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1 Tuesday, May 28

Calculus II is organized into four parts, corresponding to four goals:
1. To provide practical strategies for solving integrals.
2. To apply integration strategies to problems in geometry.
3. To extend calculus to curves that are not described by functions.
4. To introduce the theory of infinite series.
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In Calculus I, we explained the theory of the solutions of the tangent line prob-
lem and the area problem. These were related by the fundamental theorem of cal-
culus, which states:

Theorem 1.1 (Fundamental theorem of calculus) If f is a continuous function on

the interval [a, b], then the following statements are true.

(i)
d

dx

� x

a

f(t) dt = f(x). (1)

(ii) If F is an antiderivative of f , then

� b

a

f(x) dx = F (b)− F (a). (2)

This tells us that integrals can be solved by using antiderivatives. However, find-
ing antiderivatives is much harder than finding derivatives. Therefore, the first part
of Calculus II will focus on strategies for finding antiderivatives. First, we review
what we know from Calculus I.

Let k be a real-valued constant.

�
1 dx = x+ C�

xk dx = xk+1

k+1
+ C if k 6= −1�

1
x
dx = ln |x|+ C�

ekx dx = ekx

k
+ C�

cosx dx = sinx+ C�
sinx dx = − cosx+ C�
sec2x dx = tanx+ C�

secx tanx dx = secx+ C�
cscx cotx dx = − cscx+ C�
csc2x dx = − cotx+ C�

1
x2+1

dx = tan−1x+ C�
1√

1−x2 dx = sin−1x+ C�
1

x
√
x2−1 dx = sec−1x+ C

(3)
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We also know that �
kf(x) dx = k

�
f(x) dx (4)

and �
f(x) + g(x) dx =

�
f(x) dx+

�
g(x) dx. (5)

As for definite integrals, we also [hopefully] learned:

� b

a

f(x) dx = −
� a

b

f(x) dx (6)

and if a ≤ t ≤ b, then

� b

a

f(x) dx =

� t

a

f(x) dx+

� b

t

f(x) dx. (7)

The last thing we learned in Calculus I was u-substitution.

Example 1.2 Evaluate the integral.

�
x

x2 + 1
dx (8)

Set
u = x2 + 1

du = 2x dx
. (9)

Therefore, the integral becomes

�
1

2

1

u
du =

1

2
ln |u|+ C = 1

2
ln |x2 + 1|+ C . (10)

�

Example 1.3 Evaluate the integral.

� π
2

0

esinx cosx dx (11)
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Set
u = sinx

du = cosx dx
. (12)

The integral becomes

� 1

0

eu du = eu
∣∣∣∣1
0

= e1 − e0 = e− 1 . (13)

�

Example 1.4 Evaluate the integral.

� 1

1
2

e(
1
x)

x2
dx (14)

Set
u = 1

x

du = − 1
x2

dx
. (15)

The integral becomes

� 1

2

−eu du = −
� 1

2

eu du =

� 2

1

eu du = eu
∣∣∣∣2
1

= e2 − e = e (e− 1) . (16)

�

Example 1.5 �
lnx

x
dx (17)

Set
u = lnx

du = 1
x
dx
. (18)

The integral becomes

�
u du =

1

2
u2 + C = 1

2
(lnx)2 + C . (19)

�
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Example 1.6 �
cotx dx (20)

Notice that �
cotx dx =

�
cosx

sinx
dx. (21)

Set
u = sinx

du = cosx dx
(22)

The integral becomes

�
1

u
du = ln |u|+ C = ln | sinx|+ C . (23)

Does u-substitution always work? Absolutely not.

Example 1.7 Consider the integrals

�
x sinx dx (24)

�
x lnx dx (25)

�
x2ex dx (26)

�
lnx dx (27)

�
ex cosx dx (28)

We need a new method to solve these integrals. �
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Section 7.1: Integration by parts

The product rule for derivatives is:

d

dx
uv = u

dv

dx
+ v

du

dx
. (29)

What if we took the antiderivative of both sides?

uv =

�
u
dv

dx
dx+

�
v
du

dx
dx. (30)

However, we often write dv
dx

dx as dv, and du
dx

dx as du. Therefore, we can re-arrange
and write this as �

u dv = uv −
�
v du . (31)

This is called “integration by parts.” We will illustrate this method of integration
with an example.

Example 1.8 Evaluate the integral

�
x sinx dx. (32)

Integration by parts is most effective when we can write the integrand as a product

of two familiar functions, as above. Select one of these functions and name it u.

Select the other function and dx and name that dv.

u = x dv = sinx dx. (33)

Now, take the derivative of u and the antiderivative of dv.

du = dx v = − cosx. (34)

Now plug these “parts” into the integration by parts formula.

�
u dv = uv −

�
v du�

x sinx dx = −x cosx−
�
− cosx dx.

(35)
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Notice that we can solve the integral on the right:

�
x sinx dx = −x cosx+

�
cosx dx = −x cosx+ sinx+ C . (36)

�

Example 1.9 Evaluate the integral

�
x lnx dx. (37)

We select
u = lnx dv = x dx

du = 1
x
dx v = 1

2
x2

(38)

Now put these into the integration by parts formula:

�
u dv = uv −

�
v du�

x lnx dx = 1
2
x2 lnx−

�
1
2
x2 1

x
dx

(39)

We can solve the integral on the right:

�
x lnx dx =

1

2
x2 lnx− 1

2

�
x dx = 1

2
x2 lnx− 1

4
x2 + C . (40)

�

Sometimes, you need to use integration by parts more than once.

Example 1.10 Evaluate the integral

�
x2ex dx. (41)

We select
u = x2 dv = ex dx

du = 2x dx v = ex
(42)
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Now put these into the integration by parts formula:

�
u dv = uv −

�
v du�

x2ex dx = x2ex −
�
2xex dx.

(43)

Thus, �
x2ex dx = x2ex − 2

�
xex dx. (44)

To solve the integral on the right, we use integration by parts yet again:

�
xex dx (45)

We select
u = x dv = ex dx

du = dx v = ex
. (46)

Now, �
xex dx = xex −

�
ex dx = xex − ex + C. (47)

We plug this result in to find

�
x2ex dx = x2ex − 2

�
xex dx

= x2ex − 2 (xex − ex + C) = x2ex − 2xex + 2ex − 2C . (48)

In finding antiderivatives, we are uninterested in the exact value of the constant C.

Therefore, whether it is C or −2C makes no difference to us; either way, it is a

constant. We call it by the name C1:

x2ex − 2xex + 2ex + C1 (49)

�

Sometimes, integration by parts can be weird.

8



Example 1.11 Evaluate the integral

�
lnx dx. (50)

We select
u = lnx dv = dx

du = 1
x
dx v = x

. (51)

Now put these into the integration by parts formula:

�
u dv = uv −

�
v du�

lnx dx = x lnx−
�
x 1
x
dx

(52)

We can solve the integral on the right:

�
lnx dx = x lnx−

�
1 dx = x lnx− x+ C . (53)

Example 1.12 Evaluate the integral

�
ex cosx dx. (54)

We select
u = cosx dv = ex dx

du = − sinx dx v = ex
(55)

Putting this into the integration by parts formula,

�
u dv = uv −

�
v du�

ex cosx dx = ex cosx+
�
ex sinx dx

(56)

We still cannot solve the integral on the right, so we try integration by parts again:

u = sinx dv = ex dx

du = cosx dx v = ex
. (57)
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Now we get

�
ex cosx dx = ex cosx+

(
ex sinx−

�
ex cosx dx

)
(58)

Ergo,

2

�
ex cosx dx = ex cosx+ ex sinx+ C, (59)

and so �
ex cosx dx = 1

2
ex (cosx+ sinx) + C1 . (60)

�

For a definite integral, the integration by parts formula becomes

� b

a

u dv = uv

∣∣∣∣b
a

−
� b

a

v du. (61)

Example 1.13 (Problem 7.1.26) Evaluate the integral.

� 2

1

x2 lnx dx (62)

We select
u = lnx dv = x2 dx

du = 1
x
dx v = 1

3
x3.

(63)

Now we put these into the integration by parts formula:

� b
a
u dv = uv

∣∣b
a
−
� b
a
v du� 2

1
x2 lnx dx = 1

3
x3 lnx

∣∣2
1
−
� 2

1
1
3
x3 1

x
dx.

(64)

10



We can solve the integral on the right:

� 2

1

x2 lnx dx =
1

3
x3 lnx

∣∣∣∣2
1

− 1

3

� 2

1

x2 dx

=
1

3
x3 lnx

∣∣∣∣2
1

− 1

3

(
1

3
x3
∣∣∣∣2
1

)
=

(
8

3
ln 2− 1

3
ln 1

)
− 1

3

(
1

3
23 − 1

3
13
)

=
8

3
ln 2− 7

9
(65)

�

Does integration by parts always work? NO.

Example 1.14 �
sin2x cos2x dx. (66)

This cannot be done by parts. �
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Section 7.2: Trigonometric integrals

We need some strategies for integrals involving trigonometric functions.

Example 1.15 Evaluate the integral.

�
secx dx (67)

In order to do this, we first multiply by secx+tanx
tanx+secx

:

�
secx

(
secx+ tanx

tanx+ secx

)
dx =

�
sec2x+ secx tanx

tanx+ secx
dx. (68)

Now we use u-substitution:

u = tanx+ secx

du = sec2x+ secx tanx
. (69)

The integral now becomes

�
1

u
du = ln |u|+ C = ln

∣∣ secx+ tanx
∣∣+ C . (70)

�

How should we integrate

�
sinmx cosnx dx (71)

wherem and n are non-negative integers? It depends on which ofm and n are even,
and which are odd.

Strategy Consider the integral above. We have three cases to consider.
Case 1: n is odd. In that case, n = 2k + 1 for some integer k. Therefore, we

have �
sinmx cos2k+1x dx =

�
sinmx

(
cos2x

)k
cosx dx. (72)
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At this point, we can use the trigonometric identity sin2x+cos2x = 1. This identity
implies that cos2x = 1− sin2x. Therefore,

�
sinmx

(
1− sin2x

)k
cosx dx. (73)

At this point, we can use u-substitution.
Case 2: n is even, and m is odd. In that case, m = 2l + 1 for some integer l.

Therefore, we have
�

sin2l+1x cosnx dx =

� (
sin2x

)l
cosnx sinx dx. (74)

Again, we can use cos2x+ sin2x = 1, so we get

� (
1− cos2x

)l
cosnx sinx dx. (75)

At this point, we can use u-substitution.
Case 3: m and n are both even. In this case, m = 2l and n = 2k for some

integers k and l. Therefore, we have

� (
sin2x

)l(
cos2x

)k
dx. (76)

We need to use the trigonometric identities

sin2x = 1
2
(1− cos (2x))

cos2x = 1
2
(1 + cos (2x))

sinx cosx = 1
2
sin (2x)

. (77)

Distribute, and reduce further if necessary.

Example 1.16 Evaluate the integral

�
sin4x cos5x dx. (78)
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This is Case 1. Therefore, we separate one factor of cosine:

�
sin4x cos4x cosx dx (79)

Now we use the identity sin2x+ cos2x = 1:

�
sin4x

(
1− sin2x

)2
cosx dx. (80)

We now use u-substitution:
u = sinx

du = cosx dx,
(81)

so this becomes �
u4
(
1− u2

)2
du. (82)

We distribute:
�
u4
(
1− 2u2 + u4

)
du =

�
u4 − 2u6 + u8 du, (83)

and take the antiderivative:

1

5
u5 − 2

7
u7 +

1

9
u9 + C. (84)

In terms of x, this becomes:

1
5
sin5x− 2

7
sin7x+ 1

9
sin9x+ C . (85)

�

Example 1.17 (Problem 7.2.2) Evaluate the integral.

�
sin3θ cos4θ dθ. (86)

14



This is Case 2. Now we can separate one factor of sine:

�
sin2θ cos4θ sin θ dθ. (87)

We apply the trigonometric identity sin2θ + cos2θ = 1 to get

� (
1− cos2θ

)
cos4θ sin θ dθ. (88)

Now we use u-substitution:
u = cos θ

du = − sin θ dθ
, (89)

so this becomes

−
� (

1− u2
)
u4 du =

�
u6 − u4 du =

1

7
u7 − 1

5
u5 + C. (90)

In terms of x, this is
1
7
cos7θ − 1

5
cos5θ + C . (91)

�

Example 1.18 (Problem 7.2.10) Evaluate the integral.

� π

0

sin2t cos4t dt (92)

This is Case 3. We notice that cos t has a larger power, so we will begin by separat-

ing those extra factors from the rest of the integrand:

� π

0

(sin t cos t)2cos2t dt. (93)

We use the fact that sin t cos t = 1
2
sin (2t) and cos2t = 1

2
(1 + cos (2t)).

� π

0

(
1

2
sin (2t)

)2
1

2
(1 + cos (2t)) dt. (94)
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We distribute:
1

8

� π

0

sin2 (2t) + sin2 (2t) cos (2t) dt. (95)

We can now separate the integral into two terms:

1

8

� π

0

sin2 (2t) dt+
1

8

� π

0

sin2 (2t) cos (2t) dt. (96)

For the left integral, we will use the trigonometric identity sin2θ = 1
2
(1− cos (2θ)):

1

8

� π

0

1

2
(1− cos (4t)) dt+

1

8

� π

0

sin2 (2t) cos (2t) dt (97)

The right integral can be done by u-substitution:

u = sin (2t)

du = 2 cos (2t) dt
, (98)

giving us
1

16

� π

0

1− cos (4t) dt+
1

16

� 0

0

u2 du (99)

Any definite integral with equal bounds is zero, so this becomes

1

16

� π

0

1− cos (4t) dt (100)

Taking the antiderivative, we get

1

16

(
t− 1

4
sin (4t)

) ∣∣∣∣π
0

= π
16
. (101)

�
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2 Wednesday, May 29

How should we integrate �
tanmx secnx dx, (102)

where m and n are non-negative integers? This also depends on which of m and n
are even, and which are odd.

Strategy Consider the integral above. We have two important cases to consider.
Case 1: n is even. In that case, n = 2k for some integer k. Therefore, we have

�
tanmx sec2kx dx =

�
tanmx

(
sec2x

)k−1
sec2x dx (103)

Now we can use the trigonometric identity tan2x+ 1 = sec2x. This now becomes

�
tanmx

(
tan2x+ 1

)k−1
sec2x dx. (104)

At this point, we can use u-substitution.
Case 2: m is odd, and n ≥ 1. In that case, m = 2l + 1 for some integer l.

Therefore, we have
� (

tan2x
)l
secn−1x secx tanx dx. (105)

Again, we use the trigonometric identity tan2x+ 1 = sec2x. This becomes

� (
sec2x− 1

)l
secn−1x secx tanx dx. (106)

Now we can use u-substitution.

