
Math 142V Midterm Test 2 Name: Solution Key

[10] 1. Determine whether the series is convergent or divergent. If it is conver-
gent, find its sum.

∞∑
n=0

1

10n−2

Solution: This is a geometric series that can be handled in multiple different
ways; here is at least one. We can first rewrite this as

∞∑
n=0

1

10n−2
=
∞∑
n=0

102

10n
=
∞∑
n=0

100

(
1

10

)n
. (1)

Now, since
∣∣ 1
10

∣∣ < 1, this is a convergent geometric series. It sum is given by the

characterization theorem for geometric series
∞∑
n=0

brn = b
1−r :

∞∑
n=0

1

10n−2
=

100

1− 1
10

= 1000
9

(2)

�

[15] 2. Determine whether the series is convergent or divergent.

∞∑
n=1

ne−n

Solution: First, we construct the function f (x) = xe−x. We note that

f ′ (x) = xe−x (−1) + e−x = e−x (1− x) , (3)

which is negative for x > 1. This shows that f is an eventually decreasing function,
and so the integral test applies. We now compute the improper integral of f :∫ ∞

1

f (x) dx = lim
t→∞

∫ t

1

xe−x dx. (4)
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This is an integration by parts problem:

u = x dv = e−x dx

du = dx v = −e−x
(5)

lim
t→∞

(
−xe−x

∣∣∣∣t
1

+

∫ t

1

e−x dx

)
= lim

t→∞

(
−xe−x

∣∣∣∣t
1

− e−x
∣∣∣∣t
1

)

= lim
t→∞
− (x+ 1) e−x

∣∣∣∣t
1

= lim
t→∞

2e−1 − (t+ 1) e−t =
2

e
− lim

t→∞

t+ 1

et
=

2

e
. (6)

As this is a convergent improper integral, the integral test indicates that
∞∑
n=1

ne−n is

also convergent . �

[15] 3. Determine whether the series is convergent or divergent.

∞∑
n=1

cos
(
nπ
4

)
n7

Solution: The terms of this series are not all positive, but it is not an alternating
series. As the result, this is quite difficult to deal with directly. Instead, we consider
whether the series is absolutely convergent. We note that∣∣∣∣cos

(
nπ
4

)
n7

∣∣∣∣ = | cos
(
nπ
4

)
|

n7
≤ 1

n7
. (7)

As
∞∑
n=1

1
n7 is a convergent p-series, the comparison test indicates that

∞∑
n=1

∣∣∣ cos(nπ4 )n7

∣∣∣ is

also convergent. Ergo,
∞∑
n=1

cos(nπ4 )
n7 is absolutely convergent, and so it is convergent .

�

[15] 4. Determine whether the series is absolutely convergent, conditionally
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convergent, or divergent.
∞∑
n=1

3n+1

(−2)n

Solution: The easiest way to understand the behavior of this series is by rewrit-
ing it as

∞∑
n=1

3n+1

(−2)n
=
∞∑
n=1

9

−2

(
−3

2

)n−1
. (8)

This is a geometric series. Since
∣∣ − 3

2

∣∣ ≥ 1, the characterization theorem for geo-
metric series indicates that this series is divergent . �

[15] 5. Determine the radius and interval of convergence of the power series.

∞∑
n=0

n!(3x− 4)n

Solution: Like most power series, this is most easily handled using the ratio
test:

lim
n→∞

∣∣∣∣∣(n+ 1)!(3x− 4)n+1

n!(3x− 4)n

∣∣∣∣∣ = lim
n→∞

(n+ 1) |3x− 4|. (9)

This limit will be ∞, unless x = 4
3
, in which case it is zero. Thus, the ratio test

indicates that divergence is guaranteed except when x = 4
3
, and so the radius of

convergence is 0 . �

[15] 6. Find a power series representation for the function and determine its
radius of convergence.

f (x) =
x

5− x
Solution: We first rewrite this function as

f (x) = x
1

5− x
=
x

5

(
1

1− 1
5
x

)
. (10)
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Using the characterization theorem for geometric series, this can be written as

f (x) =
x

5

∞∑
n=0

(
1

5
x

)n
=

∞∑
n=0

xn+1

5n+1 , (11)

as long as
∣∣1
5
x
∣∣ < 1. This inequality can be rephrased as |x| < 5, revealing that the

radius of convergence is 5 . �

[15] 7. Find the Taylor series for f centered at the given value of a, and find the
associated radius of convergence.

f (x) = e−3x, a = 1

Solution: As always, the Taylor series centered at a is given by the definition:
∞∑
n=0

f (n)(a)
n!

