get

y5 =
1

3
+ Ce−5x

3

, (139)

and so the general solution is

y = 5

√
1
3
+ Ce−5x3 . (140)

�

1.5.3 Homogeneous equations

WARNING: The term “homogeneous equation” has more than one meaning in
the theory of ODEs. I don’t make the rules. This section is about “homogeneous
substitutions.” We’ll deal with an unrelated topic, “linear homogeneous equations,”
later.
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A homogeneous substitution is a substitution of the form v = y
x
. This is useful

whenever an ODE can be written as y′ = f
(
y
x

)
, for some function f .

Example 1.28 (Exercise 1.5.151) Solve x2y′ = y2 + 3xy.

This ODE can be re-written as

y′ =
(y
x

)2
+ 3

y

x
. (141)

We make the substitution v = y
x
. This gives y = vx, and so y′ = v′x + v. This

allows us to rewrite the ODE as

v′x+ v = v2 + 3v, (142)

or

v′x = v2 + 2v. (143)

This can be solved by separation of variables, giving the general solution

v = − 2x2

x2 − C
, (144)

where C 6= 0. We reverse the substitution to get

y

x
= − 2x2

x2 − C
, (145)

and so the general solution is

y = − 2x3

x2−C . (146)

�

Example 1.29 (Exercise 1.5.155) Solve the IVP

xy′ = 2x+ 3y

y (−1) = 3
. (147)
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We re-write the equation as

y′ = 2 + 3
y

x
. (148)

We make the substitution v = y
x
, so that y = vx, and so y′ = v′x+ v. Thus,

v′x+ v = 2 + 3v. (149)

We re-write this as

v′ − 2

x
v =

2

x
, (150)

which is a linear first-order ODE. We use the method of the integrating factor to get

v = Cx2 − 1. (151)

From here, we reverse the substitution to get the general solution

y = x
(
Cx2 − 1

)
. (152)

To find the particular solution that solves the IVP, we use the initial condition:

3 = y (−1) = (−1)
(
C(−1)2 − 1

)
= 1− C. (153)

Ergo, C = −2, and so the solution of the IVP is

y = x (−2x2 − 1) . (154)

�

Example 1.30 Solve 2xyy′ = 4x2 + 3y2.

We re-write the equation as

y′ = 2
x

y
+

3

2

y

x
. (155)

We make the homogeneous substitution v = y
x
, so that y = vx, and so y′ = v′x+ v.

32



This gives us

v′x+ v =
2

v
+

3

2
v, (156)

and so

v′x =
2

v
+
v

2
=

4 + v2

2v
. (157)

This can be done by separation of variables, giving us

v2 = C|x| − 4. (158)

Reversing the substitution now gives us

y2 = x2 (C|x| − 4) . (159)

�
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1.6 Autonomous equations

We’ll now discuss a type of ODE in which the graphs of the solution curves are
fairly predictable.

Definition 1.31 A first-order ODE dy
dx

= f (x, y) is called an autonomous ODE

provided that ∂f
∂x

= 0. (In other words, the value of f (x, y) does not depend on x.)

These ODEs can always be solved by separation of variables (provided that 1
f(y)

can be integrated). If we were to graph all of the solution curves of such an ODE,
certain of them would stand out more than others.

Definition 1.32 Let dy
dt

= f (y) be an autonomous ODE. An equilibrium solution

of the ODE is a solution of the form y(t) = k, where k is any constant value such

that f (k) = 0.

The equilibrium solutions of an autonomous ODE are constant solutions that parti-
tion the plane into segments. By Picard’s theorem, no solution curves can cross, so
no solution curve will be able to pass from one of these segments to another.

1.6.1 Sketching qualitatively-different solutions to autonomous DEs

We’ll build up to drawing the solution curves to an autonomous ODE one step
at a time. First, we’ll start with the so-called “phase diagram.”

Definition 1.33 Let y′ = f (y) be an autonomous ODE. The phase diagram of the

ODE is a number line that illustrates the value of y′ on each side of the equilibrium

solutions.

For a phase diagram, we simply draw a vertical number line, mark the equilibrium
solutions, and then draw arrows to indicate whether y′ is positive or negative be-
tween those equilibrium solutions.

Example 1.34 Sketch the phase diagram of the autonomous ODE y′ = y2−6y+5.

First, we need to determine the equilibrium solutions, so we must solve the

equation y2−6y+5 = 0. By solving this quadratic, we get the equilibrium solutions

34



y(t) = 1 and y(t) = 5. Now, for y-values less than 1, y′ = y2 − 6y + 5 > 0, so we

draw an upward arrow in the region where y < 1. For y-values between 1 and 5,

y′ = y2 − 6y + 5 < 0, so we draw a downward arrow in that region. For y-values

greater than 5, y′ = y2 − 6y + 5 > 0, so we draw an upward arrow in that region.

This gives the following phase diagram.

�

Definition 1.35 Let y′ = f(y) be an autonomous ODE, and let y(t) = k be an

equilibrium solution. We say that y(t) = k is a stable equilibrium solution provided

that both arrows on either side of the solution in the phase diagram point toward

the solution. If this is not the case, we say that y(t) = k is an unstable equilibrium

solution.

In our example above, y(t) = 1 is stable, while y(t) = 5 is unstable.
The phase diagram can serve as the y-axis for the graph of all of the solution

curves.

Example 1.36 Sketch all solution curves of the autonomous ODE y′ = y2−6y+5.

The phase diagram above forms the y-axis of the graph. The horizontal axis is t:

35



[Diagram]

�

Example 1.37 Sketch all solution curves of the autonomous ODE y′ = y2 − y.

We note that y(t) = 0 and y(t) = 1 are equilibrium solutions. The solution

curves look like

[Diagram]

�

Example 1.38 Sketch all solution curves of the autonomous ODE y′ = (y − 1)2.

The only equilibrium solution of this ODE is y(t) = 1. The solution curves look

like

[Diagram]

�

Example 1.39 Let y(t) denote the population of a certain species at time t. Sup-

pose that the population satisfies the ODE y′ = −y3 +6y2− 8y. What are the min-

imum viable population and the maximum sustainable population of the species?

First, we note that

y′ = −y(y − 1)(y − 5). (160)

This gives the equilibrium solutions y(t) = 0, y(t) = 2 and y(t) = 4. We examine

the solution curves:

[Diagram]

The solution curves indicate that extinction is guaranteed if 0 ≤ y(0) < 2. Thus,

the minimum viable population is 2 , in whatever units y is measured in. On the

other hand, if y(0) > 4, then the population will gradually decrease to 4. Thus, the

maximum sustainable population is 4 . �
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2 Higher order linear ODEs

2.0 Background: Some complex analysis and linear algebra

Before moving on to higher order ODEs, we should review some math that is
used in their study.

2.0.1 Euler’s formula and complex solutions of real ODEs

As you probably learned in high school, in order to solve some equations involv-
ing real numbers, it is necessary to introduce objects called “imaginary numbers.”

Definition 2.1 The field of complex numbers is the Cartesian coordinate plane with

the following definitions of addition and multiplication:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc)
.

You might be wondering why we would define multiplication in such an odd way.
The truth is that this is the only definition of multiplication that would allow for the
usual properties of addition, subtraction, multiplication and division by all nonzero
numbers.

Every complex number (a, b) can be written as

(a, b) = a (1, 0) + b (0, 1) . (161)

The usual notation for complex numbers is to write (1, 0) as “1” and (0, 1) as “i,”
so that the number above can be written as

a+ bi. (162)

With these notations, it turns out that i2 = −1, and so we often refer to i as “
√
−1.”

Definition 2.2 Given a complex number z = a+bi, where a and b are real numbers,

we call a the real part of z and b the imaginary part of z.
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The following theorem is one of the most important equations in all of mathe-
matics.

Theorem 2.3 (Euler’s formula) Given any real number θ,

eiθ = cos θ + i sin θ. (163)

Proof Euler’s formula follows from the following representations of the exponen-
tial, the cosine, and the sine as power series:

ex =
∞∑
n=0

xn

n!

cosx =
∞∑
n=0

(−1)n x2n

(2n)!

sinx =
∞∑
n=0

(−1)n x2n+1

(2n+1)!

. (164)

(These representations come from the Maclaurin series, which is a topic of Calculus
II.) Now, note that for any non-negative integer n,

in =

(−1)
n
2 if n is even

(−1)
n−1
2 i if n is odd

. (165)

Based on this, for any real number θ,

eiθ =
∞∑
n=0

(iθ)n

n!
=
∞∑
n=0

in
θn

n!
=
∞∑
n=0

in
θn

n!︸ ︷︷ ︸
n is even

+
∞∑
n=0

in
θn

n!︸ ︷︷ ︸
n is odd

=
∞∑
n=0

(−1)
n
2
θn

n!︸ ︷︷ ︸
n is even

+
∞∑
n=0

(−1)
n−1
2 i

θn

n!︸ ︷︷ ︸
n is odd

. (166)

Now, if n is even, then there exists an integer k such that n = 2k. At the same time,
if n is odd, then there exists an integer l such that n = 2l + 1. Therefore, we can
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re-write this as

eiθ =
∞∑
n=0

(−1)
n
2
θn

n!︸ ︷︷ ︸
n=2k

+
∞∑
n=0

(−1)
n−1
2 i

θn

n!︸ ︷︷ ︸
n=2l+1

=
∞∑
n=0

(−1)k θ2k

(2k)!︸ ︷︷ ︸
n=2k

+
∞∑
n=0

(−1)li θ2l+1

(2l + 1)!︸ ︷︷ ︸
n=2l+1

=
∞∑
k=0

(−1)k θ2k

(2k)!
+ i

∞∑
l=0

(−1)l θ2l+1

(2l + 1)!

= cos θ + i sin θ. (167)

�

(Note: I have given this proof in order to assuage your doubts, not because you will
need to be able to reproduce it on any assignment or test.)

Euler’s formula allow us to convert between two different representations of a
complex number: either as reiθ, where r is a real number (polar form), or as a linear
combination of a real and imaginary part (Cartesian form).

Example 2.4 Find the Cartesian forms of the following complex numbers:

(i) z = 2ei
π
4

We apply Euler’s formula:

z = 2
(
cos
(π
4

)
+ i sin

(π
4

))
= 2

(√
2

2
+ i

√
2

2

)
=
√
2 + i

√
2 . (168)

(ii) z = eiπ

(iii) z = 4e−i
π
3

(iv) z =
√
i.

