MTH 142 Final Exam Reference Page 1 of 2

Right Triangle Trigonometry

Pythagorean Trig Identities

1) $\sin ^{2} \theta+\cos ^{2} \theta=1$
2) $\tan ^{2} \theta+1=\sec ^{2} \theta$
3) $1+\cot ^{2} \theta=\csc ^{2} \theta$

Half-Angle Formulas

1) $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
2) $\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$

Double-Angle Formula

1) $\sin 2 \theta=2 \sin \theta \cos \theta$
2) $\sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
3) $\cos \theta=\frac{\text { adj }}{\text { hyp }}$
4) $\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$
5) $\csc \theta=\frac{1}{\sin \theta}$
6) $\sec \theta=\frac{1}{\cos \theta}$
7) $\cot \theta=\frac{1}{\tan \theta}$

Expression	Substitution
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta, 0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}$

Cartesian coordinates (x, y) and Polar coordinates (r, θ)

$$
\begin{aligned}
& x=r \cos \theta, \quad y=r \sin \theta \\
& x^{2}+y^{2}=r^{2}, \quad \tan \theta=\frac{y}{x}
\end{aligned}
$$

$\underline{\text { Plot of } y=\tan ^{-1} x}$

MTH 142 Final Exam Reference Page 2 of 2

Geometric series

$\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\ldots$
If $|r|<1$, the series is convergent. If $|r| \geq 1$, the series is divergent.

The Test For Divergence

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent.

The Comparison Test

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
(i) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
(ii) If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is also divergent.

The Limit Comparison Test

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=c
$$

where c is a finite number and $c>0$, then either both series converge or both series diverge.

The Alternating Series Test

If the alternating series
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots \quad\left(b_{n}>0\right)$ satisfies
(i) $b_{n+1} \leq b_{n}$ for all n
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.

The Ratio Test

(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=$ ∞, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive.

The Root Test

(i) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(ii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the Root Test is inconclusive.

Taylor series of the function f at a

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \quad|x-a|<R
$$