(x− a)n. To write this, we need information about the derivatives of f at

a = 1:
f (0) (x) = e−3x f (0) (1) = e−3

f (1) (x) = −3e−3x f (1) (1) = −3e−3

f (2) (x) = 9e−3x f (2) (1) = 9e−3

f (3) (x) = −27e−3x f (3) (1) = −27e−3

. (12)

From this we deduce the pattern

f (n) (1) = (−3)ne−3, (13)

and so the Taylor series is
∞∑
n=0

(−3)n
n!e3

(x− 1)n . (14)

The radius of convergence can be found using the ratio test:

lim
n→∞

∣∣∣∣∣(−3)n+1(x− 1)n+1

(n+ 1)!e3
n!e3

(−3)n(x− 1)n

∣∣∣∣∣ = lim
n→∞

3|x− 1|
n+ 1

= 0. (15)

As this is less than one for every value of x, the ratio test indicates that the series
convergence at every value of x, and so the radius of convergence is ∞ . �
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Math 142V Midterm Test 2 Name: Solution Key

[10] 1. Determine whether the series is convergent or divergent. If it is conver-
gent, find its sum.

∞∑
n=1

1(
1 + 1

10

)n
Solution: This is a geometric series:

∞∑
n=1

1(
1 + 1

10

)n =
∞∑
n=1

(
10

11

)n
. (16)

By the characterization theorem for geometric series, since
∣∣10
11

∣∣ < 1, we know that
this series is convergent . As for its sum:

∞∑
n=1

(
10

11

)n
=
∞∑
n=1

10

11

(
10

11

)n−1
=

(
10
11

)
1− 10

11

= 10 . (17)

�

[15] 2. Determine whether the series is convergent or divergent.

∞∑
n=2

1

n lnn

Solution: We know that 1
n lnn

> 1
(n+1) ln(n+1)

, so the terms form a decreas-
ing sequence. This means that the integral test can apply. We define the function
f (x) = 1

x lnx
and take its improper integral:∫ ∞

2

1

x lnx
dx = lim

t→∞

∫ t

2

1

x lnx
dx. (18)

We use a u-substitution:

u = lnx x = 2⇒ u = ln 2

du = 1
x
dx x = t⇒ u = ln t

(19)
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lim
t→∞

∫ ln t

ln 2

1

u
du = lim

t→∞
ln |u|

∣∣∣∣ln t
ln 2

= lim
t→∞

ln | ln t| − ln (ln 2) =∞. (20)

As the improper integral is divergent, the integral test indicates that the series is also
divergent . �

[15] 3. Determine whether the series is convergent or divergent.

∞∑
n=1

1

2n + n5

Solution: There are two ways to do this problem: by comparing to a geometric
series, or by comparing to a p-series. In the first approach:

1

2n + n5
≤ 1

2n
=

(
1

2

)n
. (21)

As
∞∑
n=1

(
1
2

)n is a convergent geometric series, the comparison test indicates that
∞∑
n=1

1
2n+n5 is also convergent . �

[15] 4. Determine whether the series is absolutely convergent, conditionally
convergent, or divergent.

∞∑
n=1

(−1)n n

n3 + 1

Solution: To test for absolute convergence, we consider the series

∞∑
n=1

∣∣∣∣(−1)n n

n3 + 1

∣∣∣∣ = ∞∑
n=1

n

n3 + 1
. (22)

We note that
n

n3 + 1
<

n

n3
=

1

n2
. (23)

Further,
∞∑
n=1

1
n2 is a convergent p-series. By the comparison test, this indicates that
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∞∑
n=1

n
n3+1

is also convergent, so
∞∑
n=1

(−1)n n
n3+1

is absolutely convergent . �

[15] 5. Determine the radius and interval of convergence of the power series.

