Math 141V Quiz 2

Name: Solution Key

September 15th, 2020

You must show all of your work and reasoning to receive full credit.

1. [7] Evaluate the definite integral.

$$
\int_{0}^{\frac{\pi}{2}} \tan ^{2} x+\tan ^{4} x \mathrm{~d} x
$$

This problem is actually impossible to do without knowing about improper integrals, which is a topic that we will discuss later. The intention was to put $\frac{\pi}{4}$ as the upper bound of the integral, not $\frac{\pi}{2}$. If that had been the case, this would have been the solution:

$$
\begin{gather*}
\int_{0}^{\frac{\pi}{4}} \tan ^{2} x+\tan ^{4} x \mathrm{~d} x=\int_{0}^{\frac{\pi}{4}} \tan ^{2} x\left(1+\tan ^{2} x\right) \mathrm{d} x=\int_{0}^{\frac{\pi}{4}} \tan ^{2} x \sec ^{2} x \mathrm{~d} x \tag{1}\\
u=\tan x \quad x=0 \Rightarrow u=0 \\
\mathrm{~d} u=\sec ^{2} x \mathrm{~d} x \quad x=\frac{\pi}{4} \Rightarrow u=1 \tag{2}\\
\int_{0}^{1} u^{2} \mathrm{~d} u=\left.\frac{1}{3} u^{3}\right|_{0} ^{1}=\frac{1}{3} . \tag{3}
\end{gather*}
$$

2. [13] Evaluate the indefinite integral. Your final answer should be in terms of x, with no inverse trigonometric functions involved.

$$
\int \frac{\sqrt{x^{2}-100}}{x^{4}} \mathrm{~d} x
$$

Solution:

$$
\begin{gather*}
x=10 \sec \theta \\
\mathrm{~d} x=10 \sec \theta \tan \theta \mathrm{~d} \theta \\
\int \frac{\sqrt{100 \sec ^{2} \theta-100}}{1000 \sec ^{4} \theta} 10 \sec \theta \tan \theta \mathrm{~d} \theta=\frac{1}{100} \int \frac{\sqrt{\tan ^{2} \theta}}{\sec ^{3} \theta} \tan \theta \mathrm{~d} \theta \\
=\frac{1}{100} \int \frac{\tan ^{2} \theta}{\sec ^{3} \theta} \mathrm{~d} \theta=\frac{1}{100} \int \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cos ^{3} \theta \mathrm{~d} \theta=\frac{1}{100} \int \sin ^{2} \theta \cos \theta \mathrm{~d} \theta \tag{5}\\
u=\sin \theta \\
\mathrm{d} u=\cos \theta \mathrm{d} \theta \tag{6}\\
\frac{1}{100} \int u^{2} \mathrm{~d} u=\frac{1}{300} u^{3}+C=\frac{1}{300} \sin ^{3} \theta+C \tag{7}\\
x \tag{8}
\end{gather*} \sqrt{x} \frac{x}{x^{2}-100} \Rightarrow \cos \theta=\frac{10}{x}
$$

The diagram shows that $\sin \theta=\frac{\sqrt{x^{2}-100}}{x}$, so our final answer is

$$
\begin{equation*}
\frac{1}{300}\left(\frac{\sqrt{x^{2}-100}}{x}\right)^{3}+C \text {. } \tag{9}
\end{equation*}
$$

Math 141V Quiz 2

Name: Solution Key

September 17th, 2020

Let's try this again. This time, with less of my incompetence.

You must show all of your work and reasoning to receive full credit.

1. [7] Evaluate the definite integral.

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan ^{5} x \sec ^{5} x \mathrm{~d} x
$$

Solution:

$$
\begin{equation*}
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan ^{5} x \sec ^{5} x \mathrm{~d} x=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\sec ^{2} x-1\right)^{2} \sec ^{4} x \sec x \tan x \mathrm{~d} x \tag{10}
\end{equation*}
$$

We proceed by u-substitution:

$$
\begin{align*}
& u=\sec x \quad x=\frac{\pi}{6} \Rightarrow u=\sec \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}} \tag{11}\\
& \mathrm{~d} u=\sec x \tan x \mathrm{~d} x \quad x=\frac{\pi}{3} \Rightarrow u=\sec \left(\frac{\pi}{3}\right)=2 \\
& \int_{\frac{2}{\sqrt{3}}}^{2}\left(u^{2}-1\right)^{2} u^{4} \mathrm{~d} u=\int_{\frac{2}{\sqrt{3}}}^{2} u^{8}-2 u^{6}+u^{4} \mathrm{~d} u \\
& =\frac{1}{9} u^{9}-\frac{2}{7} u^{7}+\left.\frac{1}{5} u^{5}\right|_{\frac{2}{\sqrt{3}}} ^{2} \\
& =\left(\frac{512}{9}-\frac{256}{7}+\frac{32}{5}\right)-\left(\frac{512}{729 \sqrt{3}}-\frac{256}{189 \sqrt{3}}+\frac{32}{45 \sqrt{3}}\right) \tag{12}
\end{align*}
$$

2. [13] Evaluate the indefinite integral. Your final answer should be in terms of x, with no inverse trigonometric functions involved.

$$
\int \frac{1}{x^{2} \sqrt{16-x^{2}}} \mathrm{~d} x
$$

Solution:

$$
\begin{gather*}
x=4 \sin \theta \\
\mathrm{~d} x=4 \cos \theta \mathrm{~d} \theta \tag{13}
\end{gather*}
$$

$$
\begin{align*}
& \int \frac{1}{(4 \sin \theta)^{2} \sqrt{16-(4 \sin \theta)^{2}}} 4 \cos \theta \mathrm{~d} \theta \\
& =\int \frac{4 \cos \theta}{16 \sin ^{2} \theta \sqrt{16\left(1-\sin ^{2} \theta\right)}} \mathrm{d} \theta \\
& =\int \frac{4 \cos \theta}{16 \sin ^{2} \theta \sqrt{16 \cos ^{2} \theta}} \mathrm{~d} \theta=\int \frac{4 \cos \theta}{16 \sin ^{2} \theta 4 \cos \theta} \mathrm{~d} \theta \\
& \quad=\frac{1}{16} \int \frac{1}{\sin ^{2} \theta} \mathrm{~d} \theta=\frac{1}{16} \int \csc ^{2} \theta \mathrm{~d} \theta=-\frac{1}{16} \cot \theta+C \tag{14}
\end{align*}
$$

Now, since $\sin \theta=\frac{x}{4}$,

The diagram shows that $\tan \theta=\frac{x}{\sqrt{16-x^{2}}}$, so $\cot \theta=\frac{\sqrt{16-x^{2}}}{x}$. Therefore, our indefinite integral is

$$
\begin{equation*}
-\frac{\sqrt{16-x^{2}}}{16 x}+C \tag{15}
\end{equation*}
$$