Example 2.1 (Problem 7.2.22) Evaluate the integral

�
tan2θ sec4θ dθ (107)
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This is Case 1. We can write this as
�

tan2θ sec2θ sec2θ dθ. (108)

Using the identity tan2θ + 1 = sec2θ, this becomes

�
tan2θ

(
tan2θ + 1

)
sec2θ dθ. (109)

We now proceed by u-substitution:

u = tan θdu = sec2θ dθ, (110)

which gives

�
u2
(
u2 + 1

)
du =

�
u4 + u2 du =

1

5
u5 +

1

3
u3 + C, (111)

which, in terms of x, is
1
5
tan5θ + 1

3
tan3θ + C . (112)

�

Example 2.2 (Problem 7.2.28) Evaluate the integral

�
tan5x sec3x dx (113)

This is Case 2. We can write this as
� (

tan2x
)2
sec2x secx tanx dx (114)

We use the identity tan2x+ 1 = sec2x to get

� (
sec2x− 1

)2
sec2x secx tanx dx. (115)
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Now we use u-substitution:

u = secx

du = secx tanx dx
, (116)

to get

� (
u2 − 1

)2
u2 du =

� (
u4 − 2u2 + 1

)
u2 du =

�
u6 − 2u4 + u2 du. (117)

Taking the antiderivative,

1

7
u7 − 2

5
u5 +

1

3
u3 + C. (118)

In terms of x, this becomes

1
7
sec7x− 2

5
sec5x+ 1

3
sec3x+ C . (119)

�

Integrals that fall into neither case will require creativity to solve.

Example 2.3 Find �
sec3x dx. (120)

This falls into neither case. In order to do this, we need to use integration by parts:

u = secx dv = sec2x dx

du = secx tanx dx v = tanx
. (121)

The integral becomes

�
sec3x dx = secx tanx−

�
tan2x secx dx. (122)
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We apply the trigonometric identity tan2x+ 1 = sec2x:

�
sec3x dx = secx tanx−

� (
sec2x− 1

)
secx dx

= secx tanx−
�

sec3x− secx dx

= secx tanx−
�

sec3x dx+

�
secx dx. (123)

Now we add
�
sec3x dx to both sides:

2

�
sec3x dx = secx tanx+

�
secx dx. (124)

As done in a previous example,
�
secx dx = ln | secx+tanx|+C1, so this becomes

�
sec3x dx = 1

2
secx tanx+ 1

2
ln | secx+ tanx|+ C2 . (125)

�
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Section 7.3: Trigonometric substitution

When an integral involves one of the following expressions:

x2 − a2

x2 + a2

a2 − x2
(126)

(where a is any real valued constant), we can use the following strategy to find the
integral: substitute x = f (θ), where f is some trigonometric function.

x2 − a2 x = a sec θ for 0 ≤ θ < π
2

x2 + a2 x = a tan θ for − π
2
< θ < π

2

a2 − x2 x = a sin θ for − π
2
≤ θ ≤ π

2

. (127)

The strategy is best illustrated by some examples.

Example 2.4 (Problem 7.3.8) Evaluate the integral

�
dx

x2
√
x2 − 16

. (128)

This involves the form x2 − a2, so we substitute:

x = 4 sec θ

dx = 4 sec θ tan θ dθ,
(129)

where 0 ≤ θ < π
2
. The integral now becomes

�
4 sec θ tan θ

16 sec2θ
√
16 sec2θ − 16

dθ =

�
4 sec θ tan θ

16 sec2θ
√
16 (sec2θ − 1)

. (130)
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We use the identity sec2θ − 1 = tan2θ:

�
4 sec θ tan θ

16 sec2θ
√
16 tan2θ

dθ =

�
4 sec θ tan θ

16 sec2θ 4 tan θ
dθ

=

�
1

16 sec θ
dθ =

1

16

�
cos θ dθ =

1

16
sin θ + C. (131)

Now we must put this answer back in terms of x. By definition, we know that

x = 4 sec θ. Therefore, cos θ = 4
x
. We construct a right triangle to illustrate this

fact. [Draw diagram]

This triangle gives us that sin θ =
√
x2−16
x

. Therefore, our answer is

1
16

√
x2−16
x

+ C . (132)

�

Example 2.5 Evaluate the integral.

� √
4− x2 dx (133)

This involves the form a2 − x2, so we make the substitution:

x = 2 sin θ

dx = 2 cos θ dθ
, (134)

where −π
2
≤ θ ≤ π

2
. The integral now becomes

� √
4− (2 sin θ)2 2 cos θ dθ =

� √
4− 4sin2θ 2 cos θ dθ

=

� √
4
(
1− sin2θ

)
2 cos θ dθ. (135)

We use the identity 1− sin2θ = cos2θ to write this as

� √
4cos2θ 2 cos θ dθ =

�
2 cos θ 2 cos θ dθ = 4

�
cos2θ dθ. (136)
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In order to integrate this, we use the identity cos2θ = 1
2
(1 + cos (2θ)):

4

�
1

2
(1 + cos (2θ)) dθ = 2

�
1 + cos (2θ) dθ

= 2

(
θ +

1

2
sin (2θ)

)
+ C = 2θ + sin (2θ) + C. (137)

Again, we must write this in terms of x. By definition, we know that x = 2 sin θ.

Therefore, sin θ = x
2
. We construct a right triangle to illustrate this fact. [Draw

diagram]

At first, this doesn’t seem to help us with sin (2θ). However, we can write

sin (2θ) = 2 sin θ cos θ, so that now our antiderivative is

2θ + 2 sin θ cos θ + C. (138)

Now, from our triangle, we know that sin θ = x
2

and cos θ =
√
4−x2
2

. At the same

time, if sin θ = x
2

and −π
2
≤ θ ≤ π

2
, then θ = sin−1

(
x
2

)
. Therefore, our final

answer is

2sin−1
(
x
2

)
+ x

√
4−x2
2

+ C . (139)

�

Example 2.6 Evaluate the integral.

�
1√

x2 + 9
dx (140)

We recognize the form x2 + a2 and make the substitution:

x = 3 tan θ

dx = 3sec2θ dθ
, (141)

where −π
2
< θ < π

2
. The integral now becomes

�
3 sec2θ√

(3 tan θ)2 + 9
dθ =

�
3 sec2θ√

9 tan2θ + 9
dθ =

�
3 sec2θ√

9 (tan2θ + 1)
dθ. (142)
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We use the identity tan2θ + 1 = sec2θ to write this as

�
3 sec2θ√
9 sec2θ

dθ =

�
3 sec2θ

3 sec θ
dθ =

�
sec θ dθ. (143)

We know from a previous example how to integrate sec θ:

�
sec θ

(
sec θ + tan θ

tan θ + sec θ

)
dθ =

�
sec2θ + sec θ tan θ

tan θ + sec θ
dθ. (144)

We can now use u-substitution:

u = tan θ + sec θ

du = sec2θ + sec θ tan θ
, (145)

to get �
1

u
du = ln |u|+ C = ln

∣∣ tan θ + sec θ
∣∣+ C. (146)

Again, we need to write this in terms of x. By definition, x = 3 tan θ, so we can

draw a right triangle to illustrate this fact: [Draw diagram]

The diagram indicates that sec θ =
√
x2+9
3

, so our final answer becomes

ln

∣∣∣∣x3 + √
x2+9
3

∣∣∣∣+ C (147)

�

Example 2.7 (Problem 7.3.14) Evaluate the integral

� 1

0

1

(x2 + 1)2
dx. (148)

We recognize the form x2 + a2 and make the substitution:

x = tan θ

dx = sec2θ dθ,
(149)
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where −π
2
< θ < π

2
. The integral now becomes

� π
4

0

sec2θ

(tan2θ + 1)
2 dθ. (150)

(We have changed the bounds by recognizing that x = 0 exactly when θ = 0 and

x = 1 exactly when θ = π
4
.) We use the identity tan2θ + 1 = sec2θ to write this as

� π
4

0

sec2θ

(sec2θ)2
dθ =

� π
4

0

1

sec2θ
dθ =

� π
4

0

cos2θ dθ. (151)

In order to integrate this, we use the identity cos2θ = 1
2
(1 + cos (2θ)):

� π
4

0

1

2
(1 + cos (2θ)) dθ =

1

2

(
θ +

1

2
sin (2θ)

) ∣∣∣∣π4
0

=
1

2

(
π

4
+

1

2
sin
(
2
π

4

))
− 1

2

(
0 +

1

2
sin (0)

)
=

1

2

(
π

4
+

1

2

)
=
π

8
+

1

4
= π+2

8
. (152)

(For this definite integral, no triangle diagram is needed, because we have changed

the bounds.) �
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3 Thursday, May 30

Section 7.4: Integration of rational functions by partial fractions

Definition 3.1 A rational function is a ratio P (x)
Q(x)

, where P and Q are polynomials.

There is a method of integrating rational functions by factoring the denominator
and then writing the function as a sum of fractions. This method is called “integra-
tion by partial fraction decomposition.” It has three cases:

Case 1: the denominator Q(x) is a product of distinct linear factors.
Case 2: the denominator Q(x) has repeated linear factors.
Case 3: the denominator Q(x) contains an irreducible quadratic factor.

We’ll go through each of these cases individually.

Case 1: the denominator Q(x) is a product of distinct linear factors.
In this case, we can write

Q(x) = (a1x+ b1) (a2x+ b2) ... (akx+ bk) (153)

for some appropriate constants a1, a2, ..., ak and b1, b2, ..., bk. In this case, we can
find constants A1, A2, ..., Ak such that

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ ...+

Ak
akx+ bk

. (154)

This will make the function easier to integrate.

Example 3.2 Evaluate the integral.

�
x+ 1

x2 + x− 2
dx (155)

First, we can factor the denominator as x2 + x − 2 = (x− 1) (x+ 2). This is a

product of distinct linear factors, so we are working in Case 1.

We can find constants A and B such that

x+ 1

(x− 1) (x+ 2)
=

A

x− 1
+

B

x+ 2
. (156)
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We proceed by multiplying both sides by the denominator on the left to get:

x+ 1 = A (x+ 2) +B (x− 1) . (157)

Now we distribute, and combine like terms in powers of x to get:

1x+ 1 = Ax+ 2A+Bx−B = (A+B)x+ (2A−B) . (158)

We can now equate the corresponding coefficients of the polynomials on the left and

right sides of this equation to get a system of equations:

1 = A+B

1 = 2A−B
. (159)

There are many ways to solve this system of equations. My favorite is to add the

two equations together to cancel the B terms: 2 = 3A. This gives A = 2
3
, and so

B = 1
3
. Our equation now becomes

x+ 1

(x− 1)(x+ 2)
=

2
3

x− 1
+

1
3

x+ 2
. (160)

This we can now integrate:

�
x+ 1

x2 + x− 2
dx =

� 2
3

x− 1
+

1
3

x+ 2
dx

=
2

3

�
1

x− 1
dx+

1

3

�
1

x+ 2
dx

= 2
3
ln
∣∣x− 1

∣∣+ 1
3
ln
∣∣x+ 2

∣∣+ C . (161)

Case 2: the denominatorQ(x) has repeated linear factors. In this case, the factor
(ai + xbi)

r occurs in the factorization of Q(x). This results in additional terms in
the partial fraction decomposition:

A1

(ai + xbi)
1 +

A2

(ai + xbi)
2 + ...+

Ar
(ai + xbi)

r . (162)
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We illustrate with an example.

Example 3.3 Evaluate the integral.

�
4x

(x− 1) (x2 − 1)
. (163)

We can write the denominator as (x+ 1) (x− 1)2. This has a repeated linear factor

of x− 1, so this is Case 2.

We seek constants A, B and C such that

4x

(x+ 1) (x− 1)2
=

A

x+ 1
+

B

x− 1
+

C

(x− 1)2
. (164)

In order to find these constants, we multiply each side of the equation by the de-

nominator on the left:

4x = A(x− 1)2 +B (x+ 1) (x− 1) + C (x+ 1) . (165)

We distribute:

4x = Ax2 − 2Ax+ A+Bx2 −B + Cx+ C, (166)

and we combine like terms in powers of x:

0x2 + 4x+ 0 = (A+B)x2 + (C − 2A)x+ (A−B + C) . (167)

Now we can equate the corresponding coefficients of these polynomials to obtain a

system of three equations:
0 = A+B

4 = C − 2A

0 = A−B + C

. (168)

The first equation tells us that −B = A, and so by the third equation, 0 = 2A+C,

hence C = −2A. By the second equation, we deduce that −4A = 4, and so
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A = −1. This implies that B = 1 and C = 2. Thus, we have

4x

(x+ 1) (x− 1)2
=
−1
x+ 1

+
1

x− 1
+

2

(x− 1)2
. (169)

This is a function that we can integrate:

�
4x

(x+ 1) (x− 1)2
dx =

�
−1
x+ 1

+
1

x− 1
+

2

(x− 1)2
dx

= −
�

1

x+ 1
dx+

�
1

x− 1
dx+ 2

�
1

(x− 1)2
dx

= − ln |x+ 1|+ ln |x− 1|+ 2

�
u−2 du, (170)

where in the last term we have used the u-substitution

u = x− 1

du = dx
. (171)

Our antiderivative now becomes

− ln |x+ 1|+ ln |x− 1| − 2u−1 + C = ln
∣∣x−1
x+1

∣∣− 2
x−1 + C . (172)

�

Case 3 The denominator Q(x) contains an irreducible quadratic factor. In this
case, ax2+bx+cwill appear in the factorization ofQ(x). This factor will contribute
a term of the form

Ax+B

ax2 + bx+ c
. (173)

We illustrate with an example.

Example 3.4 Evaluate the integral.

�
2x2 − x+ 4

x3 + 4x
dx. (174)

We factor the denominator into x (x2 + 4). This cannot be factored further (over
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the real numbers), so this is Case 3.

We seek constants A, B and C such that

2x2 − x+ 4

x (x2 + 4)
=
A

x
+
Bx+ C

x2 + 4
. (175)

To find these constants, we’ll use the same procedure we used before: multiply by

the denominator on the left:

2x2 − x+ 4 = A
(
x2 + 4

)
+ (Bx+ C)x, (176)

distribute:

2x2 − x+ 4 = Ax2 + 4A+Bx2 + Cx, (177)

then combine like terms in powers of x:

2x2 − x+ 4 = (A+B)x2 + Cx+ 4A. (178)

Equating coefficients of these polynomials, we receive a system of three equations:

2 = A+B

−1 = C

4 = 4A

. (179)

This tells us that A = 1, C = −1, and B = 1. Thus, we have

2x2 − x+ 4

x (x2 + 4)
=

1

x
+

x− 1

x2 + 4
. (180)

This is a function that we can integrate:

�
2x2 − x+ 4

x3 + 4x
dx =

�
1

x
+

x− 1

x2 + 4
dx =

�
1

x
dx+

�
x− 1

x2 + 4
dx

=

�
1

x
dx+

�
x

x2 + 4
dx−

�
1

x2 + 4
dx (181)

The first term is just ln |x|. The second term can be done by a u-susbstitution with

30



u = x2 + 4. The third term can be done by trigonometric substitution, or it can be

rewritten as follows:

�
1

x
dx+

1

2

�
1

u
du− 1

4

�
1(

x
2

)2
+ 1

dx (182)

Now we get

ln |x|+ 1

2
ln |x2 + 4| − 1

4

�
1(

x
2

)2
+ 1

dx (183)

By doing another u-substitution with u = x
2
, this becomes

ln |x|+ 1

2
ln |x2 + 4| − 1

2

�
1

u2 + 1
dx (184)

But this is familiar to us:

ln |x|+ 1
2
ln |x2 + 4| − 1

2
tan−1

(
x
2

)
+ C . (185)

�

Example 3.5 (Problem 7.4.12) Evaluate the integral.

