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Abstract

Poly(A) binding protein I (PABPI) is a highly conserved eukaryotic protein that binds mRNA poly(A) tails and
functions in the regulation of translational efficiency and mRNA stability. As a first step in our investigation of the
role(s) of mRNA poly(A) tails in posttranscriptional gene regulation in Trypanosoma brucei, we have cloned the
cDNA encoding PABPI from this organism. The cDNA predicts a protein homologous to PABPI from other
organisms and displaying conserved features of these proteins, including four RNA binding domains that span the
N-terminal two-thirds of the protein. Comparison of northern blot data with the cDNA sequence indicates an
unusually long 3% untranslated region (UTR) of approximately three kilobases. The 5% UTR contains both A-rich and
AU repeat regions, the former being a ubiquitous property of PABPI 5’ UTRs. T. brucei PABPI, expressed as a
glutathione-S-transferase fusion protein, bound to RNA comprised of its full length 5% UTR in UV cross-linking
experiments. This suggests that PABPI may play an autoregulatory role in its own expression. Competition
experiments indicate that the A-rich region, but not the AU repeats, are involved in this binding. © 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In contrast to most eukaryotic organisms, gene
expression in trypanosomes is primarily con-
trolled by posttranscriptional events (for review
see Ref. [1]). Trypanosome genes are often unusu-
ally tightly spaced, both in the nucleus and mito-
chondrion, and few promoters have been
identified. Consistent with this observation, both
nuclear and mitochondrial genomes are tran-
scribed into long, polycistronic RNAs [2–7]. Nev-
ertheless, expression of genes that are
polycistronically transcribed is often differentially
regulated [2–6]. Levels at which gene expression
has been shown or suggested to be regulated in
trypanosomes include RNA processing (trans-
splicing and polyadenylation in the nucleus; edit-
ing, cleavage and polyadenylation in the
mitochondrion), RNA stability, nuclear export,
translational efficiency, and protein degradation.
For example, mRNA stability plays a role in the
stage-specific expression of both procyclin [8] and
variant surface glycoproteins (VSGs) [9]. In trans-
fection experiments, procyclin and VSG 3% un-
translated region (UTR) elements that positively
or negatively regulate reporter RNA half-life have
been identified [10–12]. Translational efficiency of
reporter constructs also is regulated by at least
two different procyclin 3% UTR elements [12,13].
Moreover, translational regulation has been im-
plicated for several trypanosome genes based on
discrepancies between mRNA and protein ratios
in bloodstream and procyclic forms. These in-
clude the developmentally regulated protein ki-
nase, NRK [14], and the 34/37 kDa nucleic acid
binding proteins [15]. While sequence elements
that confer increased or decreased RNA stability,
translational efficiency, or RNA processing to
reporter constructs have been identified, the pre-
cise mechanisms that govern these effects are not
currently understood.

One protein that has been demonstrated to play
a critical role in posttranscriptional regulation of
eukaryotic gene expression is the multi-functional
poly(A) binding protein I (PABPI; for reviews see
Refs [16,17]). PABPI binds mRNA poly(A) tails,
and is the most abundant RNA binding protein in
messenger ribonuclear protein particles. It is ubiq-

uitous among those eukaryotes which have been
examined, and is essential for yeast viability [18].
PABPI structure is highly conserved, consisting of
four RBD-type RNA binding domains [19] that
comprise the N-terminal two-thirds of the protein,
and a less well conserved C terminus [18]. One
generally accepted function of PABPI is the medi-
ation of poly(A)-dependent events in translation
initiation. Genetic and biochemical evidence sug-
gests a role for poly(A)-PABPI in both 60S ribo-
somal subunit joining [20,21] and 40S ribosomal
subunit addition [22,23]. Poly(A)-associated
PABPI has also been suggested to mediate the
poly(A) effect on translation via its recently dis-
covered interaction with the eIF-4G subunit of
the cap binding protein complex, eIF-4F, which
recruits the 40S ribosomal subunit to mRNA [24].
A second widespread function of PABPI is in the
regulation of mRNA degradation, although its
role in mammalian cells differs from that in yeast
(for review see Ref. [25]). It is thought that desta-
bilizing sequences present in mRNA 3% UTRs
stimulate deadenylation, which is a prerequisite
for mRNA degradation [26]. In cell-free extracts
of mammalian cells, PABPI protects transcripts
from degradation possibly by blocking nuclease
digestion of the poly(A) tail [27]. In contrast, in
yeast PABPI promotes mRNA degradation
through activation of a PABPI-dependent poly(A)
nuclease [28,29]. Most recently, PABPI has been
shown to associate with the yeast cleavage and
polyadenylation machinery, where it functions in
regulation of poly(A) tail length during the
polyadenylation reaction [30,31]. Finally, filter
binding [32] and UV cross-linking [33] experi-
ments have revealed binding of PABPI to its own
A-rich 5% UTR, suggesting the protein plays an
autoregulatory function in its own expression. In
support of this hypothesis, it has been shown that
recombinant PABPI represses translation of
PABPI mRNA in reticulocyte lysate [33].