�
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2.0.2 Linear independence

As mentioned in Section 1.4, a “linear combination” of finitely many mathemat-
ical objects f1, f2, ..., fn refers to an expression of the form s1f1+s2f2+ ...+snfn.
One of our primary concerns will be linear combinations of functions with con-
stants as coefficients.

Consider the following equation:

s1f1 (x) + s2f2 (x) + ...+ snfn (x) = 0. (169)

Do there exist constants s1, s2, ..., sn that satisfy this equation for all values of x?
Well, yes. If s1 = s2 = ... = sn = 0, then certainly this equation is satisfied.

This is called the “trivial solution” of the equation above.
Alright, so, a harder question would be whether there exist constants that satisfy

the above equation that are not all zero. For example, do there exist constants
s1, s2, s3, of which some are nonzero, such that

s1 sinx+ s2 cosx+ s3e
x = 0 (170)

for all values of x? The answer to this question is dependent upon the functions
being considered. Those sequences of functions which do have such constants are
called “linearly dependent.”

Definition 2.5 Let f1, f2, ..., fn be functions of x. We say that f1, f2, ..., fn are

linearly dependent provided that there exist constants s1, s2, ..., sn which are not

all zero such that s1f1 (x) + s2f2 (x) + ... + snfn (x) = 0 for all values of x. We

say that the functions are linearly independent provided that they are not linearly

dependent.

To rephrase, f1, f2, ..., fn are linearly independent if and only if the only con-
stants s1, s2, ..., sn such that s1f1 (x) + s2f2 (x) + ... + snfn (x) = 0 for all x are
the trivial solution.
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2.0.3 Determinants

Definition 2.6 An m× n matrix (pronounced “m by n matrix”) is an assignment

of some mathematical objects to each ordered pair (i, j), where 1 ≤ i ≤ m and

1 ≤ j ≤ n. We say that an m× n matrix has m rows and has n columns.

Matrices are generally visualized as rectangles made up of squares, each one
labeled by (i, j), with larger values for i below smaller ones, and larger values for
j to the right of smaller ones. In each square, the value corresponding to (i, j) is
placed. (In other words, the value assigned to (i, j) is placed in the cell contained
by the ith row and the jth column.)

For example, a 3× 4 matrix of numbers making the following assignments:

(1, 1) 1

(1, 2) 5

(1, 3) −4
3

(1, 4) 4

(2, 1) 0

(2, 2) 4

(2, 3) −2
(2, 4) 3

(3, 1)
√
2

(3, 2) 6

(3, 3) e2

(3, 4) π

(171)

would be visualized like this:

1 5 −4
3

4

0 4 −2 3
√
2 6 e2 π

. (172)

However, we need not bother ourselves with drawing lines dividing the cells. In-
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stead, we’ll just write the assignments like this: 1 5 −4
3

4

0 4 −2 3√
2 6 e2 π

 or

 1 5 −4
3

4

0 4 −2 3√
2 6 e2 π

. (173)

We define two matrices as being equal if they are the same size and for each
ordered pair (i, j), the two matrices associate (i, j) to equal mathematical objects.
Thus, two matrices are equal only if all of their entries agree:(

1 0 9

0 6 7

)
6=

(
1 0 9

0 6 6

)
. (174)

A common theme in mathematics is drawing information from expressions by
associating simpler expressions to them.

For example, given a quadratic equation ax2 + bx + c = 0, how can we tell
whether the solutions will be real, non-real, or repeated? In this case, we look at
the associated “discriminant,” the expression b2− 4ac, and study it in order to learn
about the original equation. Just from this single number, we can tell whether the
equation has two real solutions (in the case that the discriminant is positive), and
whether they are rational (if the discriminant is a nonzero perfect square) or irra-
tional (if the discriminant is not a perfect square), one real solution (in the case that
the discriminant is zero), or two non-real solutions (in the case that the discriminant
is negative).

In this section, we’ll see what we can learn about a square matrix from an asso-
ciated expression known as its “determinant:”

Definition 2.7 Let A be an n× n (square) matrix. The determinant of A is defined

recursively as follows.

(i) If n = 2, and

A =

(
a b

c d

)
, (175)

then the determinant det(A) = ad− bc.
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(ii) If n > 2 and

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...

an1 an2 ... ann

 , (176)

then the determinant

det(A) =
n∑
i=1

(−1)i+1a1i det(M1i), (177)

where M1i is the submatrix defined via

M1i =


a21 a22 ... a2(i−1) a2(i+1) ... a2n

a31 a32 ... a3(i−1) a3(i+1) ... a3n
...

... . . . ...
... . . . ...

an1 an2 ... an(i−1) an(i+1) ... ann

 . (178)

This formula may seem somewhat complicated, and that’s because it is. Thankfully,
for this document, we will only consider determinants of 2 × 2 or 3 × 3 matrices,
since computing determinants for larger matrices is intellectually easy, but deeply
tiresome.

As the definition says, for a 2× 2 matrix,

A =

(
a b

c d

)
, (179)

the determinant is just

det(A) =

∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc. (180)

On the other hand, for a 3× 3 matrix,

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (181)
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the determinant is

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a12
∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ .
(182)

To summarize: one takes each entry along the first row, with alternating ± signs,
multiplies them by the determinant of the submatrix obtained by deleting the row
and the column of the entry in question, and then adding it all up. With some
practice, you’ll see that the process is easy, but it can get very tedious.

Example 2.8 Compute the following determinants:
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∣∣∣∣∣1 2

0 5

∣∣∣∣∣ = 5∣∣∣∣∣1 1

1 1

∣∣∣∣∣ = 0∣∣∣∣∣−1 3

1 4

∣∣∣∣∣ = −7∣∣∣∣∣1 2

3 4

∣∣∣∣∣ = −2∣∣∣∣∣∣∣
1 1 1

0 1 1

0 0 1

∣∣∣∣∣∣∣ = 1

∣∣∣∣∣1 1

0 1

∣∣∣∣∣− 1

∣∣∣∣∣0 1

0 1

∣∣∣∣∣+ 1

∣∣∣∣∣0 1

0 0

∣∣∣∣∣ = 1

∣∣∣∣∣∣∣
2 −1 1

0 1 1

1 2 2

∣∣∣∣∣∣∣ = −2∣∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣
1 2 3

0 4 5

0 0 6

∣∣∣∣∣∣∣ = 24

∣∣∣∣∣∣∣
1 0 0

2 3 0

4 5 6

∣∣∣∣∣∣∣ = 18

∣∣∣∣∣∣∣
2 0 0

0 3 0

0 0 5

∣∣∣∣∣∣∣ = 30

∣∣∣∣∣∣∣
1 0 1

0 1 0

1 0 1

∣∣∣∣∣∣∣ = 0

. (183)
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2.0.4 Wronskians

An important special case of determinants is the concept of the Wronskian.

Definition 2.9 Let f1, f2, ..., fn be nth order differentiable functions. The Wron-

skian of f1, f2, ..., fn is the determinant

W (f1, f2, ..., fn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 (x) f2 (x) ... fn (x)

f ′1 (x) f ′2 (x) ... f ′n (x)

f ′′1 (x) f ′′2 (x) ... f ′′n (x)
...

... . . . ...

f1
(n−1) (x) f2

(n−1) (x) ... fn
(n−1) (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

[Lecture over; continued from here in the next lecture]

As the following theorem indicates, computing the Wronskian of a sequence of
functions can give some insight as to whether they are linearly independent.

Theorem 2.10 Let f1, f2, ..., fn be nth order differentiable functions. If the Wron-

skian W (f1, f2, ..., fn) 6= 0, then f1, f2, ..., fn are linearly independent.

Example 2.11 Determine whether the following sequences of functions are lin-

early independent:

(i) sinx, cosx.

(ii) ex, e2x, e4x.

(iii) sin2x, cos2x, cos (2x).

(iv) −1, tan2x,−sec2x.

(v) 1, t, t2.

(vi) x2, x|x|.
�
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2.1 Second order linear ODEs

Recall from Section 1.4 that a linear differential operator is a linear combination
of derivative operators with functions as coefficients. For example,

L = ex
d2

dx2
+ 2

d

dx
− x2 d0

dx0
(184)

is a linear differential operator. An ODE is called linear if it can be written in the
form Ly = q (x), where L is a linear differential operator and q is any function.

Definition 2.12 Let Ly = q(x) be a linear ODE. The inhomogeneous term of the

ODE is the function q (x).

In other words, the inhomogeneous term of a linear ODE is the sum of all the
functions that are not being multiplied by y or a derivative of y. For example:

y′′ + x2y′ + 9y = ex inhomogeneous term: ex

y′ − y = sinx inhomogeneous term: sinx

y′′ + y = 0 inhomogeneous term: 0
y′′ − 1

x
y′ + 1

x2
y − tan−1x+ x = 0 inhomogeneous term: tan−1x− x

. (185)

WARNING: As mentioned before, the following term has nothing to do with
the so-called “homogeneous substitution” mentioned in Section 1.5.

Definition 2.13 A linear ODE is called homogeneous provided that its inhomoge-

neous term is the constant function 0.

For the time being, we will concentrate on homogeneous linear ODEs. We’ll dis-
cuss non-homogeneous linear ODEs later.

The following theorems are essential to understanding the theory of linear ho-
mogeneous ODEs.

Theorem 2.14 (Superposition) Let Ly = 0 be a linear homogeneous ODE. If

y1, y2, ..., yn are solutions of Ly = 0, then any linear combination of y1, y2, ..., yn
with constants as coefficients is also a solution of Ly = 0.
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For example, y1 = sinx and y2 = cosx are both solutions to the linear homo-
geneous ODE y′′ + y = 0. For this ODE, the theorem simply states that, given
any real constants c1 and c2, the function y = c1 sinx + c2 cosx is also a solution.
Further, the following theorem indicates that these linear combinations are the only

solutions, as long as the solutions are linearly independent.

Theorem 2.15 (Solution theorem for linear homogeneous ODEs) Let Ly = 0 be

an nth order linear homogeneous ODE. If y1, y2, ..., yn are linearly independent

solutions of Ly = 0, then every solution of Ly = 0 can be written in the form

y = c1y1 + c2y2 + ...+ cnyn for some constants c1, c2, ..., cn.

In other words, if we can find two linearly independent solutions of a second order
linear homogeneous ODE, then the general solution is just all of the linear combina-
tions of those two. For this reason, we often call the linearly independent solutions
“basis solutions.”

