Math 142V final exam practice test 1

You must show all of your work and reasoning to receive full credit.
[10] 1.1 (7.2.45) Evaluate the integral.

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{6}} \sqrt{1+\cos (2 x)} \mathrm{d} x \tag{1}
\end{equation*}
$$

[10] 1.2. Determine whether the improper integral is convergent or divergent.

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\cos ^{2} x+1}{x} \mathrm{~d} x \tag{2}
\end{equation*}
$$

[15] 1.3. Evaluate the integral.

$$
\begin{equation*}
\int \frac{\sqrt{1+x^{2}}}{x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

[10] 1.4. (7.4.23) Evaluate the integral.

$$
\begin{equation*}
\int \frac{10}{(x-1)\left(x^{2}+9\right)} \mathrm{d} x \tag{4}
\end{equation*}
$$

[10] 1.5. Determine whether the sequence converges or diverges. If it converges, find its limit.

$$
\begin{equation*}
a_{n}=\frac{(2 n-1)!}{(2 n+1)!} 6 n^{2} \tag{5}
\end{equation*}
$$

[15] 1.6. Find the radius and interval of convergence of the power series.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n} 5^{n}}{\sqrt[3]{n}} x^{n} \tag{6}
\end{equation*}
$$

[10] 1.7. (11.9.3) Find a power series representation for the function and determine the interval of convergence.

$$
\begin{equation*}
f(x)=\frac{1}{1+x} \tag{7}
\end{equation*}
$$

[10] 1.8. Determine the slope of the tangent line to the polar curve at the point where $\theta=\frac{\pi}{2}$.

$$
\begin{equation*}
r^{2}=17 \cos ^{2} \theta-8 \cos \theta+\sin ^{2} \theta \tag{8}
\end{equation*}
$$

[10] 1.9. Find the area of the region that lies inside the first polar curve and outside the second polar curve.

$$
\begin{equation*}
r=1-\sin \theta, \quad r=1 \tag{9}
\end{equation*}
$$

Math 142 V final exam practice test 2

You must show all of your work and reasoning to receive full credit.
[10] 2.1. Solve the integral with the use of integration by parts.

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} 3 x \cos (2 x) \mathrm{d} x \tag{10}
\end{equation*}
$$

[10] 2.2. Determine whether the improper integral is convergent or divergent.

$$
\begin{equation*}
\int_{1}^{\infty} e^{-x} \mathrm{~d} x \tag{11}
\end{equation*}
$$

[15] 2.3. Evaluate the integral.

$$
\begin{equation*}
\int \tan ^{6} x \sec ^{4} x \mathrm{~d} x \tag{12}
\end{equation*}
$$

[10] 2.4. (7.4.21) Evaluate the integral.

$$
\begin{equation*}
\int \frac{\mathrm{d} t}{\left(t^{2}-1\right)^{2}} \tag{13}
\end{equation*}
$$

[10] 2.5. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\cos (8 n)}{3+4^{n}} \tag{14}
\end{equation*}
$$

[15] 2.6. (11.8.15) Find the radius and interval of convergence of the power series.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{2}+1} \tag{15}
\end{equation*}
$$

[10] 2.7. (11.9.7) Find a power series representation of the function and determine the interval of convergence.

$$
\begin{equation*}
f(x)=\frac{x^{2}}{x^{4}+16} \tag{16}
\end{equation*}
$$

[10] 2.8. Find the polar coordinates of the point whose Cartesian coordinates are $(-2,-2 \sqrt{3})$.
[10] 2.9. (10.4.9) Sketch the curve and find the area that it encloses.

$$
\begin{equation*}
r=2 \sin \theta \tag{17}
\end{equation*}
$$

Math 142 V final exam practice test 3

You must show all of your work and reasoning to receive full credit.
[10] 3.1. (7.1.10) Evaluate the integral.

$$
\begin{equation*}
\int \ln \sqrt{x} \mathrm{~d} x \tag{18}
\end{equation*}
$$

[10] 3.2. Determine whether the improper integral is convergent or divergent. If it is convergent, find its value.

$$
\begin{equation*}
\int_{1}^{2} \frac{2 x}{\sqrt[3]{x^{2}-4}} \mathrm{~d} x \tag{19}
\end{equation*}
$$

[15] 3.3. (7.3.4) Evaluate the indefinite integral.

$$
\begin{equation*}
\int \frac{x^{2}}{\sqrt{9-x^{2}}} \mathrm{~d} x \tag{20}
\end{equation*}
$$

[10] 3.4. (7.4.9) Evaluate the integral.

$$
\begin{equation*}
\int \frac{5 x+1}{(2 x+1)(x-1)} \mathrm{d} x \tag{21}
\end{equation*}
$$

[10] 3.5. (11.3.15) Determine whether the series is convergent or divergent.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sqrt{n}+4}{n^{2}} \tag{22}
\end{equation*}
$$

[15] 3.6. Determine the radius and interval of convergence of the power series.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \tag{23}
\end{equation*}
$$

[10] 3.7. Find a power series representation of the function, and determine its
radius of convergence.

$$
\begin{equation*}
f(x)=\frac{x^{3}}{3-x^{2}} \tag{24}
\end{equation*}
$$

[10] 3.8. (10.3.59) Find the slope of the tangent line to the given polar curve at the point specified by the value of θ.

$$
\begin{equation*}
r=\cos (2 \theta), \quad \theta=\frac{\pi}{4} \tag{25}
\end{equation*}
$$

[10] 3.9. (10.4.45) Find the exact length of the polar curve.

$$
\begin{equation*}
r=2 \cos \theta, \quad 0 \leq \theta \leq \pi \tag{26}
\end{equation*}
$$

Math 142 V final exam practice test 4

You must show all of your work and reasoning to receive full credit.
[10] 4.1. Evaluate the integral.

$$
\begin{equation*}
\int x^{2} \sin (2 x) \mathrm{d} x \tag{27}
\end{equation*}
$$

[10] 4.2. (7.8.37) Determine whether the integral is convergent or divergent. Evaluate it if it is convergent.

$$
\begin{equation*}
\int_{0}^{1} r \ln r \mathrm{~d} r \tag{28}
\end{equation*}
$$

[15] 4.3. (7.3.14) Evaluate the integral.

$$
\begin{equation*}
\int_{0}^{1} \frac{\mathrm{~d} x}{\left(x^{2}+1\right)^{2}} \tag{29}
\end{equation*}
$$

[10] 4.4. (7.4.27) Evaluate the integral.

$$
\begin{equation*}
\int \frac{x^{3}+4 x+3}{x^{4}+5 x^{2}+4} d x \tag{30}
\end{equation*}
$$

[10] 4.5. Determine whether the series is convergent or divergent.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2^{n} n!}{(n+2)!} \tag{31}
\end{equation*}
$$

[15] 4.6. (11.8.9) Find the radius and interval of convergence of the power series.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{4} 4^{n}} \tag{32}
\end{equation*}
$$

[10] 4.7. Find a power series representation of the function and determine its radius of convergence.

$$
\begin{equation*}
f(x)=\ln (1-x) \tag{33}
\end{equation*}
$$

[10] 4.8. (10.1.15) Eliminate the parameter to find a Cartesian equation of the
curve. Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

$$
\begin{gather*}
x(t)=t^{2} \\
y(t)=\ln t \tag{34}
\end{gather*}
$$

[10] 4.9. (10.4.47) Find the exact length of the polar curve.

$$
\begin{equation*}
r=\theta^{2}, \quad 0 \leq \theta \leq 2 \pi \tag{35}
\end{equation*}
$$