In kinetoplastid parasites, mRNAs encoded in
both the nucleus and mitochondrion are
polyadenylated [34–36]. The machinery which
catalyzes polyadenylation in kinetoplastids has
not been identified. The function of polyadenyla-
tion in kinetoplastids is also unknown, and
poly(A) tail length has not been reported for most
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nuclearly encoded mRNAs. However, it was
noted that an increase in the size and hetero-
geneity of procyclin transcripts followed induc-
tion of Trypanosoma brucei to procyclic forms
[37]. This was suggested to be due to an increase
in poly(A) tail length, which might result in
increased translation of procyclin mRNA [37].
In kinetoplastid mitochondria, many RNAs
exhibit extreme size heterogeneity that has
been demonstrated to be a result of differential
poly(A) tail lengths [3,36,38,39]. Intriguingly,
in many cases, the edited status of an RNA is
correlated with the length of its poly(A) tail
[3,36,40] (K. Militello and L. Read, unpublished
data).

As a first step in our investigation of poly(A)
tail function in T. brucei, we have cloned the
cDNA encoding PABPI from this organism. The
predicted T. brucei PABPI protein is conserved
in structure compared with other PABPI pro-
teins. We find that the PABPI 5% UTR con-
tains both A-rich and AU repeat elements. Using
wild type and mutant 5% UTRs in UV cross-
linking competition experiments, we demon-
strate binding of PABPI protein to its own 5%
UTR and identify an element involved in this
binding.

2. Materials and methods

2.1. Cells and nucleic acids

Procyclic form T. brucei brucei strain EATRO
164 was grown as previously described [41]. Total
cellular RNA was isolated using the guanidinium
isothiocyanate–phenol–chloroform method of
Chomczynski and Sacchi [42]. Genomic DNA was
isolated as described by Carrington [43].

2.2. Oligonucleotides

The oligonucleotides used in this study are
shown below with restriction sites incorporated at
their 5% ends underlined:

ESL-22 GCGAATTCGCTATTATTAG
AACAGTTTCTG

GTAATACGACTCACTATAGT7
GGC
GTAATACGACTCACTATAGT7-SLS
GGGCTATTATTAGAACAGT
TTCTG
GACTCGAGTCGACATACGAXSC-(dT)17

TTTTTTTTTTTTTTTTT
GCGAATTCGG(T/C)PABPI-1
TA(T/C)GG(T/C)TA(T/C)
GT(G/A/T/C)AA(T/C)TT
GCGGATCCTTCTT(C/A)PABPI-2
AC(G/A)TA(G/C/A)
AG(G/A)TT(G/A/T/C)GT
GCGGATCCTCAAGCGCCTTPABPI-3
CTCAGCATC
CCATTACCGTGGAACGCTAPABPI-6
C
GCGGATCCCAT(G/A/T/C)PABPI-7
CC(G/A/T/C)GT(A/C)
ACCTT(A/T/C/G)GC

