Math 142V Quiz 9

Name: Solution Key

November 12th, 2020

You must show all of your work and reasoning to receive full credit.

1. [10] Find a power series representation for the function and determine the radius of convergence.

$$
f(x)=\frac{x}{2 x^{2}+1}
$$

Solution: We begin by re-writing the function as

$$
\begin{equation*}
f(x)=x\left(\frac{1}{2 x^{2}+1}\right)=x\left(\frac{1}{1-\left(-2 x^{2}\right)}\right) . \tag{1}
\end{equation*}
$$

Based on the characterization theorem for geometric series, if $\left|-2 x^{2}\right|<1$, then this becomes

$$
\begin{equation*}
f(x)=x \sum_{n=0}^{\infty}\left(-2 x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-2)^{n} x^{2 n+1} . \tag{2}
\end{equation*}
$$

The inequality $\left|-2 x^{2}\right|<1$ can be re-written as $x^{2}<\frac{1}{2}$, or in other words, $|x|<\frac{1}{\sqrt{2}}$. Thus, the radius of convergence is $\frac{1}{\sqrt{2}}$.
2. [10] Find a power series representation for the function and determine the radius of convergence.

$$
f(x)=\ln (1-x)
$$

Solution: We note that

$$
\begin{equation*}
f^{\prime}(x)=\frac{-1}{1-x} \tag{3}
\end{equation*}
$$

Based on the characterization theorem for geometric series, if $|x|<1$, then this becomes

$$
\begin{equation*}
f^{\prime}(x)=-\sum_{n=0}^{\infty} x^{n} \tag{4}
\end{equation*}
$$

Thus, the derivative has this power series representation with radius of convergence 1. Now we need only take the indefinite integral of both sides:

$$
\begin{equation*}
f(x)=\int-\sum_{n=0}^{\infty} x^{n} \mathrm{~d} x=-\sum_{n=0}^{\infty} \int x^{n} \mathrm{~d} x=-\left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)+C \tag{5}
\end{equation*}
$$

In order to find the value of C, we take $f(0)$:

$$
\begin{equation*}
0=\ln (1-0)=f(0)=-\left(\sum_{n=0}^{\infty} \frac{0^{n+1}}{n+1}\right)+C=0+C=C \tag{6}
\end{equation*}
$$

This reveals that

$$
\begin{equation*}
f(x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} . \tag{7}
\end{equation*}
$$

As this is a power series, the radius of convergence is the same as the radius of convergence of the derivative: 1 . \square