One more theorem about linear ODEs is that a unique solution of associated
IVPs will always exist, given some conditions.

Theorem 2.16 (Existence and uniqueness theorem for IVPs associated to linear

ODEs) Suppose that p0, p1, ..., pn−1 are continuous on some interval I on the real

line. Suppose that a is a real number in I , and b0, b1, ..., bn−1 are constants. Given

any function f , the linear ODE

y(n) + pn−1 (x) y
(n−1) + pn−2 (x) y

(n−2) + ...+ p1 (x) y
′ + p0 (x) y = f (x)

has exactly one solution defined on the interval I that satisfies the initial conditions

y (a) = b0

y′ (a) = b1

y′′ (a) = b2
...

y(n−1) (a) = bn−1

.
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2.2 Constant coefficient second order linear ODEs

As it turns out, even taking the subset of ODEs that are “second order,” “linear,”
and “homogeneous” is still too broad of a problem to easily approach. We’ll need
one more condition: constant coefficients. In other words, for the time being, we
will demand that every linear ODE be writable in the form

p2y
′′ + p1y

′ + p0y = 0, (186)

where p0, p1, and p2 are constants.

2.2.1 Solving constant coefficient equations

The strategy for solving a second order linear homogeneous ODE with constant
coefficients is as follows. Given the ODE in the form

ay′′ + by′ + cy = 0, (187)

propose the solution y = erx for some constant r. When we put this information in,
the equation becomes

ar2erx + brerx + cerx = 0

erx (ar2 + br + c) = 0
. (188)

At this point, we can recognize that erx 6= 0 for all x, so this is equivalent to the
equation

ar2 + br + c = 0, (189)

a quadratic equation. This is called the “characteristic equation” of the ODE.

Definition 2.17 Let any(n) + an−1y
(n−1) + ...+ a1y

′ + a0y = 0 be a linear homo-

geneous ODE with constant coefficients. The characteristic equation of the ODE is

the nth degree polynomial equation

anr
n + an−1r

n−1 + ...+ a1r + a0 = 0. (190)

Each root of the characteristic equation will describe a basis solution. We’ll use this
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to find the general solution.

Example 2.18 (Exercise 2.2.6) Find the general solution of the linear homoge-

neous ODE 2y′′ + 2y′ − 4y = 0.

To do this, we’ll first find the characteristic equation:

2r2 + 2r − 4 = 0. (191)

This can be factored as

2 (r − 1) (r + 2) = 0. (192)

From this we get the roots r1 = 1, and r2 = −2. This describes two different

solutions of the ODE:
y1 = ex

y2 = e−2x
. (193)

It turns out that these functions are linearly independent, as we can see by comput-

ing the Wronskian:

W
(
ex, e−2x

)
=

∣∣∣∣∣ex e−2x

ex −2e−2x

∣∣∣∣∣ = −2e−x − e−x = −3e−x 6= 0. (194)

(In fact, any family of functions of the form ekx with different values of k will be

linearly independent, so we need not check this every time.) By the solution theorem

for linear homogeneous ODEs, the general solution is

y = c1e
−x + c2e

2x . (195)

�

As the previous example illustrates, the general solution of a second order linear
homogeneous ODE will have two arbitrary real constants. Thus, any IVP involving
a second order linear homogeneous ODE will require two different initial condi-
tions.
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Example 2.19 Solve the following IVP:

y′′ + 5y′ + 6 = 0

y(0) = 1

y′(0) = −1
. (196)

Again, we first need to solve the characteristic equation:

r2 + 5r + 6 = 0. (197)

This factors as

(r + 2) (r + 3) = 0, (198)

and so the roots are r1 = −2 and r2 = −3. This gives rise to two different solutions:

y1 = e−2x

y2 = e−3x
. (199)

Again, these are linearly independent, so the general solution is

y = c1e
−2x + c2e

−3x. (200)

To solve the IVP, we first note that y′ = −2c1e−2x − 3c2e
−3x and apply the initial

conditions:
1 = y(0) = c1e

0 + c2e
0 = c1 + c2

−1 = −2c1e0 − 3c2e
0 = −2c1 − 3c2

. (201)

Now finding c1 and c2 comes down to solving this system of equations. The solution

is c1 = 2, c2 = −1, and so the particular solution that solves the IVP is

y = 2e−2x − e−3x . (202)

�

In the previous examples, the characteristic equation always had distinct real
roots. What happens when the roots are repeated? In this case, we end up with an
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equation that looks like
(r − k)2 = 0, (203)

Giving only the solution y1 = ekx. According to the solution theorem for linear
homogeneous ODEs, we require one more linearly independent solution to find the
general solution. This is acquired by simply multiplying by a factor of x: y2 = xekx.

Example 2.20 (Exercise 2.2.102) Find the general solution of y′′ − 6y′ + 9y = 0.

The characteristic equation is

r2 − 6r + 9 = 0. (204)

This factors as

(r − 3)2 = 0, (205)

giving the single root r = 3, with multiplicity 2. We acquire the solution y1 = e3x,

and to find the other basis solution, we multiply by a factor of x: y2 = xe3x. The

Wronskian shows that these are linearly independent:

W
(
e3x, xe3x

)
=

∣∣∣∣∣ e3x xe3x

3e3x (3x+ 1) e3x

∣∣∣∣∣ = (3x+ 1) e6x − 3xe6x = e6x 6= 0. (206)

Thus, the solution theorem for linear homogeneous ODEs indicates that the general

solution is

y = c1e
3x + c2xe

3x = (c1 + c2x) e
3x . (207)

�

Example 2.21 (Exercise 2.2.8) Solve the IVP

y′′ − 8y′ + 16y = 0

y(0) = 2

y′(0) = 0

. (208)

The characteristic equation is

r2 − 8r + 16 = 0, (209)
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which factors as

(r − 4)2 = 0. (210)

This gives us the single root r = 4, with multiplicity 2. This gives rise to the basis

solution y1 = e4x, but the other basis solution is found by multiplying by another

factor of x: y2 = xe4x. Thus, the general solution is

y = c1e
4x + c2xe

4x = (c1 + c2x) e
4x. (211)

To solve the IVP, we note that y′ = 4 (c1 + c2x) e
4x+c2e

4x = (4c1 + c2 + 4c2x) e
4x

and write the system of equations

2 = (c1 + 0) e0 = c1

0 = (4c1 + c2 + 0) e0 = 4c1 + c2
. (212)

This gives us the solution c1 = 2. c2 = −8, and so the particular solution that

solves the IVP is

y = (2− 8x) e4x . (213)

�

2.2.3 Complex roots

What if the characteristic equation has no real roots? In this case, we take the
complex roots and use Euler’s formula to write the solution in Cartesian form. We
then apply the following theorem:

Theorem 2.22 If Ly = 0 is a linear homogeneous ODE with constant, real-valued

coefficients, and u (x) + iv (x) is a complex solution of the ODE, then u (x) and

v (x) are solutions of the ODE.

Example 2.23 Find the general solution of the ODE y′′ + 9y = 0.

We first examine the characteristic equation:

r2 + 9 = 0. (214)
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This has no real roots, but has the imaginary roots r = ±3i. Take one of these use

Euler’s formula to write erx in Cartesian form:

e3ix = cos (3x) + i sin (3x) . (215)

Now, by the theorem above, since cos (3x) + i sin (3x) are solutions, y1 = cos (3x)

and y2 = sin (3x) are solutions. Ergo, by the solution theorem for linear homoge-

neous ODEs, the general solution is

y = c1 cos (3x) + c2 sin (3x) . (216)

�

Example 2.24 Find the general solution of the ODE y′′ + y′ + y = 0.

The characteristic equation is

r2 + r + 1 = 0. (217)

By the quadratic formula, the solutions of this equation are

r =
−1±

√
12 − 4 (1) (1)

2 (1)
=
−1± i

√
3

2
. (218)

We take one of these and write erx using Euler’s formula:

e−
1+i
√
3

2
x = e−

1
2
x−i

√
3

2
x = e−

1
2
xe
i
(
−
√
3

2
x
)

= e−
1
2
x

(
cos

(
−
√
3

2
x

)
+ i sin

(
−
√
3

2
x

))

= e−
1
2
x cos

(√
3

2
x

)
− ie−

1
2
x sin

(√
3

2
x

)
. (219)

By the theorem, y1 = e−
1
2
x cos

(√
3
2
x
)

and y2 = −e− 1
2
x sin

(√
3
2
x
)

are solutions,
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so the general solution is

y = c1e
− 1

2
x cos

(√
3
2
x
)
+ c2e

− 1
2
x sin

(√
3
2
x
)
. (220)

�
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2.3 Higher order linear ODEs

2.3.2 Constant coefficient higher order ODEs

The procedure for solving a linear homogeneous ODE with constant coefficients
of order larger than two is very much the same as the case for the second order
equation: find the characteristic equation, factor it, and use the roots to construct as
many basis solutions as the order of the ODE.

Example 2.25 (Exercise 2.3.1) Find the general solution of y(3)− y′′+ y′− y = 0.

Example 2.26 (Exercise 2.3.2) Find the general solution of y(4)− 5y(3)+6y′′ = 0.

Example 2.27 (Exercise 2.3.3) Find the general solution of y(3) + 2y′′ + 2y′ = 0.

Example 2.28 (Exercise 2.3.11) Find the general solution of y(5) − y(4) = 0.

Example 2.29 Solve the IVP

2y(3) − 3y′′ − 2y′ = 0

y(0) = 1

y′(0) = 0

y′′(0) = 1

. (221)
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2.5 Nonhomogeneous equations

In the case that we are dealing with a linear homogeneous ODE with constant
coefficients which is not homogeneous, the situation is a bit more complicated.

2.5.1 Solving nonhomogeneous equations

First, we need to introduce some terminology.

Definition 2.30 Let Ly = f (x) be a linear ODE. The associated homogeneous

ODE is the linear homogeneous ODE Ly = 0.

Definition 2.31 Let Ly = f (x) be a linear ODE. The complementary solution of

the ODE is the general solution of the associated homogeneous ODE.

Of course, if a linear ODE is homogeneous, then it is its own associated homoge-
neous ODE. Note the following linguistic annoyance: the complementary solution
of a non-homogeneous ODE is a solution of its associated homogeneous ODE. This
means that the complementary solution of a non-homogeneous ODE is not actually

a solution of the ODE.

The Achilles’ tendon of the method for solving linear homogeneous ODEs is
the following theorem.