∞∑
n=0

n(5x+ 3)n

5n

Solution: As is common for power series, we use the ratio test:

lim
n→∞

∣∣∣∣∣
(

(n+1)(5x+3)n+1

5n+1

)
(
n(5x+3)n

5n

) ∣∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)(5x+ 3)n+1

5n+1

5n

n(5x+ 3)n

∣∣∣∣
= lim

n→∞

n+ 1

5n
|5x+ 3| = 1

5
|5x+ 3|. (24)

The ratio test guarantees absolute convergence for 1
5
|5x + 3| < 1. In other words,

absolute convergence is guaranteed by the ratio test for all x satisfying
∣∣x+ 3

5

∣∣ < 1.
This reveals that the center of convergence is −3

5
, and the radius of convergence is

1 . We now need to check the endpoints. When x = 2
5
, the series becomes:

∞∑
n=0

n
(
5
(
2
5

)
+ 3
)n

5n
=
∞∑
n=0

n5n

5n
=
∞∑
n=0

n, (25)

which is divergent, by the test for divergence. When x = −8
5
, the series becomes:

∞∑
n=0

n
(
5
(
−8

5

)
+ 3
)n

5n
=
∞∑
n=0

(−1)nn, (26)

which is also divergent by the test for divergence. Thus, the interval of convergence
is
(
−8

5
, 2
5

)
. �

[15] 6. Find a power series representation for the function and determine its
radius of convergence.

f (x) =
x

x+ 1
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Solution: We note that

f (x) = x

(
1

1− (−x)

)
. (27)

We now use the characterization theorem for geometric series to re-write this as

x

∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn+1 , (28)

as long as | − x| < 1. This indicates that x must satisfy |x| < 1 in order for the
equality to hold, so the radius of convergence is 1 . �

[15] 7. Find the Taylor series for f centered at the given value of a, and find the
associated radius of convergence.

f (x) =
1

x2
, a = 1

Solution: As always, the Taylor series centered at a is given by the definition:
∞∑
n=0

f (n)(a)
n!

(x− a)n. To write this, we need information about the derivatives of f at

a = 1:
f (0) (x) = x−2 f (0) (1) = 1

f (1) (x) = −2x−3 f (1) (1) = −2
f (2) (x) = (−2)(−3)x−4 f (2) (1) = (2)(3)

f (3) (x) = (−2)(−3)(−4)x−5 f (3) (1) = −(2)(3)(4)

. (29)

From this we deduce the pattern

f (n) (1) = (−1)n(n+ 1)!, (30)

and so the Taylor series is

∞∑
n=0

(−1)n(n+ 1)!

n!
(x− 1)n =

∞∑
n=0

(−1)n(n+ 1)(x− 1)n . (31)
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The radius of convergence can be found using the ratio test:

lim
n→∞

∣∣∣∣∣(−1)n+1(n+ 2)(x− 1)n+1

(−1)n(n+ 1)(x− 1)n

∣∣∣∣∣ = lim
n→∞

n+ 2

n+ 1
|x− 1| = |x− 1|. (32)

The ratio test indicates absolute convergence whenever |x − 1| < 1, and so the
radius of convergence is 1 . �
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Math 142V Midterm Test 2 Name: Solution Key

[10] 1. Determine whether the series is convergent or divergent. If it is conver-
gent, find its sum.

∞∑
n=1

(3)n

(−2)n+2

Solution: This is a geometric series:

∞∑
n=1

3n

(−2)n+2 =
∞∑
n=1

1

4

(
−3

2

)n
. (33)

As
∣∣− 3

2

∣∣ > 1, the characterization theorem for geometric series indicates that this
is divergent . �

[15] 2. Determine whether the series is convergent or divergent.

∞∑
n=2

1

n lnn

Solution: We know that 1
n lnn

> 1
(n+1) ln(n+1)

, so the terms form a decreas-
ing sequence. This means that the integral test can apply. We define the function
f (x) = 1

x lnx
and take its improper integral:∫ ∞

2

1

x lnx
dx = lim

t→∞

∫ t

2

1

x lnx
dx. (34)

We use a u-substitution:

u = lnx x = 2⇒ u = ln 2

du = 1
x
dx x = t⇒ u = ln t

(35)

lim
t→∞

∫ ln t

ln 2

1

u
du = lim

t→∞
ln |u|

∣∣∣∣ln t
ln 2

= lim
t→∞

ln | ln t| − ln (ln 2) =∞. (36)

As the improper integral is divergent, the integral test indicates that the series is also
divergent . �
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[15] 3. Determine whether the series is convergent or divergent.