� 1

0

x− 4

x2 − 5x+ 6
dx (186)

We factor the denominator as (x− 2) (x− 3), which reveals that we are dealing

with Case 1: distinct linear factors. Thus,

x− 4

(x− 2) (x− 3)
=

A

x− 2
+

B

x− 3
. (187)

We multiply both sides by the denominator on the left to get

x− 4 = A (x− 3) +B (x− 2) . (188)

Combining like terms in powers of x:

x− 4 = (A+B)x+ (−3A− 2B) . (189)
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Equating corresponding coefficients:

A+B = 1

−3A− 2B = −4
. (190)

We add twice the first equation to the second equation to get −A = −2. Thus,

A = 2, and so B = −1, by the first equation. Thus,

� 1

0

x− 4

x2 − 5x+ 6
dx =

� 1

0

2

x− 2
− 1

x− 3
dx

= 2 ln |x− 2| − ln |x− 3|
∣∣∣∣1
0

= (2 ln |1− 2| − ln |1− 3|)− (2 ln |0− 2| − ln |0− 3|)

= 2 ln 1− ln 2− 2 ln 2 + ln 3 = −3 ln 2 + ln 3

= ln 2−3 + ln 3 = ln
1

8
+ ln 3 = ln 3

8
. (191)

�

Example 3.6 Evaluate the integral.

�
x(3− 5x)

(3x− 1)(x− 1)2
dx. (192)

This is Case 2, since x−1 is a repeated linear factor of the denominator. Therefore,

we can write this integrand as

−5x2 + 3x

(3x− 1)(x− 1)2
=

A

3x− 1
+

B

x− 1
+

C

(x− 1)2
. (193)

We multiply by the denominator on the left to get:

−5x2 + 3x = A(x− 1)2 +B (3x− 1) (x− 1) + C (3x− 1) . (194)

We distribute:

−5x2 + 3x = A
(
x2 − 2x+ 1

)
+B

(
3x2 − 4x+ 1

)
+ C (3x− 1) . (195)
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Combining like terms in powers of x:

−5x2 + 3x = (A+ 3B)x2 + (−2A− 4B + 3C)x+ (A+B − C) . (196)

Equating corresponding coefficients gives the system of equations

A+ 3B = −5
−2A− 4B + 3C = 3

A+B − C = 0

. (197)

Multiply the last equation by 3:

A+ 3B = −5
−2A− 4B + 3C = 3

3A+ 3B − 3C = 0

(198)

Now add the second and third equations to get A−B = 3. Therefore, A = 3 +B,

and so the first equation becomes 3 + B + 3B = −5, hence B = −2. This tells

us that A = 3 + B = 3 + (−2) = 1. Finally, the equation A + B − C = 0 now

becomes C = A+B = 1 + (−2) = −1. We deduce

�
x(3− 5x)

(3x− 1)(x− 1)2
dx =

�
1

3x− 1
− 2

x− 1
− 1

(x− 1)2
dx

=

�
1

3x− 1
dx− 2

�
1

x− 1
dx−

�
(x− 1)−2 dx. (199)

We can do each of these three integrals separately. The first integral can be done

by u-substitution with u = 3x − 1. The second can be done by u-substitution with

u = x− 1. The third can be done by u-substitution with u = x− 1. In the end, we

get

�
x(3− 5x)

(3x− 1)(x− 1)2
dx = 1

3
ln |3x− 1| − 2 ln |x− 1|+ 1

x−1 + C . (200)

�
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Example 3.7 (Problem 7.4.28) Evaluate the integral.

�
x3 + 6x− 2

x4 + 6x2
dx (201)

We factor the denominator as x2 (x2 + 6). This is a hybrid of Cases 2 and 3; we

have both a repeated linear factor of x and an irreducible quadratic factor of x2+6.

Thus, we use both guidelines.

We seek constants A, B, C and D such that

x3 + 6x− 2

x2 (x2 + 6)
=
A

x
+
B

x2
+
Cx+D

x2 + 6
. (202)

As before, we multiply by the denominator on the left:

x3 + 6x− 2 = Ax
(
x2 + 6

)
+B

(
x2 + 6

)
+ (Cx+D)x2. (203)

Now we distribute and combine like terms in powers of x:

x3 + 0x2 + 6x− 2 = (A+ C)x3 + (B +D)x2 + (6A)x+ (6B). (204)

We equate corresponding coefficients of these two polynomials to get a system of

four equations:
A+ C = 1

B +D = 0

6A = 6

6B = −2

. (205)

We immediately deduce from the third equation that A = 1 and from the fourth

equation that B = −1
3
. The first equation now implies that C = 0. The second

equation implies that D = 1
3
. Thus,

x3 + 6x− 2

x2 (x2 + 6)
=

1

x
+
−1

3

x2
+

0x+ 1
3

x2 + 6
. (206)

34



This is a function that we can integrate:

�
x3 + 6x− 2

x4 + 6x2
dx =

�
1

x
− 1

3x2
+

1

3 (x2 + 6)
dx

=

�
1

x
dx− 1

3

�
x−2 dx+

1

3

�
1

x2 + 6
dx

= ln |x|+ 1
3x

+
√
6

18
tan−1

(
x√
6

)
+ C . (207)

�
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4 Monday, June 3

Section 7.5: Strategy for integration (?)

Sometimes, more than one method for finding antiderivatives must be used to
solve a problem. Especially, sometimes a clever u-substitution will reveal a separate
method for evaluating an integral.

Example 4.1 Evaluate the integral.

�
ex

e2x + 3ex + 2
dx (208)

We begin with a u-substitution:

u = ex

du = ex dx
(209)

The integral now becomes

�
1

u2 + 3u+ 2
du =

�
1

(u+ 1)(u+ 2)
du. (210)

We can now use partial fraction decomposition:

1

(u+ 1)(u+ 2)
=

A

u+ 1
+

B

u+ 2
. (211)

Multiplying both sides by the denominator on the left gives:

1 = A(u+ 2) +B(u+ 1) = (A+B)u+ (2A+B). (212)

Equating coefficients of u on the left and right gives the system of equations

A+B = 02A+B = 1 (213)

From the first equation, we gather that B = −A, so the second equation reads
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2A− A = 1, hence A = 1, and so B = −1:

�
1

u2 + 3u+ 2
du =

�
1

u+ 1
du−

�
1

u+ 2
du

= ln |u+ 1| − ln |u+ 2|+ C = ln

∣∣∣∣u+ 1

u+ 2

∣∣∣∣+ C = ln
∣∣∣ ex+1
ex+2

∣∣∣+ C . (214)

�

Example 4.2 Evaluate the integral.

�
sin
√
2t dt (215)

We begin with a u-substitution:

u =
√
2t

du = 1√
2t
dt
. (216)

From this, we deduce that u du =
√
2t du = dt. Therefore, the integral becomes

�
u sinu du. (217)

From here we can use integration by parts.

u1 = u dv1 = sinu du

du1 = du v1 = − cosu
. (218)

Now,

�
u1 dv1 = u1v1 −

�
v1 du1�

u sinu du = −u cosu+
�
cosu du = −u cosu+ sinu+ C.

(219)

This becomes
�

sin
√
2t dt = sinu− u cosu = sin

√
2t−

√
2t cos

√
2t+ C . (220)
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�

Example 4.3 (Problem 7.5.10) Evaluate the integral.

�
cos
(
1
x

)
x3

dx (221)

We begin with a u-substitution:

u = 1
x

du = − 1
x2

dx
. (222)

Now 1
x3

dx = − 1
x
du = −u du, so the integral becomes

−
�
u cosu du. (223)

We can now use integration by parts:

u1 = u dv1 = cosu du

du1 = du v1 = sinu
. (224)

The integral now becomes

−
�
u cosu du = −u sinu+

�
sinu du = −u sinu− cosu+ C. (225)

This gives us �
cos
(
1
x

)
x3

dx = − sin( 1
x)
x
− cos

(
1
x

)
+ C . (226)

�

Example 4.4 (Problem 7.5.42) Evaluate the integral.

�
tan−1x

x2
dx (227)
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We begin with integration by parts:

u = tan−1x dv = 1
x2

dx

du = 1
x2+1

dx v = − 1
x

. (228)

The integral becomes

�
tan−1x

x2
dx = −tan−1x

x
+

�
1

x (x2 + 1)
dx. (229)

We can now proceed by partial fraction decomposition:

1

x (x2 + 1)
=
A

x
+
Bx+ C

x2 + 1
. (230)

Multiplying both sides by the denominator on the left, we get:

1 = A
(
x2 + 1

)
+ (Bx+ C)x = (A+B)x2 + Cx+ A. (231)

Equating coefficients in powers of x, we get the following system of equations:

A+B = 0

C = 0

A = 1

. (232)

From this, it’s clear that A = 1, B = −1 and C = 0, so

�
1

x (x2 + 1)
dx =

�
1

x
− x

x2 + 1
dx = ln |x| − 1

2
ln |x2 + 1|+ C

= ln

∣∣∣∣ x√
x2 + 1

∣∣∣∣+ C (233)

Thus, �
tan−1x

x2
dx = − tan−1x

x
+ ln

∣∣∣ x√
x2+1

∣∣∣+ C . (234)

�

Moral of the story: antiderivatives are harder than derivatives.
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Section 7.8: Improper integrals

Integrals find the signed area between a curve and the x-axis. Usually, this is
the signed area of a bounded region. However, sometimes, it is possible to find a
finite signed area of an unbounded region, using limits. Integrals over unbounded
regions are called improper integrals.

There are two types of improper integrals: integrals over infinite intervals, and
integrals of functions with vertical asymptotes in a finite interval. We’ll discuss the
first type first.

Definition 4.5 Let f be a function, and let a be a real value.

(i) The improper integral
�∞
a
f(x) dx is defined as the limit

� ∞
a

f(x) dx = lim
t→∞

� t

a

f(x) dx. (235)

(ii) The improper integral
� a
−∞ f(x) dx is defined as the limit

� a

−∞
f(x) dx = lim

s→−∞

� a

s

f(x) dx. (236)

(iii) We say that an improper integral is convergent if the limit has a real value, and

divergent if it does not have a real value.

(iv) If
�∞
a
f(x) dx and

� a
−∞ f(x) dx are convergent, then we define

� ∞
−∞

f(x) dx =

� a

−∞
f(x) dx+

� ∞
a

f(x) dx. (237)

Example 4.6 (Problem 7.8.8) Evaluate the improper integral.

� ∞
1

1

(2x+ 1)3
dx (238)

We write this as

lim
t→∞

� t

1

(2x+ 1)−3 dx, (239)
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and use u-substitution:
u = 2x+ 1

du = 2 dx
(240)

The integral now becomes

lim
t→∞

� 2t+1

3

1

2
u−3 du = lim

t→∞
−1

4
u−2
∣∣∣∣2t+1

3

= lim
t→∞

1

4

(
1

32
− 1

(2t+ 1)2

)
=

1

4

(
1

9
− 0

)
= 1

36
. (241)

�

Example 4.7 (Problem 7.8.6) Evaluate the improper integral.

� ∞
0

1
4
√
1 + x

dx. (242)

We write this as

lim
t→∞

� t

0

(1 + x)−
1
4 dx. (243)

We use u-substitution:
u = x+ 1

du = dx
(244)

so this integral becomes

lim
t→∞

� t+1

1

u−
1
4 du = lim

t→∞

4

3
u

3
4

∣∣∣∣t+1

1

= lim
t→∞

4

3

(
(t+ 1)

3
4 − 1

3
4

)
=∞. (245)

Thus, the integral is divergent. �

Example 4.8 (Problem 7.8.16) Evaluate the improper integral.

� ∞
0

sin θ ecos θ dθ (246)

We write this as

lim
t→∞

� t

0

sin θ ecos θ dθ. (247)
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We now use u-substitution:
u = cos θ

du = − sin θ dθ
. (248)

The integral now becomes

lim
t→∞

� cos t

1

−eu du = lim
t→∞
−eu

∣∣∣∣cos t
1

= lim
t→∞

e1 − ecos t. (249)

However, as t → ∞, cos t oscillates between −1 and 1. Therefore, ecos t oscillates

between e−1 and e1. The limit has no real value, so the integral is divergent. �

Example 4.9 (Problem 7.8.12) Evaluate the improper integral.

� ∞
−∞

y3 − 3y2 dy. (250)

We first write this as

� ∞
−∞

y3 − 3y2 dy =

� 0

−∞
y3 − 3y2 dy +

� ∞
0

y3 − 3y2 dy. (251)

(The number 0 was chosen arbitrarily; if this integral exists, then any number can

be used.) We consider first

� 0

−∞
y3 − 3y2 dy = lim

s→−∞

� 0

s

y3 − 3y2 dy

= lim
s→−∞

1

4
y4 − y3

∣∣∣∣0
s

= lim
s→−∞

−1

4
s4 + s3 = −∞, (252)

and so the integral is divergent. �

Example 4.10 (Problem 7.8.22) Evaluate the improper integral

� ∞
1

lnx

x2
dx (253)

We first write this as

lim
t→∞

� t

1

lnx

x2
dx. (254)
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We use integration by parts:

u = lnx dv = 1
x2

dx

du = 1
x
dx v = − 1

x

. (255)

The integral now becomes

lim
t→∞

� t

1

lnx

x2
dx = lim

t→∞

(
− lnx

x

∣∣∣∣t
1

+

� t

1

1

x2
dx

)
= lim

t→∞

(
− lnx

x
− 1

x

) ∣∣∣∣t
1

= lim
t→∞

(
− ln t

t
− 1

t

)
−
(
− ln 1

1
− 1

1

)
= lim

t→∞
− ln t

t
− 1

t
+ 1 (256)

Now, by L’Hopital’s rule,

lim
t→∞

� t

1

lnx

x2
dx = lim

t→∞
−

1
t

1
− 1

t
+ 1 = 1 . (257)

�

Now for the second type.

Definition 4.11 Let a and b be real values such that a ≤ b, and let f be a function.

(i) If f is defined and continuous on the interval [a, b), and has a vertical asymptote

at x = b, then we define the improper integral

� b

a

f(x) dx = lim
t→b−

� t

a

f(x) dx. (258)

(ii) If f is defined and continuous on the interval (a, b], and has a vertical asymptote

at x = a, then we defined the improper integral

� b

a

f(x) dx = lim
s→a+

� b

s

f(x) dx. (259)

(iii) Given a real value c such that a < c < b, if f has a vertical asymptote at x = c
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and both
� c
a
f(x) dx and

� b
c
f(x) dx exist, then we define the improper integral

� b

a

f(x) dx =

� c

a

f(x) dx+

� b

c

f(x) dx. (260)

Example 4.12 (Problem 7.8.28) Evaluate the improper integral.