Theorem 2.32 (Solution theorem for linear non-homogeneous ODEs) Suppose that

Ly = f (x) is a linear ODE. Let yc be the complementary solution of the ODE, and

let yp be any particular solution of the ODE whatsoever. The general solution of

the ODE is y = yc + yp.

Therefore, as long as the associated homogeneous equation can be solved, and a
single particular solution can be found, the ODE can be solved. We’ve already
discussed how to solve the associated homogeneous equation. All that’s left is how
to figure out a particular solution.
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2.5.2 Undetermined coefficients

The method we’ll use for solving a linear non-homogeneous ODE with constant
coefficients is called the “method of undetermined coefficients.” (We’ll also discuss
Laplace transform methods, but not until the next chapter.) The method works for
any non-homogeneous ODE Ly = f (x), as long as the inhomogeneous term is a
product and/or sum of only exponentials, polynomials, sines and/or cosines.

The method of undetermined coefficients is as follows: we will create a guess as
to what the particular solution is, calling it yT . This guess will have some unknown
constants in it: the “undetermined coefficients.” The guess is completely based on
the inhomogeneous term. It goes like this:

If the inhomogeneous term is: then make the guess yT =

ekx, Aekx.

a polynomial of degree m, Amx
m + Am−1x

m−1 + ...+ A1x+ A0.

sin (kx) or cos (kx) , A cos (kx) +B sin (kx) .

a product of the forms above, a product of the guesses above.
a sum of the forms above, a sum of the forms above.

(222)

Here are some examples of linear non-homogeneous ODEs, and the initial guess
that should be made to solve them:

y′′ − 2y′ − 3y = e4x yT (x) = Ae4x

y(4) − 2y′′ + y = cos(3x) yT (x) = A cos(3x) +B sin(3x)

y′′ − y′ − 2y = x2 + 4 yT (x) = Ax2 +Bx+ C

y′′ + 5y′ + 6y = (x+ 1)3 yT (x) = Ax3 +Bx2 + Cx+D

y(3) − 16y′′ + 64y′ = ex cosx yT (x) = (A cosx+B sinx) ex

y′′ + 3y′ + 2y = ex (x2 + cos(2x)) yT (x) = (Ax2 +Bx+ C +D cos(2x) + E sin(2x)) ex

y′′ + 2y′ + 5y = x2ex yT (x) = (Ax2 +Bx+ C) ex

y(4) + 32y′′ + 256y = x2 sinx yT (x) = (Ax2 +Bx+ C) (D cosx+ E sinx)

y(4) − y = cos(2x)− x yT (x) = A cos(2x) +B sin(2x) + Cx+D

.

(223)
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Example 2.33 Find the general solution of y′′ + 3y′ + 4y = 3x+ 2.

y = c1e
− 3

2
x sin

(√
7
2
x
)
+ c2e

− 3
2
x cos

(√
7
2
x
)
+ 3

4
x− 1

16
. (224)

�

Example 2.34 Find the general solution of y′′ + 2y′ + 2y = sin (3x).

y = c1e
−x sinx+ c2e

−x cosx− 7
85
sin (3x)− 6

85
cos (3x) . (225)

�

Example 2.35 Find the general solution of y′′ − 3y′ + 2y = 3e−x − 10 cos (3x).

y = c1e
x + c2e

2x + 1
2
e−x + 7

13
cos (3x) + 9

13
sin (3x) . (226)

�

There is a situation in which the guess will not work properly. This occurs
whenever there is a nonzero function which could be described by both the comple-
mentary solution and the guess. This is called “duplication.” In order to deal with
this situation, we simply multiply by factors of x until duplication no longer occurs.

Example 2.36 (Exercise 2.5.3) Find the general solution of y′′ − 4y′ + 4y = e2x.

y = c1e
2x + c2xe

2x + 1
2
x2e2x . (227)

�

Example 2.37 (Exercise 2.5.4) Solve the IVP

y′′ + 9y = cos (3x) + sin (3x)

y(0) = 2

y′(0) = 1

. (228)

y = c1 cos (3x) + c2 sin (3x) +
1
6
x sin (3x)− 1

6
x cos (3x) . (229)
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Example 2.38 Solve the IVP
y(4) − y = 5

y(0) = 0

y′(0) = 0

y′′(0) = 0

y(3) (0) = 0

. (230)

y = 5
4
e−x + ex + 2 cosx− 4 . (231)

�

Example 2.39 Find the general solution of y(3) + y′′ = 3ex + 4x2.

y = c1 + c2x+ c3e
−x + 3

2
ex + 4x2 − 4

3
x3 + 1

3
x4 . (232)

�

Example 2.40 Solve the IVP

y(4) − 4y′′ = x2

y (0) = 1

y′ (0) = 1

y′′ (0) = −1
y(3) (0) = −1

. (233)

y = −11
64
e2x − 9

192
e−2x − 1

48
x4 − 1

16
x2 + 5

4
x+ 39

32
. (234)

�
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6 The Laplace transform

In this chapter, we’ll discuss the Laplace transform, which grants another method
for solving linear ODEs with constant coefficients. The important quality of this
method is that it does not require that the inhomogeneous term of the ODE be dif-
ferentiable, or even continuous.

6.1 The Laplace transform

6.1.1 The transform

Definition 6.1 Let f be a function of the single variable t, defined for t ≥ 0. The

Laplace transform of f is the function F of the single variable s defined via

F (s) =

� ∞
0

e−stf (t) dt, (235)

where the improper integral converges.

We also sometimes denote the Laplace transform of a function f by L (f (t)), but
this notation comes with the disadvantage of not explicitly stating the independent
variable s.

We begin by computing some examples.

Example 6.2 Find the Laplace transform of the function f(t) = 1.

F (s) = 1
s

for s > 0 . (236)

�

Example 6.3 Find the Laplace transform of the function f (t) = t.

F (s) = 1
s2

for s > 0 . (237)

�
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Example 6.4 Given a real valued constant a, Find the Laplace transform of the

function f(t) = eat.

F (s) = 1
s−a for s > a . (238)

�

Definition 6.5 The Heaviside function, or unit step function is the piecewise func-

tion

u (t) =

0 if t < 0

1 if t ≥ 0
. (239)

Example 6.6 Given a real valued constant a, find the Laplace transform of the

function f(t) = u (t− a).

F (s) = e−as

s
for s > 0 . (240)

�

The following table summarizes a number of different Laplace transforms.

f(t) = 1 F (s) = 1
s

for s > 0

f(t) = eat, for a real value a F (s) = 1
s−a for s > a

f(t) = tn, for an integer n ≥ 0 F (s) = n!
sn+1 for s > 0

f(t) = u (t− a) , for a real value a F (s) = e−as

s
for s > 0

f(t) = cos (kt) , for a real value k F (s) = s
s2+k2

for s > 0

f(t) = sin (kt) , for a real value k F (s) = k
s2+k2

for s > 0

f(t) = eatg (t) F (s) = G (s− a)

. (241)

For linear combinations of the functions above, we can use the following theorem.

Theorem 6.7 Let f(t) and g(t) be functions, and let a and b be constants. In that

case,

L (af(t) + bg(t)) = aL (f (t)) + bL (g (t)) . (242)

The previous theorem is often called the “linearity” of the Laplace transform.
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Example 6.8 (Exercise 6.1.5) Determine the Laplace transform of the function

f(t) = 3 + t5 + sin (πt).

F (s) = 3
s
+ 120

s6
+ π

s2+π2 for s > 0 . (243)

�

Example 6.9 Find the Laplace transform of the function

f(t) =

1 if 1 ≤ t ≤ 2

0 if t < 1 or 2 < t
. (244)

This can be handled in multiple ways. One way would be to recognize that

f (t) = u (t− 1)− u (t− 2). By linearity,

F (s) = L (f (t)) = L (u (t− 1))− L (u (t− 2)) = e−s

s
− e−2s

s
, (245)

for s > 0. �

Example 6.10 Suppose that g(t) is a function whose Laplace transform is G(s),

and a is a real value. Find the Laplace transform of f(t) = u (t− a) g (t− a).

F (s) = e−asG(s) . (246)

�

6.1.3 The inverse transform

It is often necessary to reverse the process of the Laplace transform, returning
to the original function. We sometimes denote the inverse Laplace transform of a
function F (s) as L−1 (F (s)).

Example 6.11 Find the inverse Laplace transform of F (s) = 1
s+1

.

f(t) = e−t . (247)
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Example 6.12 (Exercise 6.1.9) Find the inverse Laplace transform of the function

F (s) = 4
s2−9 .

We note that

F (s) =
4

(s− 3) (s+ 3)
. (248)

We now use partial fraction decomposition to write this as

F (s) =
2

3

1

s− 3
− 2

3

1

s+ 3
. (249)

As the Laplace transform is linear, so too is the inverse Laplace transform. There-

fore, the inverse Laplace transform is

f(t) = 2
3
e3t − 2

3
e−3t . (250)

�

Example 6.13 Find the inverse Laplace transform of F (s) = s2+s+1
s3+s

.

f (t) = 1 + sin t (251)

�

Example 6.14 Find the inverse Laplace transform of F (s) = 1
s2+4s+8

.

f(t) = 1
2
e−2t sin (2t) . (252)

�

Example 6.15 (Exercise 6.1.13) Find the inverse Laplace transform of the function

F (s) = s
(s2+s+2)(s+4)

.

�

Example 6.16 Find the inverse Laplace transform of F (s) = 1
(s−2)4 .

�
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Example 6.17 Find the inverse Laplace transform of F (s) = e−2s

s2+1
.

�
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6.2 Transforms of derivatives and ODEs

Now that we know how to compute the Laplace transform, let’s see how it can
help in solving ODEs.

6.2.1 Transforms of derivatives

Let f(t) be a function. Suppose that we desire to take the Laplace transform of
f ′ (t). We note that

L (f ′ (t)) =
� ∞
0

e−stf ′ (t) dt = lim
b→∞

� b

0

e−stf ′ (t) dt. (253)

We compute this by integration by parts:

u = e−st dv = f ′ (t) dt

du = −se−st dt v = f (t)
(254)

lim
b→∞

(
e−stf (t)

∣∣∣∣b
0

+ s

� b

0

e−stf (t) dt

)

= lim
b→∞

(
e−sbf (b)− e−s(0)f (0)

)
+ s lim

b→∞

� b

0

e−stf (t) dt. (255)

If lim
b→∞

e−sbf (b) = 0, then this becomes

−f (0) + s

� ∞
0

e−stf (t) dt = −f (0) + sL (f (t)) . (256)
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This allows us to compute the Laplace transform of a derivative:

L (f ′ (t)) = sF (s)− f (0)
L (f ′′ (t)) = s2F (s)− sf (0)− f ′ (0)

L
(
f (3) (t)

)
= s3F (s)− s2f (0)− sf ′ (0)− f ′′ (0)

...

