Math 142V Quiz 8 Name:
November 3rd, 2020

You must show all of your work and reasoning to receive full credit.

1. [10] Test the series for convergence or divergence.
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Solution: We note that, for n > e,
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Since ) % is one term less than the harmonic series (which is a p-series), it is
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divergent. By the comparison test, this indicates that ;::2 Ty 8 also | divergent |.



2. [10] Determine the radius of convergence and the interval of convergence of
the power series z m.
n=0
Solution: We use the ratio test:
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In order for the ratio test to guarantee absolute convergence, this must be less than
1: %|x + 3| < 1. In other words, convergence is guaranteed for |z + 3| < 2 and
divergence is guaranteed for |z + 3| > 2, so the radius of convergence is .

The center of convergence is located at a = —3, so convergence is guaranteed

if =5 <z < —1. We now check the endpoints of the interval. If x = —5:
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The limit lim (—1)"n does not exist, so the test for divergence indicates that diver-
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gence occurs at © = —5. As forx = —1:
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The limit lim n = oo, so the test for divergence indicates that divergence occurs at
n—o0
x = —1. Therefore, the interval of convergence is | (—5, —1) |.




Math 142V Quiz 8 Name:
November 5th, 2020

This is a make-up quiz. If you have not received my permission to take this make-

up quiz, then your submission will not be accepted.
You must show all of your work and reasoning to receive full credit.
1. [10] Test the series for convergence or divergence.
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Solution: Since 0 < sin?n < 1 for all integer n,
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The series ) = is one term less than the harmonic series (which is a p-series),
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and so is divergent. By the comparison test, this indicates that
=2
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2. [10] Determine the radius of convergence and the interval of convergence of
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the power series z

Solution: We use the ratio test:
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The ratio test guarantees (absolute) convergence if %|x +100| < 1 and divergence if
%|x +100| > 1. Equivalently, the ratio test guarantees convergence if |x 4+ 100| < 5
and divergence if |x 4+ 100| > 5, so the radius of convergence is .

The center of convergence is located at @ = —100, so the ratio test guarantees
absolute convergence if —105 < x < —95. We now check the endpoints of the
interval. If x = —105:
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The alternating series test indicates that this series is convergent, and so conver-

gence occurs at * = —105. As for z = —95:
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We do a limit comparison between this and the harmonic series:
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As this is positive and finite, the limit comparison test indicates that Z %

> #1 have the same behavior. Since the harmonic series is divergent (by the
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p-series test), > #1 is also divergent, and so divergence occurs at x = —95.
n=0

Therefore, the interval of convergence is | [-105, —95) |