� 5

0

1
3
√
5− x

dx (261)

We write this as

lim
t→5−

� t

0

(5− x)−
1
3 dx. (262)

We use u-substitution:
u = 5− x
du = −dx

. (263)

The integral now becomes

lim
t→5−

� 5−t

5

−u−
1
3 du = lim

t→5−
−3

2
u

2
3

∣∣∣∣5−t
5

= lim
t→5−

3

2

(
5

2
3 − (5− t)

2
3

)
=

3

2

(
5

2
3 − 0

2
3

)
= 3

2
5

2
3 . (264)

�

Example 4.13 (Problem 7.8.32) Evaluate the improper integral

� 1

0

1√
1− x2

dx. (265)

We write this as

lim
t→1−

� t

0

1√
1− x2

dx = lim
t→1−

sin−1x

∣∣∣∣t
0

= lim
t→1−

sin−1t− sin−10 = π
2
. (266)

�
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Example 4.14 (Problem 7.8.34) Evaluate the improper integral.

� 5

0

x

x− 2
dx (267)

We write this as

lim
t→2−

� t

0

x

x− 2
dx+ lim

s→2+

� 5

s

x

x− 2
dx (268)

We can do this antiderivative either by a u-substitution or by recognizing:

x

x− 2
=
x− 2 + 2

x− 2
= 1 +

2

x− 2
. (269)

The integral now becomes

lim
t→2−

� t

0

1 +
2

x− 2
dx+ lim

s→2+

� 5

s

1 +
2

x− 2
dx. (270)

Let’s focus first on the second term.

lim
s→2+

� 5

s

1 +
2

x− 2
dx = lim

s→2+
x+ 2 ln |x− 2|

∣∣∣∣5
s

= lim
s→2+

(5 + 2 ln 3)− (s+ 2 ln |s− 2|) =∞ (271)

The integral is divergent. �
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5 Thursday, June 6

Section 6.1: Areas between curves

The definite integral of f over the interval [a, b] is defined as the signed area
under the curve.

Suppose we have two functions, f and g, defined over an interval [a, b], such
that f(x) ≥ g(x) for all x in the interval. In that case, the area enclosed between
the curves is

A =

� b

a

f(x)− g(x) dx. (272)

Example 5.1 (Problem 6.1.6) Find the area of the region enclosed by the curves

y = sinx, y = x, x = π
2

and x = π.

[Draw diagram]

The area is

A =

� π

π
2

x− sinx dx =
1

2
x2 + cosx

∣∣∣∣π
π
2

=

(
1

2
π2 + cos π

)
−
(
1

2

(π
2

)2
+ cos

(π
2

))
=

1

2
π2 − 1− 1

8
π2 = 3

8
π2 − 1 . (273)

�

Example 5.2 (Problem 6.1.8) Find the area of the region enclosed by the curves

y = x2 − 4x and y = 2x.

[Draw diagram]

The area is

A =

� b

a

2x−
(
x2 − 4x

)
dx. (274)
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What are a and b? In order to find the upper and lower bounds, we need to find

the x-coordinates of the points of intersection of the curves. To do this, we set the

functions equal to each other and solve for x:

2x = x2 − 4x

0 = x2 − 6x = x (x− 6)
(275)

This gives x = 0 and x = 6, so the area is

A =

� 6

0

2x−
(
x2 − 4x

)
dx =

� 6

0

−x2 + 6x dx = −1

3
x3 + 3x2

∣∣∣∣6
0

= 36 . (276)

�

Example 5.3 (Problem 6.1.14) Find the area enclosed by the curves y = x2 and

y = 4x− x2.

[Draw diagram]

The area is

A =

� b

a

(
4x− x2

)
− x2 dx. (277)

What are a and b? We set the functions equal to each other and solve for x:

x2 = 4x− x2

2x2 − 4x = 0

2x (x− 2) = 0

. (278)

This gives x = 0 and x = 2, so the area is

� 2

0

(
4x− x2

)
−x2 dx =

� 2

0

4x− 2x2 dx = 2x2− 2

3
x3
∣∣∣∣2
0

= 8− 16

3
= 8

3
. (279)

�

Example 5.4 (Problem 6.1.20) Find the area enclosed by the curves x = y4,
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y =
√
2− x and y = 0.

[Draw diagram]

Here the roles of x and y are reversed. We write y =
√
2− x as x = 2 − y2.

The area is

A =

� b

a

(
2− y2

)
− y4 dy. (280)

Again, we need a and b. To do this, we set the functions equal to each other and

solve for y:
y4 = 2− y2

y4 + y2 − 2 = 0

(y2 + 2) (y2 − 1) = 0

(y2 + 2) (y − 1) (y + 1)

. (281)

The lower bound is y = 0. The upper bound is y = 1. Thus, the area is

A =

� 1

0

(
2− y2

)
− y4 dy =

� 1

0

2− y2 − y4 dy

= 2y − 1

3
y3 − 1

5
y5
∣∣∣∣1
0

= 2− 1

3
− 1

5
= 22

15
. (282)

�
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Section 6.2: Volumes

Definition 5.5 Let S be a solid region that is bounded by the lines x = a and x = b.

For each x such that a ≤ x ≤ b, define A(x) as the cross-sectional area of S. The

volume of S is the integral

V =

� b

a

A(x) dx. (283)

Given a region in the xy-plane bounded by a function, we can rotate that region
around a (horizontal or vertical) axis to form a 3-dimensional shape. The shape that
results is called a “solid of revolution.” In this section, we discuss the “disk-and-
washer method” of finding the volume of a solid of revolution.

Example 5.6 (Problem 6.2.2) Find the volume of the solid obtained by rotating the

region bounded by y = 1
x
, y = 0, x = 1 and x = 4 about the x-axis.

[Draw diagram]

To do this, we take a typical slice of the region perpendicular to the axis of

rotation. This slice, when rotated about the x-axis, forms a disk. The area of that

disk is

A(x) = πr2 = π

(
1

x

)2

=
π

x2
. (284)

This is the cross-sectional area of the solid, so by definition, the volume is

V =

� 4

1

π

x2
dx = π

� 4

1

x−2 dx = −π
x

∣∣∣∣4
1

= −π
4
−
(
−π
1

)
= 3π

4
. (285)

�

Example 5.7 (Problem 6.2.4) Find the volume of the solid obtained by rotating the

region bounded by y = ex, y = 0, x = −1 and x = 1 about the x-axis.

[Draw diagram]
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To do this, we take a typical slice of the region perpendicular to the axis of

rotation. This slice, when rotated about the x-axis, forms a disk. The area of that

disk is

A(x) = πr2 = π(ex)2 = πe2x. (286)

Now, the volume is

V =

� 1

−1
πe2x dx = π

� 1

−1
e2x dx =

π

2
e2x
∣∣∣∣1
−1

= π
2
(e2 − e−2) . (287)

�

Example 5.8 Find the volume of the solid obtained by rotating the region bounded

by y =
√
2x, x = 0 and y = 4 about the x-axis.

[Draw diagram]

To do this, we take a typical slice of the region perpendicular to the axis of

rotation. This slice, when rotated about the x-axis, forms a washer. The area of that

washer is

A(x) = πR2 − πr2 = π(4)2 − π
(√

2x
)2

= π (16− 2x) . (288)

The volume is the integral of this, but what are the bounds? The lower bound is

certainly x = 0, but what about the upper bound? To find this, we need to set

y =
√
2x and y = 4 equal to each other and solve for x:

√
2x = 4, (289)

and so the upper bound is x = 8. Thus,

V =

� 8

0

π (16− 2x) dx = π
(
16x− x2

) ∣∣∣∣8
0

= 64π . (290)

�
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Example 5.9 (Problem 6.2.12) Find the volume of the solid obtained by rotating

the region bounded by rotating the region bounded by y = x3, y = 1 and x = 2

about the line y = −3.

[Draw diagram]

To do this, we take a typical slice of the region perpendicular to the axis of

rotation. This slice, when rotated about y = −3, forms a washer. The area of that

washer is

A(x) = πR2 − πr2 = π
(
x3 − (−3)

)2 − π(1− (−3))2

= π
((
x3 + 3

)2 − 42
)
= π

(
x6 + 6x3 − 7

)
. (291)

The lower bound is the x-coordinate of the intersection of y = x3 and y = 1:

x3 = 1, (292)

so x = 1 is the lower bound. The upper bound is x = 2. Thus,

V =

� 2

1

π
(
x6 + 6x3 − 7

)
dx = π

(
1

7
x7 +

3

2
x4 − 7x

) ∣∣∣∣2
1

= 471π
14

. (293)

�

Example 5.10 (Problem 6.2.10) Find the volume of the solid obtained by rotating

the region bounded by x = 2− y2 and x = y4 about the y-axis.

[Draw diagram]

To do this, we take a typical slice of the region perpendicular to the axis of

rotation. This slice, when rotated about the y-axis, forms a washer. The area of that

washer is

A(y) = πR2 − πr2 = π
(
2− y2

)2 − π(y4)2 = π
(
−y8 + y4 − 4y2 + 4

)
. (294)
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What are the bounds of the region? They are the y-coordinates where x = 2 − y2

and x = y4 cross:
2− y2 = y4

0 = y4 + y2 − 2

0 = (y2 + 2) (y2 − 1)

0 = (y2 + 2) (y + 1) (y − 1) .

(295)

This gives y = −1 and y = 1 as bounds. Thus,

V =

� 1

−1
π
(
−y8 + y4 − 4y2 + 4

)
dy

= π

(
−1

9
y9 +

1

5
y5 − 4

3
y3 + 4y

) ∣∣∣∣1
−1

= π

(
−2

9
+

2

5
− 8

3
+ 8

)
= 248π

45
. (296)

�
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6 Monday, June 10

Section 6.3: Volumes by cylindrical shells

There is another method for finding the volume of a solid of revolution: the
“method of shells.”

In the method of disks and washers, we selected a typical slice that was perpen-
dicular to the axis of rotation to produce a disk or washer.

In the method of shells, we will select slices that are parallel to the axis of rota-
tion to produce a cylindrical shell.

Example 6.1 (Problem 6.3.4) Find the volume generated by rotating the region

bounded by the curves y = x3, y = 0, x = 1 and x = 2 about the y-axis.

[Draw diagram]

We take a typical slice of the region parallel to the axis of rotation. This slice,

when rotated about the y-axis, forms a cylindrical shell. The area of that shell is

A = 2πrh = 2πx
(
x3
)
= 2πx4. (297)

Now, the volume is

V =

� 2

1

2πx4 dx =
2π

5
x5
∣∣∣∣2
1

=
2π

5
(32− 1) = 62π

5
. (298)

�

Example 6.2 (Problem 6.3.6) Find the volume generated by rotating the region

bounded by the curves y = 4x− x2 and y = x about the y-axis.

[Draw diagram]
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We take a typical slice of the region parallel to the axis of rotation. This slice,

when rotated about the y-axis, forms a cylindrical shell. The area of that shell is

A = 2πrh = 2πx
((
4x− x2

)
− (x)

)
= 2π

(
3x2 − x3

)
(299)

What will be the bounds? They are the x-coordinates where y = 4x−x2 and y = x

cross:
4x− x2 = x

3x− x2 = 0

x (3− x) = 0

. (300)

This gives x = 0 and x = 3 as bounds. Thus,

V =

� 3

0

2π
(
3x2 − x3

)
dx = 2π

� 3

0

3x2 − x3 dx

= 2π

(
x3 − 1

4
x4
) ∣∣∣∣3

0

= 2π

(
27− 1

4
81

)
= 27

2
π . (301)

�

Example 6.3 (Problem 6.3.10) Find the volume of the solid obtained by rotating

the region bounded by the curves y =
√
x, x = 0 and y = 2 about the x-axis.

[Draw diagram]

We take a typical slice of the region parallel to the axis of rotation. This slice,

when rotated about the x-axis, forms a cylindrical shell. The area of that shell is

A = 2πrh = 2πy
(
y2 − 0

)
= 2πy3. (302)

Now, the volume is

V =

� 2

0

2πy3 dy =
π

2
y4
∣∣∣∣2
0

= 8π . (303)

�

Example 6.4 (Problem 6.3.16) Find the volume generated by rotating the region
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bounded by the curves y = 4− 2x, y = 0 and x = 0 about the line x = −1.

[Draw diagram]

We take a typical slice of the region parallel to the axis of rotation. This slice,

when rotated about the line x = −1, forms a cylindrical shell. The area of that

shell is

A = 2πrh = 2π(x+ 1)(4− 2x) = −4π
(
x2 − x− 2

)
. (304)

Now, the volume is

V =

� 2

0

−4π
(
x2 − x− 2

)
dx = −4π

(
1

3
x3 − 1

2
x2 − 2x

) ∣∣∣∣2
0

= −4π
(
8

3
− 2− 4

)
= 40π

3
. (305)

�
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Section 6.5: Average value of a function

Definition 6.5 Let f be a function defined on the interval [a, b]. We define the av-

erage value of f over [a, b] as the value

fave =
1

b− a

� b

a

f(x) dx. (306)

Example 6.6 (Problem 6.5.8) Let h(x) = lnx
x

. Find the average value of the func-

tion on the interval [1, 5].

This is a straightforward application of the definition:

have =
1

5− 1

� 5

1

h(x) dx =
1

4

� 5

1

lnx

x
dx. (307)

We use a u-substitution:
u = lnx

du = 1
x
dx

(308)

This becomes

have =
1

4

� ln 5

0

u du =
1

8
u2
∣∣∣∣ln 5

0

= 1
8
(ln 5)2 . (309)

�

Recall the mean value theorem: if f is continuous on [a, b] and differentiable on
(a, b), then there exists a real value c such that a ≤ c ≤ b and f ′(c) = f(b)−f(a)

b−a . We
now have a mean value theorem for integrals.

Theorem 6.7 Let f be continuous on [a, b]. There exists a real value c such that

a ≤ c ≤ b and f(c) = fave.
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7 Tuesday, June 11

Section 8.1: Arc length

Definition 7.1 Let f be a continuous function defined on an interval [a, b]. The arc

length of f from a to b is the length of the curve y = f(x) from the point (a, f (a))

to the point (b, f (b)).

The arc length of a continuous function f from x = a to x = b is given by the
following formula:

s =

� b

a

√
1 +

(
dy

dx

)2

dx. (310)

The arc length function beginning at x = a is defined as

s(x) =

� x

a

√
1 +

(
dy

dx

)2

dx. (311)

Example 7.2 Find the length of the arc of y = x
3
2 between the points (1, 1) and

(4, 8).

First, we find dy
dx

= 3
2
x

1
2 . Now,

s =

� 4

1

√
1 +

(
3

2
x

1
2

)2

dx =

� 4

1

√
1 +

9

4
x dx (312)

We use u-substitution:
u = 1 + 9

4
x

du = 9
4
dx.

(313)

The integral becomes

4

9

� 10

13
4

u
1
2 du =

4

9

(
2

3
u

3
2

∣∣∣∣10
13
4

)
= 8

27

(
10

3
2 −

(
13
4

) 3
2

)
. (314)

�

Example 7.3 Find the exact length of the curve y = 1
6
(x2 − 4)

3
2 from x = 2 to

x = 3.
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First, we find dy
dx

= 1
2
x
√
x2 − 4. Now,

s =

� 3

2

√
1 +

1

4
x2 (x2 − 4) dx =

� 3

2

√
1 +

1

4
x4 − x2 dx

=

� 3

2

1

2

√
x4 − 4x2 + 4 dx =

1

2

� 3

2

√
(x2 − 2)2 dx

=
1

2

� 3

2

x2 − 2 dx =
1

2

(
1

3
x3 − 2x

∣∣∣∣3
2

)

=
1

2
(9− 6)− 1

2

(
8

3
− 4

)
=

3

2
+

4

6
= 13

6
. (315)

�

Example 7.4 (Problem 8.1.14) Find the exact length of the curve y = ln (cosx)

from x = 0 to x = π
3
.