L
(
f (n) (t)

)
= snF (s)−

n−1∑
i=0

sn−i−if (i) (0) .

(257)

6.2.2 Solving ODEs with the Laplace transform

Example 6.18 Solve the following IVP:

x′′ + 4x = 2

x(0) = 3

x′(0) = −1
(258)

�

Example 6.19 Solve the following IVP:

y′′ − 10y′ + 9y = 5t

y (0) = −1
y′ (0) = 2

. (259)

y = 50
81

+ 5
9
t+ 31

81
e9t − 2et . (260)

�

6.2.3 Using the Heaviside function

When given a linear ODE with constant coefficients that is non-homogeneous,
if the inhomogeneous term is not continuous, then we have no choice but to use the
Laplace transform methods.
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Example 6.20 Solve the following IVP:

y′ + 9y = u (t− 1)

y(0) = 1
(261)

y = u (t− 1)
(
1
9
+ 8

9
e−9t

)
. (262)

�

Example 6.21 Solve the following IVP:

x′′ − x = (t2 − 1)u (t− 1)

x(0) = 1

x′(0) = 1

. (263)

x = et + u (t− 1)
(
−2− 2(t− 1)− (t− 1)2 + 2et−1

)
. (264)

�

Example 6.22 Given the function

f(t) =


0 if t < 1

t− 1 if 1 ≤ t < 2

1 if 2 ≤ t

, (265)

solve the following IVP:
x′′ = f(t)

x(0) = 0

x′(0) = 0

. (266)

�
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6.4 Dirac delta and impulse response

6.4.1 Rectangular pulse

The “Dirac delta” is a concept first introduced by the physicist Paul Dirac. It’s
original motivation was the following. Imagine a function called ds which is zero
except over some closed interval [−s, s], where it takes on the constant value 1

2s
:

rs (t) =

0 if t < −s or s < t

1
2s

if − s ≤ t ≤ s
. (267)

Notice that
�∞
−∞ rs dt =

� s
−s rs dt = 1 for every value of s. The Dirac delta δ(t) was

designed to be a kind of “limit” of these functions as s approaches 0. This brings
up several issues, of which here a just a few:

1. What does a limit of functions even mean?
2. How do we know that such a limit exists?
3. If t is used to represent time, then how could δ(t) have a value of 1 for exactly

zero time? Isn’t that just the same as it always being zero?
There is no satisfying answer to these questions that doesn’t involve very high level
mathematics. For now, we will just say that the Dirac delta is not a function. It
is a thing that satisfies some properties. Nonetheless, some humans still prefer to
call it “the Dirac delta function,” producing such absurd sentences as “The Dirac
delta function is not a function.” The particular human writing this text will abstain
from this terminological monstrosity, preferring instead to simply call it “the Dirac
delta.” (Exception: the heading of the next subsection, which is taken from the
textbook.)

6.4.2 The delta function

We will not go into great detail on the theoretical underpinnings of how the
Dirac delta could exist, despite not being a function. The mathematical formaliza-
tion of the Dirac delta does exist, but it’s not the point of the class. For now, we
will simply define the Dirac delta as a thing that has what is commonly called the
“sifting property.”
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Definition 6.23 The Dirac delta is a symbol δ (t) such that for any non-negative

real value a and any continuous function f (t),

� ∞
0

f (t) δ (t− a) dt = f (a) . (268)

In particular, we can discuss the Laplace transform of a Dirac delta:

L (δ (t− a)) =
� ∞
0

e−stδ (t− a) = e−as. (269)

As a special case, this means that L (δ (t)) = 1.
The Dirac delta can certainly come up in applications of ODEs. For example,

the Dirac delta can be used to model an effect that is significant, but lasts for almost
no time, like a sudden voltage spike in an electrical circuit, or the force of a bat
hitting a baseball. For this reason, we’ll discuss IVPs that involve the Dirac delta.
These types of IVPs must always be solved by Laplace transform methods.

Example 6.24 Solve the following IVP:

x′′ + 4x = δ (t)

x(0) = 0

x′(0) = 0

(270)

x(t) = 1
2
sin (2t) . (271)

�

Example 6.25 Solve the following IVP:

x′′ + 2x′ + x = t+ δ (t)

x(0) = 0

x′(0) = 1

(272)

x(t) = t− 2 + (3t+ 2) e−t . (273)

�
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Example 6.26 Solve the following IVP:

x′′ + 4x′ + 4x = 1 + δ (t− 2)

x(0) = 0

x′(0) = 0

(274)

x(t) = 1
4
+ 1

4
e−2t (4e4 (t− 2)u (t− 2)− 2t− 1) . (275)

�

Example 6.27 Solve the following IVP:

x′′ + 4x = δ (t) + δ (t− π)
x(0) = 0

x′(0) = 0

(276)

x(t) = 1
2
(1 + u (t− π)) sin (2t) . (277)

�

Example 6.28 Solve the following IVP:

x′′ + 2x′ + 2x = 2δ (t− π)
x(0) = 0

x′(0) = 0

(278)

x(t) = −2u (t− π) eπ−t sin t . (279)

�
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7 Power series methods

Every linear homogeneous ODE takes the form

pn (x) y
(n) + pn−1 (x) y

(n−1) + ...+ p2 (x) y
′′ + p1 (x) y

′ + p0 (x) y = 0, (280)

where the coefficients p0, p1, ..., pn are all functions of x. Thus far, we have only
discussed the case where these coefficients are constant functions. If they are not all
constant, then the situation can be far more difficult. In this chapter, we’ll discuss
what is essentially a last resort for solving a linear homogeneous ODE when no
other method can be effective, particularly when some of the coefficients are non-
constants.

7.1 Power series

The entirety of this subsection is material from Calculus II. If you need to review
this, I’d recommend the notes that I created when I taught the class in Fall of 2020:

https://tinyurl.com/sullivanCalculus2Notes

There is also an appendix at the end of these notes that lists a number of common
power series.

72



7.2 Series solutions of linear second order ODEs

Suppose that we are dealing with a second-order linear homogeneous ODE:

p (x) y′′ + q (x) y′ + r (x) y = 0, (281)

where p, q and r are polynomials. The method of power series involves asserting a
solution that is a power series:

y =
∞∑
n=0

cn(x− a)n, (282)

and then solving for the coefficients cn.

Definition 7.1 Let p (x) y′′+q (x) y′+r (x) y = 0 be an ODE. Given a real number

a, we say that a is an ordinary point of the ODE if p (a) 6= 0. On the other hand,

we say that a is a singular point of the ODE if p (a) = 0.

We start by considering only power series solutions centered at ordinary points.

Example 7.2 Find the general solution of the ODE y′′ − y = 0.

Of course this example can be more easily handled by techniques that we dis-

cussed previously, but we will use the power series method to illustrate how it works.

We begin by selecting an ordinary point of y′′ − y = 0; a = 0 is a suitable choice

(as any real number would be, since the coefficient of y′′ is the constant function 1).

We consider a power series of the form y =
∞∑
n=0

cn(x− 0)n. We note that

y′ =
∞∑
n=1

ncnx
n−1

y′′ =
∞∑
n=2

n (n− 1) cnx
n−2

. (283)

If this y is a solution, then this implies that

∞∑
n=2

n (n− 1) cnx
n−2 −

∞∑
n=0

cnx
n = 0. (284)
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We desire to combine like terms in powers of x. In order to do this, we will write

k = n− 2. In that case, the first term above can be written as

y′′ =
∞∑
k=0

(k + 2) (k + 1) ck+2x
k. (285)

Now, the index k has no intrinsic meaning to the series; it is merely a notational

tool. In other words, there isn’t a meaningful difference between the series above

and

y′′ =
∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n. (286)

Thus, our equation becomes

∞∑
n=0

(n+ 2) (n+ 1) cn+2x
n −

∞∑
n=0

cnx
n = 0. (287)

Now we can combine like terms:

∞∑
n=0

((n+ 2) (n+ 1) cn+2 − cn)xn = 0. (288)

Of course, if this series is zero for all values of x, then it is constantly zero, meaning

that its coefficients must all be zero. In other words, for every non-negative integer

n,

(n+ 2) (n+ 1) cn+2 − cn = 0. (289)

This equation describes the coefficients of the power series; it is called the “recur-

rence relation” of the power series. To rephrase it,

cn+2 =
cn

(n+ 2) (n+ 1)
. (290)
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Now, let us examine a few terms of this sequence:

c0 = c0 c1 = c1

c2 =
c0

(2)(1)
c3 =

c1
(3)(2)

c4 =
c2

(4)(3)
= c0

(4)(3)(2)(1)
c5 =

c3
(5)(4)

= c1
(5)(4)(3)(2)(1)

c6 =
c4

(6)(5)
= c0

(6)(5)(4)(3)(2)(1)
c7 =

c5
(7)(6)

= c1
(7)(6)(5)(4)(3)(2)(1)

...
...

. (291)

After some time, we can notice the pattern

cn =

 c0
n!

if n is even
c1
n!

if n is odd
. (292)

Thus, the solution is

y =
∞∑
n=0

cnx
n =

∞∑
n=0

cnx
n

︸ ︷︷ ︸
n is even

+
∞∑
n=0

cnx
n

︸ ︷︷ ︸
n is odd

=
∞∑
n=0

c0
n!
xn︸ ︷︷ ︸

n is even

+
∞∑
n=0

c1
n!
xn︸ ︷︷ ︸

n is odd

=
∞∑
k=0

c0
(2k)!

x2k +
∞∑
l=0

c1
(2l + 1)!

x2l+1

= c0
∞∑
n=0

x2n

(2n)!
+ c1

∞∑
n=0

x2n+1

(2n+1)!
. (293)

(As you can see, c0 and c1 are arbitrary constants, exactly as we’d expect for the

general solution of a second order ODE.) �

Example 7.3 Find the general solution of the ODE (x2 + 1) y′′ − 4xy′ + 6y = 0.

y = c0 (1− 3x2) + c1
(
x− 1

3
x3
)
. (294)

�
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Example 7.4 Find the general solution of the ODE (x2 − 3) y′′ + 2xy′ = 0.

y = c0 + c1
∞∑
n=0

x2n+1

3n(2n+1)
. (295)

�

Example 7.5 Find the general solution of the ODE y′′ + 2xy′ + 4y = 0.