∞∑
n=1

cos
(
nπ
3

)
2n + 1

Solution: The terms of this series are not all positive, but it is not an alternat-
ing series. For this reason, it would be easiest to determine whether the series of
absolute values is convergent:

∞∑
n=1

∣∣∣∣∣cos
(
nπ
3

)
2n + 1

∣∣∣∣∣ =
∞∑
n=1

∣∣ cos (nπ
3

) ∣∣
2n + 1

. (37)

We note that, for any value of n, | cos
(
nπ
3

)
| ≤ 1. As a result,∣∣ cos (nπ

3

) ∣∣
2n + 1

≤ 1

2n + 1
<

1

2n
=

(
1

2

)n
. (38)

As
∞∑
n=1

(
1
2

)n is a convergent geometric series, the comparison test indicates that
∞∑
n=1

∣∣∣ cos(nπ3 )2n+1

∣∣∣ is also convergent. We deduce that
∞∑
n=1

cos(nπ3 )
2n+1

is absolutely conver-

gent, which implies that it is convergent . �

[15] 4. Determine whether the series is absolutely convergent, conditionally
convergent, or divergent.

∞∑
n=1

(−1)n2
n+1

5n

Solution: To test for absolute convergence, we take the series of absolute values:

∞∑
n=1

∣∣∣∣∣(−1)n2n+1

5n

∣∣∣∣∣ =
∞∑
n=1

2n+1

5n
=
∞∑
n=1

2

(
2

5

)n
. (39)

This is a convergent geometric series, and so
∞∑
n=1

(−1)n 2n+1

5n
is absolutely convergent .

�
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[15] 5. Determine the radius and interval of convergence of the power series.

∞∑
n=0

(5x− 1)n

en

Solution: As usual when dealing with power series, we use the ratio test:

lim
n→∞

∣∣∣∣∣
(

(5x−1)n+1

en+1

)
(

(5x−1)n
en

) ∣∣∣∣∣ = lim
n→∞

∣∣∣∣(5x− 1)n+1

en+1

en

(5x− 1)n

∣∣∣∣ = 1

e
|5x− 1|. (40)

The ratio test guarantees absolute convergence for 1
e
|5x−1| < 1, or in other words,∣∣x − 1

5

∣∣ < e
5
. This indicates that the ratio of convergence is e

5
. We now check the

endpoints of the interval of convergence. When x = 1
5
− e

5
:

∞∑
n=0

(
5
(
1−e
5

)
− 1
)n

en
=
∞∑
n=0

(−e)n

en
=
∞∑
n=0

(−1)n. (41)

By the test for divergence, this is divergent. When x = 1
5
+ e

5
:

∞∑
n=0

(
5
(
1+e
5

)
− 1
)n

en
=
∞∑
n=0

en

en
=
∞∑
n=0

1, (42)

which is also divergent, by the test for divergence. Thus, the interval of convergence
is
(
1−e
5
, 1+e

5

)
. �

[15] 6. Find a power series representation for the function and determine its
radius of convergence.

f (x) =
1

x+ 4

Solution: We note that

f (x) =
1

4− (−x)
=

1

4

(
1

1−
(
−1

4
x
)) (43)
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From here, we can use the characterization theorem for geometric series to say that

f (x) =
1

4

∞∑
n=0

(
−1

4
x

)n
=

∞∑
n=0

(−1)n xn

4n+1 , (44)

as long as
∣∣ − 1

4
x
∣∣ < 1, or in other words, |x| < 4. This reveals that the radius of

convergence is 4 . �

[15] 7. Find the Taylor series for f centered at the given value of a, and find the
associated radius of convergence.

f (x) = e−πx, a = 0

Solution: As always, the Taylor series centered at a is given by the definition:
∞∑
n=0

f (n)(a)
n!

(x− a)n. To write this, we need information about the derivatives of f at

a = 0:
f (0) (x) = e−πx f (0) (0) = 1

f (1) (x) = −πe−πx f (1) (0) = −π
f (2) (x) = π2e−πx f (2) (0) = π2

f (3) (x) = −π3e−πx f (3) (0) = −π3

. (45)

From this we deduce the pattern

f (n) (0) = (−1)nπn, (46)

and so the Taylor series is

∞∑
n=0

(−1)nπn
n!

(x− 1)n . (47)

The radius of convergence can be found using the ratio test:

lim
n→∞

∣∣∣∣∣(−1)n+1πn+1(x− 1)n+1

(n+ 1)!

n!

(−1)nπn(x− 1)n

∣∣∣∣∣ = lim
n→∞

|x− 1|
n+ 1

= 0. (48)
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Since this is less than 1 for all real values of x, the ratio test indicates that the radius
of convergence is ∞ �
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