First, we find dy
dx

= − tanx. Now,

s =

� π
3

0

√
1 + (− tanx)2 dx =

� π
3

0

√
1 + tan2x dx =

� π
3

0

√
sec2x dx

=

� π
3

0

secx dx = ln
∣∣ secx+ tanx

∣∣∣∣∣∣π3
0

= ln
∣∣∣ sec(π

3

)
+ tan

(π
3

) ∣∣∣− ln
∣∣ sec 0 + tan 0

∣∣
= ln

∣∣∣2 +√3∣∣∣− ln
∣∣∣1 + 0

∣∣∣ = ln
∣∣∣2 +√3∣∣∣ . (316)

�
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Section 8.2: Area of a surface of revolution

To find the surface area of a surface of revolution created by revolving y = f(x)

about the x-axis, we take a typical point on the curve:

[Draw diagram]

When revolved about the x-axis, this point forms a circle with circumference
2πf(x). To find the surface area, we integrate this circumference with respect to
arc length:

A =

� b

a

2πf(x) ds. (317)

Since s(x) =
� x
a

√
1 + (f ′(x))2 dx, we know, by the fundamental theorem of cal-

culus, that ds
dx

=
√

1 + (f ′(x))2. Thus, ds =
√

1 + (f ′(x))2 dx, and so the surface
area is given by:

A =

� b

a

2πf(x)

√
1 + (f ′(x))2 dx. (318)

Example 7.5 Find the exact area of the surface obtained by rotating the curve

y =
√
5− x, for 3 ≤ x ≤ 5, about the x-axis.

First, we find that dy
dx

= −1
2
√
5−x . Thus, the surface area is

A =

� 5

3

2π
√
5− x

√
1 +

(
−1

2
√
5− x

)2

dx

= 2π

� 5

3

√
5− x

√
1 +

1

4 (5− x)
dx

= 2π

� 5

3

√
5− x+ 1

4
dx = 2π

� 5

3

√
21

4
− x dx. (319)

We proceed by u-substitution:
u = 21

4
− x

du = − dx
(320)

59



The integral becomes

−2π
� 1

4

9
4

u
1
2 du =

4

3
πu

3
2

∣∣∣∣ 94
1
4

= 13π
4
. (321)

�

Example 7.6 Find the area of the surface generated by rotating the curve y = ex

for 0 ≤ x ≤ 1 about the x-axis.

First, we notice that dy
dx

= ex. Therefore,

A =

� 1

0

2πex
√
1 + e2x dx. (322)

We proceed by u-substitution:
u = ex

du = ex dx
. (323)

The integral becomes

2π

� e

1

√
1 + u2 du. (324)

We now proceed by trigonometric substitution:

u = tan θ

du = sec2θ dθ,
(325)

for −π
2
< θ < π

2
. Define a real value α in this interval such that tanα = e. Now,

the integral becomes

2π

� α

π
4

√
1 + tan2θ sec2θ dθ = 2π

� α

π
4

sec3θ dθ. (326)

From a previous example, this is

π (sec θ tan θ + ln | sec θ + tan θ|)
∣∣∣∣α
π
4

= π
(
secα tanα + ln | secα + tanα| −

√
2− ln

(√
2 + 1

))
. (327)
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Since tanα = e, e2 + 1 = sec2α and so
√
e2 + 1 = secα:

π
(
e
√
e2 + 1 + ln

∣∣e+√e2 + 1
∣∣−√2− ln

(√
2 + 1

))
(328)

�

Example 7.7 Find the surface area of a sphere with a radius of R.

We can understand a sphere centered at the origin with a radius of R as a

revolution of the upper half of the circle x2 + y2 = R2 about the x-axis. This upper

half is given by y =
√
R2 − x2. We compute

dy

dx
=

1

2

(
R2 − x2

)− 1
2 (−2x) = −x√

R2 − x2
. (329)

Now, the surface area is

A =

� R

−R
2π
√
R2 − x2

√
1 +

(
−x√
R2 − x2

)2

dx

= 2π

� R

−R

√
R2 − x2

√
1 +

x2

R2 − x2
dx

= 2π

� R

−R

√
R2 − x2 + x2 dx = 2π

� R

−R
R dx = 2πR

� R

−R
dx

= 2πR (R− (−R)) = 2πR (2R) = 4πR2 . (330)

�
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8 Monday, June 17

Section 10.1: Curves defined by parametric equations

Some curves cannot be defined by functions, since all functions must pass a
vertical line test. In order to describe curves, one can understand the curve as a path
of a particle taken over a given time period. We describe the x- and y- coordinates
of the particle’s position separately as functions of time. These functions are called
“parametric equations.”

Example 8.1 Describe the curve given by the following parametric equations:

x(t) = 4 sin t

y(t) = 5 cos t
(331)

for 0 ≤ t ≤ 2π.

We can write x
4
= sin t and y

5
= cos t, so

(x
4

)2
+
(y
5

)2
= sin2t+ cos2t = 1. (332)

Thus, the equation can be written in the Cartesian form as

x2

16
+
y2

5
= 1. (333)

(This is called “eliminating the parameter.”) This is an ellipse with x-intercepts

x = ±4 and y-intercepts y = ±5:

[Draw diagram]

The parameter t begins at 0, corresponding to the point (0, 5). As t increases,

the x-coordinate increases and the y-coordinate decreases, creating a clockwise

motion. �
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Example 8.2 Describe the curve given by the following parametric equations:

x(t) = 1− t
y(t) =

√
t

(334)

for t ≥ 0.

We notice that y2 = t, so x = 1− y2. This is a parabola:

[Draw diagram]

The parameter t begins at 0, corresponding to the point (1, 0). As t increases,

the x-coordinate decreases while the y-coordinate increases, creating the upper

half of the parabola. �

Example 8.3 Given a curve which is the graph of a function y = f(x) defined on

the entire real line, we can describe the curve parametrically as

x(t) = t

y(t) = f(t)
(335)

for all real values of t. �

Example 8.4 Describe the curve given by the following parametric equations:

x(t) = t2 + 3

y(t) = t2 + 4
(336)

for all real values of t.

We notice that x− 3 = t2 = y − 4, so y = x+ 1. This is a line.

[Draw diagram]

�
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Example 8.5 Describe the curve given by the following parametric equations:

x(t) = a+ r cos t

y(t) = b+ r sin t
, (337)

where a, b, and r are real constants, r > 0, and 0 ≤ t ≤ 2π.

We notice that x− a = r cos t and y − b = r sin t, so

(x− a)2 + (y − b)2 = r2cos2t+ r2sin2t = r2
(
cos2t+ sin2t

)
= r2. (338)

This is the equation of a circle with radius r centered at the point (a, b).

[Draw diagram]

The parameter t begins at 0, describing the point (a+ r, b). As t increases, the

x-coordinate decreases while the y-coordinate increases, creating a counterclock-

wise motion. �
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Section 10.2: Calculus with parametric curves

In this section, we have two goals: to describe the tangent lines to parametric
curves and to find the arc lengths of parametric curves.

The slope of the tangent line is always given by dy
dx

. In order to find this quantity
for a parametric curve, use the following formula:

dy

dx
=

dy
dt
dx
dt

. (339)

The concavity is always given by d2y
dx2

. To find this quantity for a parametric
curve, use the following formula:

d2y

dx2
=

d
dt

dy
dx

dx
dt

. (340)

Example 8.6 (Problem 10.2.2) Find dy
dx

:

x(t) = tet

y(t) = t+ sin t
(341)

We know that dy
dt

= 1 + cos t and dx
dt

= tet + et = (1 + t)et, so the slope of the

tangent line at any given value of t is

dy

dx
= 1+cos t

(1+t)et
. (342)

�

Example 8.7 (Problem 10.2.4) Find an equation of the tangent line to the curve

x(t) =
√
t

y(t) = t2 − 2t
(343)

at the point corresponding to t = 4.
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First, we need the slope of the tangent line:

dy

dx
=

2t− 2
1
2
t−

1
2

= 4 (t− 1)
√
t. (344)

At t = 4,
dy

dx

∣∣∣∣
t=4

= 4 (4− 1)
√
4 = 24. (345)

Now we need a point on the line. We notice that

x(4) =
√
4 = 2

y(4) = (4)2 − 2(4) = 8
. (346)

This gives the point (2, 8). Thus, the equation of the tangent line is y−8 = 24(x−2),
or y = 24x− 40 . �

Example 8.8 For which values of t is the curve

x(t) = t3 + 1

y(t) = t2 − t
(347)

concave upward?

We need d2y
dx2

. First, we find dy
dx

:

dy

dx
=

2t− 1

3t2
(348)

Next, we need d
dt

dy
dx

:

d

dt

dy

dx
=

(3t2) (2)− (2t− 1) (6t)

(3t2)2

=
6t2 − 12t2 + 6t

9t4
=

6t (1− t)
9t4

=
2 (1− t)

3t3
. (349)
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Finally, we need to divide by dx
dt

:

d2y

dx2
=

d
dt

dy
dx

dx
dt

=
2(1− t)

3t3
1

3t2
=

2(1− t)
9t5

. (350)

Now we need to find where this is greater than 0. We produce a number line.

[Draw diagram]

We mark the points t = 0 and t = 1, since those are where d2y
dx2

could change

sign. For t < 0, d2y
dx2

< 0. For 0 < t < 1, d2y
dx2

> 0. For t > 1, d2y
dx2

< 0. Thus, the

curve is concave up when 0 < t < 1. �

The arc length of a parametric curve for α ≤ t ≤ β is given by

s =

� β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (351)

Example 8.9 (Problem 10.2.42) Find the exact length of the curve:

x(t) = et − t
y(t) = 4e

t
2

, (352)

for 0 ≤ t ≤ 2.

First, we note that
dx
dt

= et − 1
dy
dt

= 2e
t
2

. (353)

Now,

(
dx

dt

)2

+

(
dy

dt

)2

=
(
et − 1

)2
+
(
2e

t
2

)2
= e2t − 2e2 + 1 + 4et

= e2t + 2et + 1 =
(
et + 1

)2 (354)
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Therefore,

s =

� 2

0

√
(et + 1)2 dt =

� 2

0

et + 1 dt = et + t

∣∣∣∣2
0

=
(
e2 + 2

)
−
(
e0 + 0

)
= e2 + 1 . (355)

�
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9 Tuesday, June 18

Section 10.3: Polar coordinates

A “coordinate system” represents a point as a sequence of numbers.
In the “Cartesian coordinate system,” a point in the plane is represented by an or-
dered pair (x, y) of distances from two perpendicular axes.
In the “polar coordinate system,” a point in the plane is represented by an ordered
pair (r, θ), where r is the length of a line segment pointing from the origin to the
point and θ is the angle that the line segment makes with the positive x-axis.

We can convert from polar coordinates to Cartesian coordinates by using a tri-
angle:

[Draw diagram]

As the diagram illustrates, x = r cos θ and y = r sin θ.
Similarly, in converting from Cartesian coordinates to polar coordinates, we can
write r =

√
x2 + y2 and θ = tan−1

(
y
x

)
, provided that x 6= 0.

Example 9.1 (Problem 10.3.4) Plot and find the Cartesian coordinates of the point

whose polar coordinates are:
(a)

(
4, 4π

3

)
(b)

(
−2, 3π

4

)
(c)

(
−3,−π

3

) (356)

(a) [Draw diagram]

Now x = 4 cos
(
8π
6

)
= 4

(
−1

2

)
= −2, y = 4 sin

(
8π
6

)
= 4

(
−
√
3
2

)
= −2

√
3.

Therefore, the Cartesian coordinates are
(
−2,−2

√
3
)

(b) A negative value of r means the following: (−r, θ) = (r, θ + π). [Draw

diagram]
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Now x = 2 cos
(
−π

4

)
= 2

(√
2
2

)
=
√
2, y = 2 sin

(
−π

4

)
= 2

(
−
√
2
2

)
= −
√
2.

Therefore, the Cartesian coordinates are
(√

2,−
√
2
)

.

(c) [Draw diagram]

Now x = 3 cos
(
4π
6

)
= 3

(
−1

2

)
= −3

2
, y = 3 sin

(
4π
6

)
= 3

(√
3
2

)
= 3

√
3

2
.

Therefore, the Cartesian coordinates are
(
−3

2
, 3
√
3

2

)
. �

In the same way that we can write functions y = f(x) in Cartesian coordinates,
we can also write functions like r = f (θ) in polar coordinates. We are therefore
interested in the tangent line to a curve defined by polar coordinates.

As mentioned before, the slope of the tangent line is always dy
dx

. Now, given that
y = r sin θ and x = r cos θ, this becomes

dy

dx
=

dy
dθ
dx
dθ

=
d
dθ
r sin θ

d
dθ
r cos θ

=
r cos θ + dr

dθ
sin θ

−r sin θ + dr
dθ

cos θ
. (357)

Given r = f (θ), this is possible to compute.

Example 9.2 (Problem 10.3.56) Find the slope of the tangent line to the curve

r = 2 + sin (3θ) at the point where θ = π
4
.

We note that
dr

dθ
= 3 cos (3θ) . (358)
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Therefore, at θ = π
4
,

dy

dx
=

r cos θ + dr
dθ

sin θ

−r sin θ + dr
dθ

cos θ

=

(
2 + sin

(
3π
4

))
cos
(
π
4

)
+ 3 cos

(
3π
4

)
sin
(
π
4

)
−
(
2 + sin

(
3π
4

))
sin
(
π
4

)
+ 3 cos

(
3π
4

)
cos
(
π
4

)
=

(
2 + 1√

2

)
1√
2
− 3 1√

2
1√
2

−
(
2 + 1√

2

)
1√
2
− 3 1√

2
1√
2

=

√
2 + 1

2
− 3

2

−
√
2− 1

2
− 3

2

=

√
2− 1

−
√
2− 2

=
−2 + 2

√
2 +
√
2− 2

2− 4
= 2− 3

2

√
2 . (359)

Example 9.3 (Problem 10.3.56) Find the points on the curve r = eθ where the

tangent line is horizontal or vertical.

Here we seek the points where dy
dx

is either 0 or undefined. We note that

dr

dθ
= eθ. (360)

Therefore,

dy

dx
=

r cos θ + dr
dθ

sin θ

−r sin θ + dr
dθ

cos θ
=

eθ cos θ + eθ sin θ

−eθ sin θ + eθ cos θ

=
eθ (cos θ + sin θ)

eθ (cos θ − sin θ)
=

cos θ + sin θ

cos θ − sin θ
. (361)

Now, if dy
dx

= 0, then cos θ + sin θ = 0. This means that cos θ = − sin θ. This hor-

izontal tangents occur at θ = 3π
4
+ nπ , where n is any integer. If dy

dx
is undefined,

then cos θ − sin θ = 0, in which case cos θ = sin θ. These vertical tangents occur

at θ = π
4
+ nπ , where n is any integer. �

Example 9.4 Find the points on the curve r = 1 − sin θ where the tangent line is

vertical.