Example 7.6 Find the general solution of the ODE (x2 − 1) y′′ − 6xy′ + 12y = 0.

y = c0 (1 + 6x2 + x4) + c1 (x+ x3) (296)

�

Example 7.7 Find the general solution of the ODE (x2 + 2) y′′ + 4xy′ + 2y = 0.

y = c0+c1x
2+x2

. (297)

�

Example 7.8 Find the general solution of the ODE (x2 + 1) y′′ + 6xy′ + 4y = 0.

y = c0
∞∑
n=0

(−1)n (n+ 1)x2n + c1
∞∑
n=0

(−1)n (2n+ 3)x2n+1 (298)

�
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7.3 Singular points and the method of Frobenius

What if we demand that a power series solution be centered at a, despite that a
is a singular point?

7.3.1 The method of Frobenius

Definition 7.9 Let p (x) y′′ + q (x) y′ + r (x) y = 0 be an ODE. Given a singular

point a of the ODE, we say that a is a regular singular point of the ODE if both of

the following limits are finite:

lim
x→a

(x− a) q (x)
p (x)

and lim
x→0

(x− a)2 r (x)
p (x)

.

The following theorem can be generalized to regular singular points other than 0,
but we will only be concerned with a = 0 for our purposes.

Theorem 7.10 (Method of Frobenius) Suppose that p (x) y′′+q (x) y′+r (x) y = 0

has a regular singular point at a = 0. In that case, there exists at least one solution

of the form

y = xr
∞∑
n=0

cnx
n, (299)

where c0 = 1 and r is a real number.

A solution of this form is not exactly a power series, unless r turns out to be a non-
negative integer. We call this type of function a “Frobenius-type solution.”

The method of Frobenius works like this: first, propose a Frobenius-type solu-
tion, and put it into the original ODE. The first part of the recurrence relation will
then contain a quadratic equation in r, called the “indicial equation.” If the indicial
equation has real roots r1 and r2 such that r1 − r2 is not an integer, then there ex-
ist two linearly independent Frobenius-type solutions. If that is not the case, then
things can get more complicated, but we will not be concerned with those situations
in this class. (If you’re interested in cases other than real roots not separated by an
integer, feel free to look into Section 7.3 of the textbook.)
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Example 7.11 Find the general solution of the following ODE:

x2y′′ − y = 0. (300)

We note that x = 0 is a singular point of this ODE. However,

lim
x→0

(x− 0) 0
x2

= 0

lim
x→0

(x− 0)2−1
x2

= −1.
. (301)

Both limits are finite, so x = 0 is a regular singular point of the ODE. We may

therefore use the method of Frobenius, proposing a Frobenius series solution:

y =
∞∑
n=0

cnx
n+r, (302)

where c0 = 1. We note that

y′ =
∞∑
n=0

(n+ r) cnx
n+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) cnx
n+r−2

. (303)

Putting this information into the original ODE gives us

x2
∞∑
n=0

(n+ r) (n+ r − 1) cnx
n+r−2 −

∞∑
n=0

cnx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) cnx
n+r −

∞∑
n=0

cnx
n+r = 0

∞∑
n=0

((n+ r) (n+ r − 1)− 1) cnx
n+r = 0

. (304)

Thus, for all integers n ≥ 0,

((n+ r) (n+ r − 1)− 1) cn = 0. (305)

In particular, since c0 = 1, n = 0 gives us the indicial equation

r (r − 1)− 1 = 0. (306)
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In other words, r2 − r − 1 = 0. By the quadratic formula, the solutions of this

equation are

r =
1±
√
5

2
. (307)

As for every integer value n > 0, the recurrence relation gives us

(
r2 + (2n− 1) r +

(
n2 − n− 1

))
cn = 0. (308)

For n = 1, this becomes (
r2 + r − 1

)
c1 = 0. (309)

Since neither r2 + r− 1 6= 0 when r = 1±
√
5

2
, we must have that c1 = 0. For n = 2,

we have (
r2 + 3r + 1

)
c2 = 0. (310)

Again, r2 + 3r + 1 6= 0, so c2 = 0. This pattern continues, so that for every n > 0,

cn = 0.

Having found r and all of the coefficients, we can write down two different

solutions of the ODE:

y1 =
∞∑
n=0

cnx
n+ 1+

√
5

2 = 1x
1+
√
5

2 + 0x1+
1+
√
5

2 + 0x2+
1+
√
5

2 + ... = x
1+
√

5
2

y2 =
∞∑
n=0

cnx
n+ 1−

√
5

2 = 1x
1−
√
5

2 + 0x1+
1−
√
5

2 + 0x2+
1−
√
5

2 + ... = x
1−
√

5
2

. (311)

One can show that these are linearly independent. Thus, the general solution of our

ODE can be written as

y = a1x
1+
√
5

2 + a2x
1−
√
5

2 . (312)

�

Example 7.12 Find the general solution of the ODE x2y′′ + 4xy′ + y = 0.

Example 7.13 Find the general solution of the ODE 2x2y′′ + 7xy′ + 2y = 0.

Example 7.14 Find the general solution of the ODE 2x2y′′ − 3xy′ + 2y = 0.

Example 7.15 Find the general solution of the ODE 5x2y′′ + y = 0.
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Example 7.16 Find the general solution of the ODE 7x2y′′ + xy′ + y = 0.

80



3 Systems of ODEs

3.1 Introduction to systems of ODEs

At the beginning of this course, I said that ordinary differential equations deal
with only one independent variable, while partial differential equations deal with
multiple independent variables. This remains the case, but for systems of ODEs,
there can be more than one dependent variable.

3.1.1 Systems

A system of ODEs with the single independent variable t and dependent vari-
ables x1, x2, ..., xn is exactly what the name suggests: a system of equations, which
happen to be ODEs, for which we seek functions x1 (t), x2 (t), ..., and xn (t) that
satisfy all of the ODEs simultaneously. The order of the system is the highest order
of all of the ODEs involved.

Definition 3.1 Let
x′1 = g1 (x1, x2, ..., xn, t)

x′2 = g2 (x1, x2, ..., xn, t)
...

x′n = gn (x1, x2, ..., xn, t)

(313)

be a first order system of ODEs. We say that the system above is a linear system if

all of its constituent ODEs are linear. We say that it is a homogeneous system if all

of its constituent ODEs are homogeneous. We say that it has constant coefficients if

all of its constitent ODEs have constant coefficients.

Here are some first order, linear, homogeneous systems of ODEs with constant
coefficients:

x′ = 3x+ 2y − 4z

y′ = x+ y + z

z′ = x

x′1 = x1 − x2
x′2 = x2 − x3
x′3 = x3 − x4
x′4 = x4 − x1

x′1 = x1 − x2
x′2 = x1 + x2

(314)
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Here are some first order, linear, non-homogeneous systems of ODEs with constant
coefficients:

x′ = 3x+ 2y − 4z + t

y′ = x+ y + z + t2

z′ = x+ t

x′1 = x1 − x2 + sin t

x′2 = x2 − x3 + et

x′3 = x3 − x4 − t2

x′4 = x4 − x1 + 3t

x′1 = x1 − x2 + 6t

x′2 = x1 + x2
(315)

Here are some first order ODEs which are neither linear nor homogeneous, and
which do not have constant coefficients:

x′y + z = 0

x′ = 3tx

y′ = t

x′1 = x1x2

x′2 = x2 − etx3
x′3 = x3 − x4

x′4 = x4 − x1 + 4t

x′1 = t2x1 − x2 − ln t

x′2 = x1 + x2
. (316)

Just like scalar ODEs, systems of ODEs have general solutions and particular
solutions. For a first order system, there will be as many arbitrary constants in the
general solution as dependent variables.

Example 3.2 Find the general solution of the first order system

x′ = 3x− y
y′ = x

. (317)

Example 3.3 (Exercise 3.1.2) Find the general solution of the first order system

x′1 = x2 − x1 + t

x′2 = x2
. (318)

3.1.2 Changing to first order

The previous two examples illustrate that some systems of ODEs can be rephrased
as scalar ODEs. This is not true for all systems. However, the converse is true: ev-
ery scalar ODE can be rephrased as a first order system of ODEs. Consider an nth
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order scalar ODE:
y(n) = F

(
y, y′, y′′, ..., y(n−1), t

)
. (319)

We can rephrase this as system by defining y1 = y, y2 = y′, ..., and yn = y(n−1). In
that case, this becomes the first order system

y′1 = y2

y′2 = y3
...

y′n−1 = yn

y′n = F (y1, y2, ..., yn, t)

. (320)

As you can see, the number of dependent variables is exactly the order of the origi-
nal ODE.

Example 3.4 Rewrite the scalar ODE x′′ + 3x′ + 7x = t2 as a first order system.

Example 3.5 Rewrite the scalar ODE y′′ + 4y − y3 = 0 as a first order system.

Example 3.6 Rewrite the scalar ODE y(4) − y′′ = 5e−3x as a first order system.

Example 3.7 Rewrite the scalar ODE t2x′′ + tx′ + (t2 − 1)x = 0 as a first order

system.
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3.2 Matrices and linear systems

3.2.1 Matrices and vectors

To move forward with our discussion of linear systems of ODEs, we’ll need to
use a number of properties of matrices. First, given any scalar s (a scalar means just
a number, real or complex), we define the “scalar multiplication” of a matrix as:

s



a11 a12 a13 ... a1n

a21 a22 a23 ... a2n

a31 a32 a33 ... a3n
...

...
... . . . ...

am1 am2 am3 ... amn


=



sa11 sa12 sa13 ... sa1n

sa21 sa22 sa23 ... sa2n

sa31 sa32 sa33 ... sa3n
...

...
... . . . ...

sam1 sam2 sam3 ... samn


. (321)

We also defined “addition of matrices” in the intuitive way. If two matrices have
the same size (that is, the same number of rows and the same number of columns),
then define their sum as

a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn

+


b11 b12 ... b1n

b21 b22 ... b2n
...

... . . . ...
bm1 bm2 ... bmn



=


a11 + b11 a12 + b12 ... a1n + b1n

a21 + b21 a22 + b22 ... a2n + b2n
...

