

Expression	Substitution
$\sqrt{a^2 - x^2}$	$x = a\sin\theta, \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta, \ -\frac{\pi}{2} < \theta < \frac{\pi}{2}$
$\sqrt{x^2 - a^2}$	$x = a \sec \theta, \ 0 \le \theta < rac{\pi}{2} \mathrm{or} \pi \le \theta < rac{3\pi}{2}$

Cartesian coordinates (x, y) and Polar coordinates (r, θ)

$$x = r \cos \theta, \quad y = r \sin \theta$$

$$x^2 + y^2 = r^2, \quad \tan \theta = \frac{y}{x}$$

MTH 142 Final Exam Reference Page 2 of 2

Geometric series

$$\sum_{\substack{n=1\\ \text{If } |r| < 1, \text{ the series is convergent. If } |r| \ge 1, \text{ the series is divergent.}}$$

The Test For Divergence

If $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$ then the

series $\sum_{n=1}^{\infty} a_n$ is divergent.

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_1^{\infty} f(x) dx$ is convergent.

The Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

The Limit Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = c$$

where c is a finite number and c > 0, then either both series converge or both series diverge.

The Alternating Series Test

If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots \quad (b_n > 0)$$

satisfies

- (i) $b_{n+1} \leq b_n$ for all n
- (ii) $\lim_{n \to \infty} b_n = 0$

then the series is convergent.

The Ratio Test

(i) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series

$$\sum_{n=1}^{\infty} a_n \text{ is absolutely convergent}$$

- (ii) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- (iii) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive.

The Root Test

(i) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$, then the series

$$\sum_{n=1}^{\infty} a_n \text{ is absolutely convergent.}$$

- (ii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- (iii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

Taylor series of the function f at a

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \qquad |x-a| < R$$