We note that
dr

dθ
= − cos θ. (362)
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Therefore,

dy

dx
=

r cos θ + dr
dθ

sin θ

−r sin θ + dr
dθ

cos θ
=

(1− sin θ) cos θ + (− cos θ) sin θ

− (1− sin θ) sin θ + (− cos θ) cos θ

=
(1− 2 sin θ) cos θ

− sin θ + sin2θ − cos2θ
=

(1− 2 sin θ) cos θ

− sin θ + sin2θ −
(
1− sin2θ

)
=

(1− 2 sin θ) cos θ

2sin2θ − sin θ − 1
. (363)

The tangent is vertical when the denominator equals zero: 2sin2θ − sin θ − 1 = 0.

This is a quadratic equation in sin θ:

sin θ =
1±

√
(−1)2 − 4(2)(−1)

2(2)
=

1± 3

4
= 1,−1

2
. (364)

This gives θ = π
2
+ 2πn, θ = 7π

6
+ 2πn, and θ = 11π

6
+ 2πn. These correspond to

the points whose polar coordinates are
(
0, π

2

)
,
(
3
2
, 7π

6

)
,
(
3
2
, 11π

6

)
. �
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Section 10.4: Areas and lengths in polar coordinates

When a region is bounded between two rays pointing from the origin and a polar
curve, the area of the region is given by

A =

� b

a

1

2
r2 dθ, (365)

where a and b are the angles between the rays and the x-axis.

Example 9.5 (Problem 10.4.2) Find the area of the region bounded by the curve

r = cos θ and the rays θ = 0 and θ = π
6
.

This is

A =

� π
6

0

1

2
cos2θ dθ =

1

4

� π
6

0

1 + cos (2θ) dθ

=
1

4

(
θ +

1

2
sin (2θ)

) ∣∣∣∣π6
0

=
1

4

(
π

6
+

1

2

√
3

2

)
= π

24
+
√
3

16
(366)

�

Example 9.6 (Problem 10.4.4) Find the area of the region bounded by the curve

r = 1
θ

and the rays θ = π
2

and θ = 2π.

This is

A =

� 2π

π
2

1

2

1

θ2
dθ = −1

2

1

θ

∣∣∣∣2π
π
2

=
1

2

(
2

π
− 1

2π

)
=

1

2

(
4

2π
− 1

2π

)
= 3

4π
. (367)

�

Example 9.7 (Problem 10.4.6) Find the area in the third quadrant enclosed by

r = 2 + cos θ.

[Draw diagram]
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The third quadrant is the region π
2
≤ θ ≤ π. Therefore,

A =

� π

π
2

1

2
(2 + cos θ)2 dθ =

1

2

� π

π
2

4 + 4 cos θ + cos2θ dθ

=

� π

π
2

9

4
+ 2 cos θ +

1

4
cos (2θ) dθ

=
9

4
θ + 2 sin θ +

1

8
sin (2θ)

∣∣∣∣π
π
2

= 9
8
π − 2 . (368)

�

Now we examine the matter of the arc length of a curve given by a polar equa-
tion r = f (θ) for some interval α ≤ θ ≤ β. Suppose we regard θ as a parameter,
and write parametric equations describing such a curve. These would be

x (θ) = r cos θ = f (θ) cos θ

y (θ) = r sin θ = f (θ) sin θ
. (369)

We know that the arc length of a parametric curve is

s =

� β

α

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ. (370)

Doing the calculation gives the following:

s =

� β

α

√
r2 +

(
dr

dθ

)2

dθ. (371)

Example 9.8 (Problem 10.4.46) Find the exact length of the curve r = 5θ for 0 ≤
θ ≤ 2π.
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We know that dr
dθ

= 5θ ln 5. Therefore,

s =

� 2π

0

√
52θ + 52θ(ln 5)2 dθ =

� 2π

0

5θ
√

1 + (ln 5)2 dθ

=
5θ

ln 5

√
1 + (ln 5)2

∣∣∣∣2π
0

=

√
1 + (ln 5)2

ln 5

(
52π − 1

)
. (372)

�

Example 9.9 (Problem 10.4.48) Find the exact length of the curve defined by the

polar equation r = 2 (1 + cos θ) for 0 ≤ θ ≤ 2π.

We note that
dr

dθ
= −2 sin θ. (373)

Therefore,

s =

� 2π

0

√
(2 (1 + cos θ))2 + (−2 sin θ)2 dθ

=

� 2π

0

√
4 (1 + 2 cos θ + cos2θ) + 4sin2θ dθ

=

� 2π

0

√
4 (1 + 2 cos θ) + 4cos2θ + 4sin2θ dθ =

� 2π

0

√
8 + 8 cos θ dθ

=

� 2π

0

4

√
1

2
(1 + cos θ) dθ = 4

� 2π

0

√
cos2

(
1

2
θ

)
dθ

= 4

� 2π

0

∣∣∣∣ cos(1

2
θ

) ∣∣∣∣ dθ = 8

� π

0

cos

(
1

2
θ

)
dθ

= 16 sin

(
1

2
θ

) ∣∣∣∣π
0

= 16 (1− 0) = 16 . (374)

�
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10 Monday, June 24

Section 11.1: Sequences

Definition 10.1 A sequence of real numbers is an infinite list of real numbers with

a defined order.

Example 10.2 Find a formula for the general term an of the sequence whose terms

are a1 = 2, a2 = 4, a3 = 8, a4 = 16, a5 = 32, .... (In other words, find a formula

for an in terms of n.)

Here the formula is an = 2n. �

Example 10.3 (Problem 11.1.14) Find a formula for the general term an of the

sequence whose terms are a1 = 4, a2 = −1, a3 = 1
4
, a4 = − 1

16
, a5 = 1

64
, ....

Here the formula is an = (−1)n+142−n. �

We will be largely concerned with limits of sequences.

Definition 10.4 Let (an) be a sequence of real numbers. Given a real number L,

we say that L is the limit of (an) as n approaches infinity, or that (an) converges

to L provided that the following is true: by taking n to be sufficiently large, we can

make the distance |an − L| arbitrarily small.

Notation: lim
n→∞

an = L.

If a sequence has a real-valued limit, we say that the sequence is “convergent.”
If it has no real-valued limit, we say that it is “divergent.”

We take limits of sequences in the same way we took limits of functions in
Calculus I.

Example 10.5 Determine whether the sequence an = 3n4+5
4n4−7n2+9

converges or di-

verges. If it converges, find the limit.

We take

lim
n→∞

3n4 + 5

4n4 − 7n2 + 9
= lim

n→∞

3 + 5
n4

4− 7n2

n4 + 9
n4

=
3 + 0

4− 0 + 0
= 3

4
. (375)
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�

Example 10.6 (Problem 11.1.28) Determine whether the sequence an = 3
√
n√

n+2

converges or diverges. If it converges, find the limit.

We take

lim
n→∞

3
√
n√

n+ 2
= lim

n→∞

3

1 + 2√
n

=
3

1 + 0
= 3 . (376)

�

Example 10.7 Determine whether the sequence an = n2−1
n

converges or diverges.

If it converges, find the limit.

We know that

lim
n→∞

n2 − 1

n
=∞, (377)

so the sequence is divergent. �

Example 10.8 Determine whether the sequence an = 1 + (−1)n converges or

diverges. If it converges, find the limit.

The terms in the sequence are 0, 2, 0, 2, 0, 2, ..., so the sequence has no limit; it

is divergent. �

Theorem 10.9 If lim
n→∞

an = L and f is continuous at L, then lim
n→∞

f (an) = f (L).

Example 10.10 (Problem 11.1.32) Determine whether the sequence an = cos
(
nπ
n+1

)
converges or diverges. If it converges, find the limit.

We take

lim
n→∞

nπ

n+ 1
= lim

n→∞

π

1 + 1
n

= π. (378)

Now cos (π) = −1, so by the theorem, lim
n→∞

cos
(
nπ
n+1

)
= −1 . �

Definition 10.11 A geometric sequence is a sequence (an) in which an = brn for

some real values b and r. We call r the common ratio of an.

Theorem 10.12 The geometric sequence (brn) is:

(i) Convergent to 0 for −1 < r < 1.

(ii) Convergent to b for r = 1.

(iii) Divergent for r ≤ −1 or r > 1.
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Definition 10.13 A sequence an of real numbers is called:

(i) decreasing if an+1 ≤ an for all n.

(ii) increasing if an+1 ≥ an for all n.

(iii) monotone if it is either decreasing or increasing.

(iv) eventually decreasing if an+1 ≤ an for all n greater than a certain value.

(v) eventually increasing if an+1 ≥ an for all n greater than a certain value.

Example 10.14 Determine whether the sequence an = 1
2n+3

is increasing, de-

creasing, or not monotone.

We know that 2(n + 1) + 3 > 2n + 3 for any positive integer n. Therefore,

an = 1
2n+3

> 1
2(n+1)+3

= an+1, so the sequence is decreasing . �

Example 10.15 Determine whether the sequence an = n
n2+1

is increasing, decreas-

ing, or not monotone.

Consider the function

f(x) =
x

x2 + 1
. (379)

Taking the derivative,

f ′(x) =
(x2 + 1) (1)− (x) (2x)

(x2 + 1)2
=
−x2 + 1

(x2 + 1)2
. (380)

This is negative when x > 1, so f is decreasing on (1,∞). This tells us that

an+1 = f(n+ 1) < f(n) = an for any positive integer n. Ergo, an is decreasing .

�

Definition 10.16 The harmonic sequence is the sequence an = 1
n

.

The harmonic sequence is a decreasing sequence which converges to 0.
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Section 11.2: Series

It makes sense to discuss a+b, because addition is defined for two real numbers.
You can extend this to discussing a1 + a2 + ...+ an, for any positive integer n.
What would be the meaning of a sum of infinitely many numbers?

Definition 10.17 Let an be a sequence of real numbers. Given a positive integer k,

the kth partial sum of an is the value sk =
k∑

n=1

an.

An “infinite series” is the limit of the partial sums of a sequence.

Definition 10.18 Let an be a sequence of real numbers, and let sn be the nth partial

sum of an. If the sequence (sn) converges to a real number s, then we say that the

series
∞∑
n=1

an is convergent to s, and that s is the sum of the series. If no such real

number exists, we say that the series
∞∑
n=1

an is divergent.

We begin by discussing one of the most important examples.

Definition 10.19 A geometric series is a series
∞∑
n=1

an, where an is a geometric

sequence.

Do geometric series converge? It depends.

Consider the geometric series
∞∑
n=1

brn−1.

If the common ratio r = 1, then the kth partial sum of an = brn−1 is

sk =
k∑

n=1

an =
k∑

n=1

brn−1 =
k∑

n=1

b = kb. (381)

Now, lim
k→∞

kb =∞, so the series
∞∑
n=1

brn−1 is divergent in this case.

If the common ratio r 6= 1, then the kth partial sum is

sk = b+ br + br2 + ...+ brk−1. (382)
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We notice:
rsk = br + br2 + br3 + ...+ brk = sk − b+ brk. (383)

Therefore,
rsk − sk = −b+ brk

(r − 1) sk = b
(
−1 + rk

)
sk =

b(rk−1)
r−1 =

b(1−rk)
1−r .

. (384)

Now, if −1 < r < 1, then

∞∑
n=1

brn−1 = lim
k→∞

sk = lim
k→∞

b
(
1− rk

)
1− r

=
b (1− 0)

1− r
=

b

1− r
. (385)

On the other hand, if r ≤ −1 or r > 1, then lim
k→∞

rk diverges, so therefore
∞∑
n=1

brn−1

also diverges. To summarize:

Theorem 10.20 Let b and r be real numbers.

(i) The geometric series
∞∑
n=1

brn−1 diverges if |r| ≥ 1.

(ii) The geometric series
∞∑
n=1

brn−1 = b
1−r if −1 < r < 1.

Note:
∞∑
n=1

brn−1 =
∞∑
n=0

brn.

What can we say about non-geometric series?

Some series are called “telescoping series,” and have terms that cancel pairwise
in the partial sums.

Example 10.21 Determine whether the series
∞∑
n=1

(
1
n
− 1

n+1

)
is convergent or di-

vergent. If it is convergent, find its sum.

We notice that the kth partial sum of this series is

sk =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ ...+

(
1

k
− 1

k + 1

)
. (386)
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Most of these terms cancel to give us:

sk = 1− 1

k + 1
. (387)

Now,
∞∑
n=1

(
1

n
− 1

n+ 1

)
= lim

n→∞
sk = lim

k→∞
1− 1

k + 1
= 1 . (388)

�

Theorem 10.22 (Test for divergence) If
∞∑
n=1

an is convergent, then lim
n→∞

an = 0.

This theorem proposes the following test: if
∞∑
n=1

an is a series and lim
n→∞

an 6= 0,

then
∞∑
n=1

an cannot be convergent. The converse is untrue:

Theorem 10.23 The harmonic series
∞∑
n=1

1
n

is divergent.

Why? We’ll see in the next section.

Example 10.24 (Problem 11.2.30) Determine whether the series
∞∑
n=1

n2

n2−2n+5
is

convergent or divergent. If it is convergent, find its sum.

We notice that

lim
n→∞

n2

n2 − 2n+ 5
= lim

n→∞

1

1− 2
n
+ 5

n2

=
1

1− 0 + 0
= 1. (389)

Since the limit of the terms is nonzero, the test for divergence dictates that the series

cannot converge. �
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11 Tuesday, June 25

Section 11.3: The integral test

Finding the exact sum of a series is a difficult problem in general. For the next
few sections, we’ll concentrate on testing whether a series is convergent or divergent
without finding the sum.

Theorem 11.1 (The integral test) Let (an) be a positive, eventually decreasing se-

quence of real numbers. Given a continuous function f defined on [1,∞) such that

for each positive integer n, f(n) = an, the series
∞∑
n=1

an is convergent if and only if�∞
1
f(x) dx is convergent.

Example 11.2 Determine whether the series
∞∑
n=1

lnn
n

is convergent or divergent.

In order to use the integral test, we must verify that the function f(x) = lnx
x

is

eventually decreasing. We do so by examining the derivative:

f ′(x) =
1− lnx

x2
(390)

This is negative when 1− lnx < 0, or in other words, when lnx > 1, hence x > e.

Thus, f is eventually decreasing, and so the integral test can be used.

� ∞
1

lnx

x
dx = lim

t→∞

� t

1

lnx

x
dx (391)

We proceed by u-substitution:
u = lnx

du = 1
x
dx
. (392)

Now,

� ∞
1

lnx

x
dx = lim

t→∞

� ln t

0

u du = lim
t→∞

1

2
u2
∣∣∣∣ln t
0

= lim
t→∞

1

2
(ln t)2 =∞. (393)

This shows that the series is divergent . �
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Example 11.3 (Problem 11.3.8) Determine whether the series
∞∑
n=1

n2e−n
3

is con-

vergent or divergent.