... . . . ...
am1 + bm1 am2 + bm2 ... amn + bmn

 . (322)

If two matrices do not have the same size, their sum is undefined.

3.2.2 Matrix multiplication

Matrix multiplication, on the other hand, is more complicated. To do this, we
first define matrices that have only one row or only one column.

Definition 3.8 A [column] vector is a matrix with exactly one column. A row vector
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is a matrix with exactly one row.

The “zero vector” is the vector whose entries are all 0:

−→
0 =


0

0
...
0

 . (323)

Definition 3.9 Let −→u be a 1× n row vector, and let −→v be an n× 1 column vector:

−→u =
(
a1 a2 ... an

)

−→v =


b1

b2
...

bn


. (324)

The dot product of −→u and −→v is the scalar

−→u · −→v =
(
a1 a2 ... an

)

b1

b2
...

bn

 = a1b1 + a2b2 + ...+ anbn. (325)

Example 3.10 Determine the following dot products:

(
−5 6

)( 2

−1

)
= −16

(
1 −1 2

)2

2

3

 = 6

(
3 −1 2

)0

2

1

 = 0

(326)
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We now define multiplication of larger matrices. Suppose that A is an m × n
matrix, and B is an n× p matrix:

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn



B =


b11 b12 ... b1p

b21 b22 ... b2p
...

... . . . ...
bn1 bn2 ... bnp


(327)

(That is, A has as many columns as B has rows.) In that case, we can consider each
column of A as a vector. Let’s call the ith row of A the vector

−→
Ai. Similarly, let’s

call the jth column of B the vector
−→
Bi. In that case, we define the product of A and

B to be the following m× p matrix:

A ·B =


−→
A1 ·
−→
B1

−→
A1 ·
−→
B2 ...

−→
A1 ·
−→
Bp−→

A2 ·
−→
B1

−→
A2 ·
−→
B2 ...

−→
A2 ·
−→
Bp

...
... . . . ...

−→
Am ·

−→
B1

−→
Am ·

−→
B2 ...

−→
Am ·

−→
Bp

 . (328)

Thus, the (i, j) entry of the product is the dot product of the ith row of A with the
jth column of B. If A does not have the same number of columns as B has rows,
then the product is undefined.
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Example 3.11 Determine the following matrix products.(
−1 −2
−2 −1

)(
2 0

2 −1

)
=

(
−5 2

−6 1

)
(
2 0

2 −1

)(
−1 −2
−2 −1

)
=

(
−2 −4
0 −3

)
(
1 2

3 4

)(
1 0

0 1

)
=

(
1 2

3 4

)
(
0 1

0 0

)2

=

(
0 0

0 0

)
. (329)

�

3.2.3 The determinant

Consider a linear homogeneous system of equations:

a11x1 + a12x2 + ...+ a1nxn = 0

a21x1 + a22x2 + ...+ a2nxn = 0
...

am1x1 + am2x2 + ...+ amnxn = 0

. (330)

This can be re-written as the following matrix equation:
a11 a12 ... a1n

a21 a22 ... a2n
...

... . . . ...
am1 am2 ... amn



x1

x2
...
xn

 =


0

0
...
0

 . (331)

This is often significantly easier to work with, since it is only one equation, as
opposed to m many equations. For this reason, we are often interested in solving
equations of the form A−→v =

−→
0 , where A is a known matrix and −→v is a vector that

must be found. Of course, −→v =
−→
0 is one solution (called the “trivial solution”),

but the question is whether others exist.
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The following theorem from linear algebra is crucial to the theory:

Theorem 3.12 Let A be an n × n matrix. The matrix equation A−→v =
−→
0 has a

non-trivial solution if and only if det (A) = 0.
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3.3 Linear systems of ODEs

Let’s return to the topic of systems of ODEs. Every first order linear system of
ODEs looks like

x′1 = a11 (t)x1 + a12 (t)x2 + ...+ a1n (t)xn + b1 (t)

x′2 = a21 (t)x1 + a22 (t)x2 + ...+ a2n (t)xn + b2 (t)
...

x′n = an1 (t)x1 + an2 (t)x2 + ...+ ann (t)xn + bn (t)

. (332)

This can be written as the matrix equation
x′1

x′2
...
x′n

 =


a11 (t) a12 (t) ... a1n (t)

a21 (t) a22 (t) ... a2n (t)
...

... . . . ...
an1 (t) an2 (t) ... ann (t)



x1

x2
...
xn

+


b1 (t)

b2 (t)
...

bn (t)

 . (333)

We often write this as −→x ′ = A (t)−→x +
−→
b (t). The system is homogeneous when-

ever
−→
b (t) =

−→
0 for all t.

For this class, we will focus mainly on first order, linear, homogeneous systems
of ODEs with constant coefficients. For this, we have the following two theorems.

Theorem 3.13 (Superposition) Let −→z ′ = A (t)−→z be a linear homogeneous sys-

tem, where A (t) is an n×n matrix. If−→z1 ,−→z2 , ...,−→zk are solutions, then every linear

combination is also a solution.

Theorem 3.14 (Solution theorem for linear homogeneous systems of ODEs) Let
−→z ′ = A (t)−→z be a linear homogeneous system, where A (t) is an n × n matrix.

If −→z1 ,−→z2 , ...,−→zn are linearly independent solutions of the ODE, then every solution

of the ODE can be written in the form −→z = c1
−→z1 + c2

−→z2 + ... + cn
−→zn for some

constants c1, c2, ..., cn.

89



3.4 Eigenvalue method

3.4.1 Eigenvalues and eigenvectors of a matrix

Definition 3.15 Let A be an n×n matrix. An eigenvalue of A is a complex number

λ such that there exists a nonzero vector −→v satisfying A−→v = λ−→v . In that case, −→v
is called an eigenvector of A associated to λ.

Suppose that A is an n× n matrix that has an eigenvalue λ, with an associated
eigenvector −→v . In that case, A−→v = λ−→v . This can also be written as

(A− λIn)−→v =
−→
0 . (334)

By definition, in order for−→v to be an eigenvector of A corresponding to λ, we need
that−→v 6= −→0 . Now, according to Theorem 3.12, the equation above has a non-trivial
solution if and only if

det (A− λIn) = 0. (335)

(The left side of the equation above is called the “characteristic polynomial” of the
matrix, and the entire equation is called the “characteristic equation” of the matrix.)
Using this fact, we can find the eigenvalues of any square matrix. From there,
finding the eigenvectors associated to each eigenvalue is possible.

Example 3.16 Find the eigenvalues and associated eigenvectors of the following

matrix:

A =

(
2 1

1 2

)
. (336)

Example 3.17 Find the eigenvalues and associated eigenvectors of the following

matrix:

A =

(
1 1

−1 1

)
. (337)

Example 3.18 Find the eigenvalues and associated eigenvectors of the following

matrix:

A =

(
3 1

0 3

)
. (338)

90



Example 3.19 Find the eigenvalues and associated eigenvectors of the following

matrix:

A =

2 1 1

1 2 0

0 0 2

 . (339)

3.4.2 The eigenvalue method with distinct real eigenvalues

Why are eigenvalues and eigenvectors important to systems of ODEs? Well,
consider a first order, linear, homogeneous system with constant coefficients:

−→z ′ = A−→z . (340)

Suppose that A is an n×n matrix with eigenvalue λ and corresponding eigenvector
−→v . Consider the vector-valued function −→z (t) = −→v eλt. We note that

−→z ′ (t) = λ−→v eλt = A−→v eλt = A−→z (t) . (341)

This demonstrates that −→z (t) is a solution of the ODE. To summarize: if we can

figure out the eigenvalues and eigenvectors of a linear system, then we can construct

solutions for it.

Example 3.20 Find the general solution of the following system of ODEs:

x′1 = x1 + 2x2

x′2 = 3x1 + 2x2
. (342)

Example 3.21 Find the general solution of the following system of ODEs:

x′ = x+ 2y

y′ = 3x+ 2y
. (343)

Example 3.22 Find the general solution of the following ODE:

−→z ′ =

(
−5 1

4 −2

)
−→z . (344)
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3.4.3 Complex eigenvalues

When the eigenvalues of a system are complex, we need to use Euler’s formula
to separate the real and imaginary parts. Then, the real and imaginary parts will
separately form basis solutions.

Example 3.23 Find the general solution of the following ODE:

−→z ′ =

(
1 1

−1 0

)
−→z (345)

Example 3.24 Find the general solution of the following system of ODEs:

x′1 = x1 − x2
x′2 = 6x1 − x2

. (346)

Example 3.25 Solve the following IVP:

x′1 = 5x1 + 7x2

x′2 = −2x1 − 4x2

x1 (0) = −2, x2 (0) = −3
. (347)

Example 3.26 Find the general solution of the following system of ODEs:

x′1 = x1 − 5x2

x′2 = x1 − x2
. (348)
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3.7 Multiple eigenvalues

When the characteristic polynomial of a matrix has repeated roots, things can
get somewhat complicated.

3.7.1 Geometric multiplicity

Definition 3.27 Let A be an n× n matrix, and let λ be an eigenvalue of A.

(i) The algebraic multiplicity of λ is the largest integer k such that (x− λ)k divides

the characteristic polynomial of A.

(ii) The geometric multiplicity of λ is the largest possible number of linearly inde-

pendent eigenvectors of λ.

(iii) The defect of λ is the algebraic multiplicity of λ minus the geometric multiplic-

ity of λ.

(iv) If the defect of an eigenvalue is zero, we say that the eigenvalue is complete.

(v) If the defect of an eigenvalue is greater than zero, we say that the eigenvalue is

defective.

When an eigenvalue is complete, things go fairly smoothly.

Example 3.28 Find the general solution of the vector ODE

−→z ′ =

(
−2 0

0 −2

)
−→z . (349)

3.7.2 Defective eigenvalues

On the other hand, when an eigenvalue is defective, things get a bit weird. Ac-
cording to the solution theorem for linear homogeneous systems of ODEs, we need
as many basis solutions as the dimension of the matrix, but there aren’t enough lin-
early independent eigenvectors to construct them. In this case, we need to consider
“generalized eigenvectors.”

Definition 3.29 Let A be an n×n matrix, and let λ be an eigenvalue of A. Given a

positive integer k, a rank k generalized eigenvector corresponding to λ is a vector
−→v such that (A− λIn)k−→v =

−→
0 , but (A− λIn)k−1−→v 6=

−→
0 .
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(This means that a true eigenvector can be understood as a generalized eigenvector
of rank 1.)