First we need to verify that f(x) = x2e−x
3

is eventually decreasing. We examine

the derivative:

f ′(x) = −3x4e−x3 + 2xe−x
3

= xe−x
3 (

2− 3x3
)
. (394)

For x > 3

√
2
3
, this is negative, so the sequence of terms is eventually decreasing. We

can now use the integral test:

� ∞
1

x2e−x
3

dx = lim
t→∞

� t

1

x2e−x
3

. (395)

We proceed by u-substitution:

u = x3

du = 3x2 dx
. (396)

Now,

� ∞
1

x2e−x
3

dx = lim
t→∞

� t3

1

1

3
e−u du

= lim
t→∞
−1

3
e−u
∣∣∣∣t3
1

= lim
t→∞

1

3
e−1 − 1

3
e−t

3

=
1

3e
. (397)

This shows that the series is convergent . (It does not tell us the sum.) �

Example 11.4 (Problem 11.3.6) Determine whether the series
∞∑
n=1

1
(3n−1)4 is con-

vergent or divergent.

First we verify that f(x) = 1
(3x−1)4 is eventually decreasing:

f ′(x) = −4(3x− 1)−5(3) =
−12

(3x− 1)5
. (398)

This is negative for x > 1
3
, so the sequence of terms is eventually decreasing. We
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can now use the integral test:

� ∞
1

1

(3x− 1)4
dx = lim

t→∞

� t

1

(3x− 1)−4 dx. (399)

We proceed by u-substitution:
u = 3x− 1

du = 3 dx
, (400)

so

� ∞
1

1

(3x− 1)4
dx = lim

t→∞

� 3t−1

2

1

3
u−4 du

= lim
t→∞
−1

9
u−3
∣∣∣∣3t−1
2

= lim
t→∞

1

9

(
1

8
− 1

(3t− 1)3

)
=

1

9

1

8
=

1

72
. (401)

This shows that the series is convergent . �

Example 11.5 The series
∞∑
n=1

1
np

for an integer p is called the “p-series.” For what

values of p does the p-series converge?

If p < 0, then lim
n→∞

1
np

= ∞, in which case the test for divergence reveals that

the p-series is divergent.

If p = 0, then lim
n→∞

1
np

= lim
n→∞

1 = 1, so again the test for divergence dictates

that the p-series is divergent.

If p = 1, then this is the harmonic series. We will now show that the harmonic

series is divergent, using the integral test. We know that n < n + 1, so 1
n+1

< 1
n

for any positive integer n. Thus, the terms of the harmonic series form a decreasing

sequence. Consider the function f(x) = 1
x
. Now use the integral test:

� ∞
1

f(x) dx =

� ∞
1

1

x
dx = lim

t→∞
lnx

∣∣∣∣t
1

= lim
t→∞

ln t− ln 1 = lim
t→∞

ln t =∞. (402)

As this is divergent, we see that the harmonic series is also divergent. Thus, the

p-series is divergent for p = 1.

If p > 1, then we notice that np < (n+ 1)p, so 1
(n+1)p

< 1
np

for any positive

integer n. This shows that the terms of the p-series form a decreasing sequence. We
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consider the function f(x) = 1
xp

. Now, we use the integral test:

� ∞
1

f(x) dx =

� ∞
1

x−p dx = lim
t→∞

x1−p

1− p

∣∣∣∣t
1

= lim
t→∞

1

1− p
(
t1−p − 1

)
= lim

t→∞

1

1− p

(
1

tp−1
− 1

)
(403)

This improper integral is convergent if and only if p − 1 > 0. This shows that the

p-series is convergent exactly when p > 1 . �

From the previous example, we can state the following theorem.

Theorem 11.6 (p-series test) Let p be a real number. The p-series
∞∑
n=1

1
np

is con-

vergent if and only if p > 1.

Example 11.7 (Problem 11.3.4) Determine whether the series
∞∑
n=1

n−0.3 is conver-

gent or divergent.

This is a p-series:
∞∑
n=1

n−0.3 =
∞∑
n=1

1

n0.3
. (404)

Since 0.3 ≤ 1, the series is divergent . �
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Section 11.4: The comparison tests

If you know that a given series with positive terms is convergent or divergent,
you can sometimes use that information to deduce whether another series with pos-
itive terms is convergent or divergent.

Theorem 11.8 (Comparison test) Let
∞∑
n=1

an be a series with positive terms.

(i) Suppose that for all positive integers n, an ≤ bn. If
∞∑
n=1

bn is convergent, then the

series
∞∑
n=1

an is convergent.

(ii) Suppose that for all positive integers n, cn ≤ an. If
∞∑
n=1

cn is divergent, then the

series
∞∑
n=1

an is divergent.

Example 11.9 Determine whether the series
∞∑
n=1

1
2n+1

converges or diverges.

We notice that
1

2n + 1
<

1

2n
, (405)

so since
∞∑
n=1

1
2n

=
∞∑
n=1

(
1
2

)n is a convergent geometric series, the series is convergent .

�

Example 11.10 (Problem 11.4.4) Determine whether the series
∞∑
n=2

1√
n−1 converges

or diverges.

We notice that
1√
n− 1

>
1√
n
, (406)

so since
∞∑
n=2

1√
n
=
∞∑
n=2

1

n
1
2

is a divergent p-series, the series is divergent . �

Example 11.11 (Problem 11.4.6) Determine whether the series
∞∑
n=1

n−1
n3+1

is conver-

gent or divergent.

We notice that
n− 1

n3 + 1
<

n

n3 + 1
<

n

n3
=

1

n2
. (407)
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Since
∞∑
n=1

1
n2 is a convergent p-series, the series is convergent . �

Example 11.12 (Problem 11.4.8) Determine whether the series
∞∑
n=1

6n

5n−1 is conver-

gent or divergent.

We notice that
6n

5n − 1
>

6n

5n
. (408)

As
∞∑
n=1

6n

5n
=
∞∑
n=1

(
6
5

)n is a divergent geometric series, the series is also divergent .

�

Example 11.13 (Problem 11.4.14) Determine whether the series
∞∑
n=1

1
3√3n4+1

is con-

vergent or divergent.

We notice that
1

3
√
3n4 + 1

<
1

3
√
3n4

<
1

3
√
n4

=
1

n
4
3

. (409)

Since
∞∑
n=1

1

n
4
3

is a convergent p-series, the series is convergent . �

Theorem 11.14 (Limit comparison test) Suppose that
∞∑
n=1

an and
∞∑
n=1

bn are series

with positive terms. If lim
n→∞

an
bn

is positive and finite, then either both converge series

or both diverge.

Example 11.15 (Problem 11.4.22) Determine whether the series
∞∑
n=3

n+2
(n+1)3

con-

verges or diverges.

We use the limit comparison test with
∞∑
n=3

1
n2 :

lim
n→∞

(
1
n2

)(
n+2

(n+1)3

) = lim
n→∞

(n+ 1)3

n2 (n+ 2)
= lim

n→∞

n3 + 3n2 + 3n+ 1

n3 + 2n2
= 1. (410)

Since 1 is positive and finite, and since
∞∑
n=3

1
n2 is a convergent p-series, the limit

comparison test indicates that
∞∑
n=3

n+2
(n+1)3

is also convergent .
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Example 11.16 Determine whether the series
∞∑
n=1

1
2n+1

converges or diverges.

We use the limit comparison test with the harmonic series
∞∑
n=1

1
n

:

lim
n→∞

(
1
n

)(
1

2n+1

) = lim
n→∞

2n+ 1

n
= 2. (411)

Since 2 is positive and finite, and since
∞∑
n=1

1
n

is divergent, the limit comparison test

indicates that
∞∑
n=1

1
2n+1

is also divergent .
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12 Wednesday, June 26

Section 11.5: Alternating series

Definition 12.1 An alternating series is a series whose successive terms are alter-

nately positive and negative.

Example 12.2 The following are alternating series:

∞∑
n=1

(−1)n 1
n
= −1 + 1

2
− 1

3
+

1

4
− 1

5
+ ... (412)

∞∑
n=1

(−1)n+1n2 = 1− 4 + 9− 16 + 25− ... (413)

∞∑
n=1

cos (nπ) = (−1) + 1 + (−1) + 1 + (−1) + ... (414)

�

Theorem 12.3 (Alternating series test) Let
∞∑
n=1

(−1)n+1bn be an alternating series,

where for each positive integer n, bn > 0. If the sequence (bn) is decreasing and

lim
n→∞

bn = 0, then the series
∞∑
n=1

(−1)n+1bn is convergent.

Example 12.4 (Problem 11.5.2) Determine whether the series
∞∑
n=1

(−1)n+1 2
2n+1

is

convergent or divergent.

We note that
2

2n+ 1
>

2

2(n+ 1) + 1
. (415)

Additionally,

lim
n→∞

2

2n+ 1
= 0. (416)

Therefore, by the alternating series test, the series is convergent . �

Example 12.5 (Problem 11.5.4) Determine whether the series
∞∑
n=1

(−1)n+1

ln(2n+1)
is con-

vergent or divergent.
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We note that
1

ln (2n+ 1)
>

1

ln (2(n+ 1) + 1)
. (417)

Additionally,

lim
n→∞

1

ln (2n+ 1)
= 0. (418)

Therefore, by the alternating series test, the series is convergent . �

Example 12.6 (Problem 11.5.8) Determine whether the series
∞∑
n=1

(−1)n n2

n2+n+1
is

convergent or divergent.

We note that

lim
n→∞

n2

n2 + n+ 1
= 1. (419)

Therefore, lim
n→∞

(−1)n n2

n2+n+1
does not exist. By the test for divergence, the series is

divergent . �

Example 12.7 Determine whether the series
∞∑
n=1

(−1)n+1

n
is convergent or divergent.

We note that
1

n
>

1

n+ 1
. (420)

Further,

lim
n→∞

1

n
= 0. (421)

Therefore, by the alternating series test, the series is convergent. �

Example 12.8 Determine whether the series
∞∑
n=1

(−1)n+1 n
n+1

is convergent or di-

vergent.

We note that

lim
n→∞

n

n+ 1
= 1, (422)

so the limit lim
n→∞

(−1)n+1 n
n+1

does not exist. Therefore, by the test for divergence,

the series is divergent . �
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Section 11.6: Absolute convergence and the ratio and root tests

Definition 12.9 Let
∞∑
n=1

an be an infinite series. We say that
∞∑
n=1

an is absolutely

convergent provided that the series
∞∑
n=1

|an| is convergent.

Theorem 12.10 If a series
∞∑
n=1

an is absolutely convergent, then it is convergent.

Definition 12.11 Let
∞∑
n=1

an be an infinite series. We say that
∞∑
n=1

an is conditionally

convergent if it is convergent, but not absolutely convergent.

Example 12.12 Determine whether
∞∑
n=1

sin(nπ3 )
n2 converges absolutely, converges con-

ditionally, or is divergent.

We consider
∞∑
n=1

∣∣∣∣sin
(
nπ
3

)
n2

∣∣∣∣. (423)

We notice that
∣∣ sin (nπ

3

) ∣∣ ≤ 1, so∣∣∣∣sin
(
nπ
3

)
n2

∣∣∣∣ ≤ 1

n2
. (424)

Now
∞∑
n=1

1
n2 is a convergent p-series, so by the comparison test,

∞∑
n=1

∣∣∣∣ sin(nπ3 )n2

∣∣∣∣ con-

verges. Ergo,
∞∑
n=1

sin(nπ3 )
n2 is absolutely convergent . �

Example 12.13 (Problem 11.6.36) Determine whether the series
∞∑
n=1

sin(nπ6 )
1+n
√
n

is ab-

solutely convergent, conditionally convergent, or divergent.

We consider
∞∑
n=1

∣∣∣∣ sin
(
nπ
6

)
1 + n

√
n

∣∣∣∣ (425)

Since
∣∣ sin (nπ

6

) ∣∣ ≤ 1, ∣∣∣∣ sin
(
nπ
6

)
1 + n

√
n

∣∣∣∣ ≤ 1

1 + n
√
n
<

1

n
3
2

. (426)
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Now
∞∑
n=1

1

n
3
2

is a convergent p-series, so by the comparison test,
∞∑
n=1

∣∣∣∣ sin(nπ6 )1+n
√
n

∣∣∣∣ con-

verges. Ergo,
∞∑
n=1

sin(nπ6 )
1+n
√
n

is absolutely convergent . �

Example 12.14 (Problem 11.6.4) Determine whether the series
∞∑
n=1

(−1)n
n3+1

is abso-

lutely convergent, conditionally convergent, or divergent.

We consider
∞∑
n=1

∣∣∣∣ (−1)nn3 + 1

∣∣∣∣ = ∞∑
n=1

1

n3 + 1
. (427)

We note that
1

n3 + 1
<

1

n3
. (428)

Now
∞∑
n=1

1
n3 is a convergent p-series, so by the comparison test,

∞∑
n=1

1
n3+1

is conver-

gent. Therefore, the series
∞∑
n=1

(−1)n
n3+1

is absolutely convergent . �

Example 12.15 (Problem 11.6.2) Determine whether the series
∞∑
n=1

(−1)n−1

√
n

is ab-

solutely convergent, conditionally convergent, or divergent.

We consider
∞∑
n=1

∣∣∣∣(−1)n−1√
n

∣∣∣∣ = ∞∑
n=1

1√
n
=
∞∑
n=1

1

n
1
2

. (429)

This is a divergent p-series, so the series is not absolutely convergent. However,

1√
n
>

1√
n+ 1

, (430)

and

lim
n→∞

1√
n
= 0, (431)

so by the alternating series test, the series
∞∑
n=1

(−1)n−1

√
n

is convergent; the series is

conditionally convergent . �

Theorem 12.16 (Ratio test) Let
∞∑
n=1

an be an infinite series.
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(i) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then the series converges absolutely.

(ii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1, then the series diverges.

Notice that we have no conclusion if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

Example 12.17 (Problem 11.6.12) Determine whether the series
∞∑
n=1

ne−n is abso-

lutely convergent, conditionally convergent, or divergent.

We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)e−(n+1)

ne−n
= lim

n→∞

n+ 1

n

1

e
=

1

e
< 1. (432)

By the ratio test, the series is absolutely convergent . �

Example 12.18 (Problem 11.6.14) Determine whether the series
∞∑
n=1

n!
100n

is abso-

lutely convergent, conditionally convergent, or divergent.

We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!

100n+1

100n

n!
= lim

n→∞

n+ 1

100
=∞ (433)

By the ratio test, the series is divergent . �

Example 12.19 (Problem 11.6.8) Determine whether the series
∞∑
n=1

(−2)n
n2 is abso-

lutely convergent, conditionally convergent, or divergent.

We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1

(n+ 1)2
n2

2n
= lim

n→∞

2n2

n2 + 2n+ 1
= 2 > 1. (434)

By the ratio test, the series is divergent . �

Theorem 12.20 (Root test) Let
∞∑
n=1

an be an infinite series.

(i) If lim
n→∞

n
√
|an| < 1, then the series converges absolutely.

(ii) If lim
n→∞

n
√
|an| > 1, then the series diverges.
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Again, notice that no conclusion can be drawn if lim
n→∞

n
√
|an| = 1.

Example 12.21 (Problem 10.6.32) Determine whether the series
∞∑
n=1

(
1−n
2+3n

)n is

absolutely convergent, conditionally convergent, or divergent.

We use the root test:

lim
n→∞

n
√
|an| = lim

n→∞

∣∣∣∣ 1− n2 + 3n

∣∣∣∣ = 1

3
< 1. (435)

Therefore, by the root test, the series is absolutely convergent . �
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13 Thursday, June 27

Section 11.7: Strategy for testing series (?)

Example 13.1 (Problem 11.7.2) Test the series
∞∑
n=1

n−1
n3+1

for convergence or diver-

gence.

We note that
n− 1

n3 + 1
<

n

n3 + 1
<

n

n3
=

1

n2
. (436)

Since
∞∑
n=1

1
n2 is a convergent p-series, the series

∞∑
n=1

n−1
n3+1

converges by the com-

parison test. �

Example 13.2 (Problem 11.7.4) Test the series
∞∑
n=1

(−1)n n2−1
n2+1

for convergence or

divergence.

We note that

lim
n→∞

n2 − 1

n2 + 1
= 1. (437)

Therefore, lim
n→∞

(−1)n n2−1
n2+1

does not exist. By the test for divergence, the series

diverges . �

Example 13.3 (Problem 11.7.6) Test the series
∞∑
n=1

n2n

(1+n)3n
for convergence or di-

vergence.

We note that

lim
n→∞

n2

(1 + n)3
= 0 < 1, (438)

so by the root test, the series converges . �

Example 13.4 (Problen 11.7.8) Test the series
∞∑
n=1

n4

4n
for convergence or diver-

gence.

We note that

lim
n→∞

(n+ 1)4

4n+1

4n

n4
= lim

n→∞

(n+ 1)4

n4

1

4
=

1

4
< 1. (439)

Thus, by the ratio test, the series converges . �
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Example 13.5 (Problem 11.7.18) Test the series
∞∑
n=2

(−1)n−1

√
n−1 for convergence or di-

vergence.

We note that
1√
n− 1

>
1√

n+ 1− 1
(440)

and

lim
n→∞

1√
n− 1

= 0. (441)

Thus, by the alternating series test, the series converges . �
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Section 11.8: Power series

Definition 13.6 Let a be a real value. A power series about x = a is a function f

defined via f(x) =
∞∑
n=1

cn(x− a)n for some sequence of real numbers (cn).

Theorem 13.7 Let f(x) =
∞∑
n=0

cn(x− a)n be a power series. Exactly one of the

following statements is true.

(i) f(x) converges only when x = a.

(ii) f(x) converges for all real values x.

(iii) There exists a positive number R (called the “radius of convergence”) such

that f(x) converges if |x− a| < R and diverges if |x− a| > R.

(If f(x) converges for all real x, we say that “the radius of convergence is∞.”)

Definition 13.8 Let f(x) =
∞∑
n=1

cn(x− a)n be a power series. The interval of con-

vergence of f is the interval of real numbers x such that f(x) converges.

To find the interval of convergence, use the ratio test to determine the x-values
for which f(x) converges absolutely. This will give the radius of convergence, and
some open interval of values of x. Next, test the endpoints of this interval.

Example 13.9 Find the radius of convergence and interval of convergence of the

power series
∞∑
n=0

(−1)n
n+2

xn.

We note that the series converges absolutely when the ratio test gives a limit less

than 1:

lim
n→∞

∣∣∣∣(−1)n+1xn+1

n+ 3

n+ 2

(−1)nxn

∣∣∣∣ = lim
n→∞

n+ 2

n+ 3
|x| = |x| < 1. (442)

This gives us a radius of convergence R = 1 . We deduce that the power series

converges for −1 < x < 1. What about for x = ±1? We check these separately.

First, for x = −1:

∞∑
n=0

(−1)n

n+ 2
(−1)n =

∞∑
n=0

(−1)2n

n+ 2
=
∞∑
n=0

1

n+ 2
. (443)
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This series is

∞∑
n=0

1

n+ 2
=

1

2
+

1

3
+

1

4
+

1

5
+ ... =

(
∞∑
n=1

1

n

)
− 1, (444)

which diverges, since
∞∑
n=1

1
n

diverges. Next, for x = 1:

∞∑
n=0

(−1)n

n+ 2
1n =

∞∑
n=0

(−1)n

n+ 2
. (445)

This converges by the alternating series test. Therefore, the power series converges

only for −1 < x ≤ 1, and so the interval of convergence is (−1, 1] . �

Example 13.10 Find the radius of convergence and interval of convergence of the

power series
∞∑
n=0

(x−2)n
2n

.

We use the ratio test:

lim
n→∞

∣∣∣∣(x− 2)n+1

2n+1

2n

(x− 2)n

∣∣∣∣ = |x− 2|
2

< 1. (446)

This tells us that |x − 2| < 2, so the radius of convergence is R = 2 . We deduce

that the power series converges for 0 < x < 4. We test x = 0:

∞∑
n=0

(0− 2)n

2n
=
∞∑
n=0

(−2)n

2n
=
∞∑
n=0

(−1)n. (447)

This is divergent, by the test for divergence. We test x = 4:

∞∑
n=0

(4− 2)n

2n
=
∞∑
n=0

2n

2n
=
∞∑
n=0

1, (448)

which is also divergent, by the test for divergence. Therefore, the power series

converges only for 0 < x < 4, and so the interval of convergence is (0, 4) . �

Example 13.11 Find the radius of convergence and interval of convergence of the

power series
∞∑
n=0

xn

n!
.
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We use the ratio test:

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!

n!

xn

∣∣∣∣ = lim
n→∞

|x|
n+ 1

= 0. (449)

This is less than 1 for all x, so the power series converges for all x; “the radius of

convergence is R =∞ ” and the interval of convergence is (−∞,∞) . �

Example 13.12 (Problem 11.8.4) Find the radius of convergence and interval of

convergence of the power series
∞∑
n=1

(−1)nxn
3√n .

We use the ratio test:

lim
n→∞

∣∣∣∣(−1)n+1xn+1

3
√
n+ 1

3
√
n

(−1)nxn

∣∣∣∣ = lim
n→∞

3
√
n

3
√
n+ 1

|x| = |x| < 1 (450)

The radius of convergence is R = 1 . We deduce that the power series converges

for −1 < x < 1. We test x = −1:

∞∑
n=1

(−1)n(−1)n
3
√
n

=
∞∑
n=1

(−1)2n
3
√
n

=
∞∑
n=1

1

n
1
3

. (451)

This is a divergent p-series. We test x = 1:

∞∑
n=1

(−1)n1n
3
√
n

=
∞∑
n=1

(−1)n
3
√
n
. (452)

This is convergent, by the alternating series test. Therefore, the power series con-

verges only for −1 < x ≤ 1, and so the interval of convergence is (−1, 1] . �

Example 13.13 (Problem 11.8.6) Find the radius of convergence and interval of

convergence of the power series
∞∑
n=1

(−1)nxn
n2 .

We use the ratio test:

lim
n→∞

∣∣∣∣(−1)n+1xn+1

(n+ 1)2
n2

(−1)nxn

∣∣∣∣ = lim
n→∞

n2

n2 + 2n+ 1
|x| = |x| < 1. (453)

The radius of convergence is R = 1 . We deduce that the power series converges
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for −1 < x < 1. We test x = −1:

∞∑
n=1

(−1)n(−1)n

n2
=
∞∑
n=1

(−1)2n

n2
=
∞∑
n=1

1

n2
. (454)

This is a convergent p-series. We test x = 1:

∞∑
n=1

(−1)n1n

n2
=
∞∑
n=1

(−1)n

n2
. (455)

This converges by the alternating series test. Therefore, the power series converges

only for −1 ≤ x ≤ 1, and so the interval of convergence is [−1, 1] . �

Example 13.14 (Problem 11.8.20) Find the radius of convergence and interval of

convergence of the power series
∞∑
n=1

(2x−1)n
5n
√
n

.

We use the ratio test:

lim
n→∞

∣∣∣∣ (2x− 1)n+1

5n+1
√
n+ 1

5n
√
n

(2x− 1)n

∣∣∣∣ = lim
n→∞

√
n

5
√
n+ 1

|2x− 1| = 1

5
|2x− 1| < 1. (456)

This gives |2x − 1| < 5, so
∣∣x − 1

2

∣∣ < 5
2
, so the radius of convergence is R = 5

2
.

We deduce that the power series converges for −5
2
< x− 1

2
< 5

2
, or in other words,

−2 < x < 3.

We test x = −2:

∞∑
n=1

(2 (−2)− 1)n

5n
√
n

=
∞∑
n=1

(−5)n

5n
√
n

=
∞∑
n=1

(−1)n√
n
. (457)

This converges by the alternating series test. We test x = 3:

∞∑
n=1

2 (3)− 1n

5n
√
n

=
∞∑
n=1

5n

5n
√
n
=
∞∑
n=1

1

n
1
2

. (458)

This is a divergent p-series. Thus, the power series converges only for−2 ≤ x < 3,

and so the interval of convergence is [−2, 3) . �
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14 Monday, July 1

Section 11.9: Representations of functions as power series

Certain functions can be expressed as power series.

Recall that
∞∑
n=0

rn = 1
1−r for −1 < r < 1. Therefore,

1

1− x
=
∞∑
n=0

xn, (459)

whose interval of convergence is (−1, 1).

Example 14.1 (Problem 11.9.4) Find a power series representation of the function

f(x) = 5
1−4x2 and determine the interval of convergence.

We note that

5

1− 4x2
= 5

∞∑
n=0

(
4x2
)n

=
∞∑
n=0

5 (4n)x2n . (460)

As for the interval of convergence: the geometric series
∞∑
n=0

(4x2)
n converges if and

only if |4x2| < 1. This means that x2 < 1
4
, so −1

2
< x < 1

2
. The interval of

convergence is
(
−1

2
, 1
2

)
. �

Example 14.2 (Problem 11.9.8) Find a power series representation of the function

f(x) = x
2x2+1

and determine the interval of convergence.

We note that

x

2x2 + 1
= x

(
1

1− (−2x2)

)
= x

∞∑
n=0

(
−2x2

)n
=

∞∑
n=0

(−1)n2nx2n+1 . (461)

As for the interval of convergence: the geometric series
∞∑
n=0

(−2x2)n converges if

and only if | − 2x2| < 1, or in other words if x2 < 1
2
. Ergo, − 1√

2
< x < 1√

2
, so the
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interval of convergence is
(
− 1√

2
, 1√

2

)
. �

Theorem 14.3 Let f(x) =
∞∑
n=0

cn(x− a)n be a power series with a radius of con-

vergence R > 0. This function is differentiable on (a−R, a+R) and:

(i)

f ′(x) =
∞∑
n=0

ncn(x− a)n−1 (462)

with radius of convergence R.

(ii) �
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1
(463)

with radius of convergence R.

Example 14.4 Find a power series representation for f(x) = ln (1 + x) and its

radius of convergence.

We know that

f ′(x) =
1

1 + x
=

1

1− (−x)
=
∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn. (464)

This is convergent if and only if | − x| < 1, so |x| < 1 and thus the radius of

convergence is R = 1 . Further,

ln (1 + x) =

�
f ′(x) dx =

� ∞∑
n=0

(−1)nxn dx = C +
∞∑
n=0

(−1)n x
n+1

n+ 1
(465)

To find C, we substitute x = 0:

C = C +
∞∑
n=0

(−1)n 0n+1

n+ 1
= ln (1 + 0) = ln 1 = 0. (466)

Therefore,

ln (1 + x) =
∞∑
n=0

(−1)n xn+1

n+1
. (467)
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�

Example 14.5 Find a power series representation for f(x) = tan−1x and find its

radius of convergence.

We know that

f ′(x) =
1

1 + x2
=

1

1− (−x2)
=
∞∑
n=0

(
−x2

)n
= (−1)nx2n. (468)

This is convergent if and only if | − x2| < 1, so |x| < 1 and thus the radius of

convergence is R = 1 . Further,

tan−1x =

�
f ′(x) dx =

� ∞∑
n=0

(−1)nx2n dx = C +
∞∑
n=0

(−1)n x
2n+1

2n+ 1
. (469)

To find the value of C, we substitute x = 0:

C = C +
∞∑
n=0

(−1)n 02n+1

2n+ 1
= tan−10 = 0. (470)

Thus,

tan−1x =
∞∑
n=0

(−1)n x2n+1

2n+1
. (471)

�
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Section 11.10: Taylor and Maclaurin series

Definition 14.6 Let f be a function, and let a be a real number. The Taylor series

of f centered at x = a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n. (472)

The Maclaurin series of f is the Taylor series of f centered at x = 0:

∞∑
n=0

f (n)(0)

n!
xn. (473)

Theorem 14.7 If f has a power series representation about x = a, then f is equal

to its Taylor series about x = a.

Example 14.8 Find the Maclaurin series for f(x) = ex.

We note that for any positive integer n, f (n)(x) = ex. Therefore, f (n)(0) = 1.

Ergo, the Maclaurin series is

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

xn

n!
. (474)

�

Example 14.9 Find the Maclaurin series for f(x) = sinx.

We note that
f(x) = sinx f(0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sinx f ′′(0) = 0

f (3)(x) = − cosx f (3)(0) = −1
f (4)(x) = sinx f (4)(0) = 0

. (475)
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Ergo, the Maclaurin series is

x0

0!
f(0) +

x1

1!
f ′(0) +

x2

2!
f ′′(0) +

x3

3!
f (3)(0) +

x4

4!
f (4)(0) + ...

= 0 +
x1

1!
+ 0− x3

3!
+ 0 +

x5

5!
+ 0− x7

7!
+ 0 + ...

=
∞∑
n=0

(−1)n x2n+1

(2n+1)!
. (476)

�

Example 14.10 Let k be a real number. Find the Maclaurin series for the function

f(x) = (1 + x)k.

We note that

f(x) = (1 + x)k f(0) = 1

f ′(x) = k(1 + x)k−1 f ′(0) = k

f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k (k − 1)

f (3)(x) = k(k − 1)(k − 2)(1 + x)k−3 f (3)(0) = k(k − 1)(k − 2)
...

...

f (n)(x) = k(k − 1)(k − 2)...(k − n+ 1)(1 + x)k−n f (n) = k(k − 1)(k − 2)...(k − n+ 1)

.

(477)
Therefore, the Maclaurin series is

∞∑
n=0

xn

n!
f (n)(0) =

∞∑
n=0

k(k−1)(k−2)...(k−n+1)
n!

xn =
∞∑
n=0

(
k

n

)
xn. (478)

�

Example 14.11 (Problem 11.10.22) Find the Taylor series for f(x) = 1
x

centered

at a = −3.
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We note that
f(x) = x−1 f(a) = −1

3

f ′(x) = −x−2 f ′(a) = −1
9

f ′′(x) = 2x−3 f ′′(a) = − 2
27

f (3)(x) = −6x−4 f (3)(a) = − 6
81

...

f (n)(a) = − n!
3n+1

(479)

Thus, the Taylor series about a = −3 is

∞∑
n=0

(x− a)n

n!
f (n)(a) =

∞∑
n=0

− 1

n!

n!

3n+1
(x+ 3)n =

∞∑
n=0

− (x+3)n

3n+1 . (480)

�
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