Example 3.30 Find the general solution of the vector ODE

−→z ′ =

(
9 4

−4 1

)
−→z . (350)

We begin by finding the eigenvalues of the matrix, which we call A:

0 = det (A− λI2) =

∣∣∣∣∣9− λ 4

−4 1− λ

∣∣∣∣∣ = λ2 − 10λ+ 25 = (λ− 5)2. (351)

This makes it clear that λ = 5 is the only eigenvalue, with an algebraic multiplicity

of 2. We now inspect the eigenvectors corresponding to 5:

(A− 5I2)
−→v1 =

−→
0(

4 4

−4 −4

)(
a

b

)
=

(
0

0

)
4a+ 4b = 0

−4a− 4b = 0

. (352)

This makes it clear that b = −a, and so the eigenvectors corresponding to 5 all take

the form

−→v1 =

(
a

b

)
=

(
a

−a

)
= a

(
1

−1

)
, (353)

where a 6= 0. Any two vectors matching this description will be linearly dependent,

so the geometric multiplicity of λ = 5 is 1. Ergo, the defect of λ = 5 is 2− 1 = 1.

At this point, we consider generalized eigenvectors of rank 2. We consider

(A− 5I2)
2 =

(
4 4

−4 −4

)2

=

(
0 0

0 0

)
. (354)
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In other words, we require a vector −→v2 that satisfies the equation(
0 0

0 0

)
−→v2 =

(
0

0

)
. (355)

Literally any vector would satisfy this condition, but the definition of a rank 2 gen-

eralized eigenvector implies that −→v2 must also not be an eigenvector. Therefore,

we need only take −→v2 to be a nonzero vector that is not an eigenvector. For no

particular reason, we select

−→v2 =

(
1

0

)
. (356)

Now, we need to select an eigenvector which is “compatible” with this choice, in

the sense that −→v1 = (A− 5I2)
−→v2 :

−→v1 =

(
4 4

−4 −4

)(
1

0

)
=

(
4

−4

)
. (357)

We can now construct two basis solutions:

−→z1 = −→v1eλt =

(
4

−4

)
e5t

−→z2 = (−→v1 t+−→v2) eλt =

((
4

−4

)
t+

(
1

0

))
e5t
, (358)

and so the general solution is the set of linear combinations of these:

−→z = c1

(
4

−4

)
e5t + c2

(
4t+ 1

−4t

)
e5t . (359)

�

Example 3.31 Find the general solution of the system

x′1 = −5x1 + x2

x′2 = −x1 − 3x2
. (360)

95



Example 3.32 Find the general solution of the system

x′1 = 7x1 + x2

x′2 = −4x1 + 3x2
. (361)

Example 3.33 Find the general solution of the system

x′1 = −8x1 − x2
x′2 = 4x1 − 4x2

. (362)

Example 3.34 Solve the IVP

x′1 = −x1 − 2x2

x′2 = 2x1 − 5x2

x1 (0) = −1, x2 (0) = 3

(363)

Example 3.35 Solve the IVP

x′1 = 6x1 + x2

x′2 = −x1 + 8x2

x1 (0) = −2, x2 (0) = 5

(364)
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Appendix: Exponents and logarithms

Exponential functions

Theorem 3.36 Let a be a real number. The following statements are true.

(i) For any real numbers x and y, ax+y = axay.

(ii) For any real numbers x and y, axy = (ax)y.

(iii) If a 6= 0, then for any real number x, a−x = 1
ax

.

(iv) Given a positive integer n, a
1
n = n
√
a.

(v) If a 6= 0, then a0 = 1.

Note: most sources agree that 00 should be defined as 1. This choice is made
for notational convenience, not due to any important mathematical truth.

Theorem 3.37 Let a and b be real numbers greater than 1. Given a real number x,

(ab)x = axbx.

Theorem 3.38 (Binomial theorem) Let a and b be real numbers. Given a positive

integer n,

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk, (365)

where
(
n
k

)
= n!

(n−k)!k! , the binomial coefficient.

Theorem 3.39 Let a be a real number. If a > 1, then the following statements are

true.

(i) lim
x→∞

ax =∞.

(ii) lim
x→−∞

ax = 0.
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Logarithmic functions

Definition 3.40 Let f and g be real-valued functions of a real variable. We say

that f and g are inverse functions, or that g is the inverse function of f , or that f

is the inverse function of g provided that for any real value x, f (g (x)) = x and

g (f (x)) = x.

Definition 3.41 Let a be a real number greater than 1. The base a logarithm is the

inverse function g (x) = logax of the function f (x) = ax.

As a direct result of the definition of loga, for any real value x, loga (ax) = x,
and alogax = x if x > 0. Additionally, since ax > 0 for any a > 0 and any real
number x, loga (y) is not defined for any non-positive real number y.

Theorem 3.42 Let a be a real number such that a > 1. The following statements

are true.

(i) For any positive real numbers x and y, loga (xy) = loga (x) + loga (y).

(ii) For any real numbers x and y such that x > 0, loga (x
y) = yloga (x).

(iii) For any positive real numbers x and y, loga
(
x
y

)
= loga (x)− loga (y).

Theorem 3.43 Let a be a real number such that a > 1. The following statements

are true.

(i) lim
x→∞

logax =∞.

(ii) lim
x→0+

logax = −∞.
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Calculus of exponential and logarithmic functions

Definition 3.44 The natural exponential function is the real-valued function f of a

real variable such that d
dx
f (x) = f (x) and f (0) = 1.

Definition 3.45 Euler’s number is the real value e such that the function f (x) = ex

is the natural exponential function.

Definition 3.46 The natural logarithm is the base e logarithm lnx = logex.

Theorem 3.47 The following statements are true.

(i) If a > 1, then d
dx
ax = ax ln a.

(ii) d
dx

ln |x| = 1
x
.
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Appendix: Properties of trigonometric functions

List of trigonometric identities

This page will be provided on any test involving trigonometric functions.

Theorem 3.48 (Pythagorean identity) Given a real number θ,

cos2θ + sin2θ = 1.

Theorem 3.49 (Angle sum formulas) Let θ and φ be real numbers. The following

statements are true.

cos (θ + φ) = cos θ cosφ− sin θ sinφ

sin (θ + φ) = cos θ sinφ+ sin θ cosφ

Theorem 3.50 (Double angle and half angle formulas) Let θ be a real number. The

following statements are true.

cos (2θ) = cos2θ − sin2θ

sin (2θ) = 2 sin θ cos θ

cos2θ = 1
2
(1 + cos (2θ))

sin2θ = 1
2
(1− cos (2θ))

Definition 3.51 Let θ be a real number.

(i) If cos θ 6= 0, then tan θ = sin θ
cos θ

.

(ii) If cos θ 6= 0, then sec θ = 1
cos θ

.

(iii) If sin θ 6= 0, then cot θ = cos θ
sin θ

.

(iv) If sin θ 6= 0, then csc θ = 1
sin θ

.

Theorem 3.52 Let θ be a real number. The following statements are true.

sec2θ − tan2θ = 1

csc2θ − cot2θ = 1
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Inverse trigonometric functions

Definition 3.53 (i) The arccosine function is the function cos−1 whose domain is

[0, π] such that for any real value x, if −1 ≤ x ≤ 1, then cos (cos−1 (x)) = x, and

for any real value θ, if 0 ≤ θ ≤ π, then cos−1 (cos (θ)) = θ.

(ii) The arcsine function is the function sin−1 whose domain is
[
−π

2
, π
2

]
such that

for any real value y, if −1 ≤ y ≤ 1, then sin
(
sin−1 (y)

)
= y, and for any real

value θ, if −π
2
≤ θ ≤ π

2
, then sin−1 (sin (θ)) = θ.

(iii) The arctangent function is the function tan−1, whose domain is all real num-

bers, such that for any real value z, tan (tan−1 (z)) = z, and for any real value θ,

if −π
2
< θ < π

2
, then tan−1 (tan (θ)) = θ.

(iv) The arcsecant function is the function sec−1z = cos−1
(
1
z

)
.

(v) The arccosecant function is the function csc−1z = sin−1
(
1
z

)
.

(vi) The arccotangent function is the function

cot−1z =

tan−1
(
1
z

)
if z > 0

π + tan−1
(
1
z

)
if z < 0

.
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Derivatives of trigonometric functions and inverse trigonometric
functions

Theorem 3.54 The following statements are true.

d
dθ

sin θ = cos θ d
dθ

cos θ = − sin θ
d
dθ

sec θ = sec θ tan θ d
dθ

csc θ = − csc θ cot θ
d
dθ

tan θ = sec2θ d
dθ

cot θ = −csc2θ

Theorem 3.55 The following statements are true.

d
dx
sin−1x = 1√

1−x2
d
dx
cos−1x = − 1√

1−x2
d
dx
sec−1x = 1

|x|
√
x2−1

d
dx
csc−1x = − 1

|x|
√
x2−1

d
dx
tan−1x = 1

x2+1
d
dx
cot−1x = − 1

x2+1
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Appendix: Some information on Laplace transforms

This page will be provided on any test involving Laplace transforms.

Definition:
L (f (t)) = F (s) =

� ∞
0

e−stf (t) dt.

In the following table, a and k are real valued constants, u (t) refers to the unit
step function, and g (t) is any function whose Laplace transform is G (s).

Function/expression Laplace transform
1 f(t) = 1 F (s) = 1

s

2 f(t) = tn, where n is a non-negative integer F (s) = n!
sn+1

3 f(t) = eat F (s) = 1
s−a

4 f(t) = cos (kt) F (s) = s
s2+k2

5 f (t) = sin (kt) F (s) = k
s2+k2

6 f (t) = u (t− a) F (s) = e−as

s

7 f (t) = u (t− a) g (t− a) F (s) = e−asG (s)

8 f (t) = eatg (t) F (s) = G (s− a)
9 f (t) = δ (t− a) F (s) = e−as

Linearity: given any functions f (t) and g (t), and any real valued constants a
and b,

L (af (t) + bg (t)) = aL (f (t)) + bL (g (t)) .

Derivatives: given a differentiable function y (t) whose Laplace transform is
Y (s), the following statements are true.

L (y′) = sY − y (0)
L (y′′) = s2Y − sy (0)− y′ (0)

L
(
y(3)
)
= s3Y − s2y (0)− sy′ (0)− y′′ (0)

...

L
(
y(n)
)
= snY −

n∑
i=1

sn−iy(i−1) (0)
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