PABPI-8 GCGAATTCTACATTGTAC
GAAACAATCCC
GTATACAAGTACCTTGTTCPABPI-14
TC

PABPI-15 AGTTTAT-
TAAAAATATAAACCAGG

PABPI-17 GTATCCAGTGCCACTTAG
PABPI-18 AGAGGCTGGACAAAGAC

ACGAAACAATCCCTCCTTCPABPI-19
G

PABPI-d2 GATTTCTCTGGTTGTTCC
PABPI-5% exp1 GCGGATCCATGGCTGCATT

TGCTGCTGCG
PABPI-3% exp2 ACGCGTCGACTACATGCCA

ATGTGACGGTTG

2.3. Cloning of PABPI cDNA

Fig. 1 shows the positions and orientations of
oligonucleotides used in PABPI cDNA cloning.
Initially, an internal fragment of the T. brucei
PABPI cDNA was amplified by nested PCR. The
first reaction used XSC-(dT)17-primed procyclic
form cDNA as a template and oligonucleotides
ESL-22 and PABPI-2. Five ml of this reaction was
then used as a template for amplification with
PABPI-1 and PABPI-2, and the product was di-
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gested and ligated into the EcoRI/BamHI site of
pBluescript II SK− . Based on the sequence of
this fragment, oligonucleotide PABPI-3 was de-
signed and used in conjunction with ESL-22 to
amplify the 5% portion of the cDNA using PABPI-
2-primed cDNA as template, and the product was
cloned as described above. A large portion of the
3% end of the cDNA was amplified from XSC-
(dT)17-primed cDNA using PABPI-6 and PABPI-
7 oligonucleotides, and the product filled and
phosphorylated as described [44], and ligated into
the EcoRV site of pBluescript II SK− . The
extreme 3% end of the cDNA was obtained by
nested inverse PCR using a mass excised lZAPII
procyclic form cDNA library as template [45].
The first PCR was done using oligonucleotides
PABPI-3 and PABPI-8. Five ml of this reaction
was then used as a template for amplification with
PABPI-19 and T7 oligonucleotides, and the
product of this reaction was filled and phosphory-
lated [44] and cloned into the EcoRV site of
pBluescript II SK− .

For each PCR reaction, two clones were se-
quenced in both directions. DNA sequencing was
performed by Taq cycle sequencing using an ABI
automated sequencer at the SUNY Buffalo
CAMBI nucleic acids facility. Sequences were an-
alyzed using the GCG software package [46] and
sequence comparisons were done with CLUSTAL
W [47].

2.4. Gel electrophoresis and hybridizations

For the northern hybridization, 10 mg of total
procyclic form RNA was electrophoresed on a
1.5% formaldehyde-agarose gel and transferred to
Nytran by capillary action. A radiolabeled RNA
probe was synthesized using T3 RNA polymerase
from an EcoRI-digested clone which was gener-
ated using oligonucleotides PABPI-1 and PABPI-
2 (see above). The resulting riboprobe is
complementary to 418 nucleotides of coding se-
quence near the 5% end of the open reading frame.
Filters were prehybridized, hybridized and washed
as previously described [48] except that the prehy-
bridization and hybridization temperatures were
65°C.

For Southern hybridization, 3.5 mg of genomic
DNA was digested with XhoI, EcoRI, EcoRV, or
DraI, electrophoresed on a 1.5% agarose gel, de-
natured, and transferred to Nytran by capillary
action. A radiolabeled RNA probe was generated
from the same template used for the northern blot
except that the template was digested with BamHI
and transcribed with T7 polymerase using the
Ambion Strip-EZ™ T7 kit. Prehybridization and
hybridization conditions were identical to those
used for the northern blot.

2.5. Bacterial expression of GST-PABPI

The full length PABPI open reading frame was
amplified by PCR from procyclic form T. brucei
XSC-(dT)17-primed cDNA using oligonucleotides
PABPI-5% exp1 and PABPI-3% exp2. The PCR
product was digested and ligated into the BamHI/
SalI site of pGEX-4T1 in frame with the glu-
tathione-S-transferase (GST) gene, and the
ligation products transformed into Escherichia
coli DH5a competent cells. Expression was in-
duced and fusion protein was purified as de-
scribed [49], except that 0.3 mM
isopropyl-1-thio-B-D-galactopyranoside (IPTG)
was used. GST protein, used as a negative control
in UV cross-linking experiments, was generously
provided by Arvind Thakur and Phil LoVerde.

2.6. Creation of substrates for UV cross-linking

Clone TbPABPI-5%-2, derived from the amplifi-
cation described above using ESL-22 and PABPI-
3 and containing the entire 5% UTR and a small
region of coding sequence, was used as a template
for creation of substrates for UV cross-linking
assays. Template for transcription of full length 5%
UTR RNA was generated by PCR amplification
of clone TbPABPI-5%-2 with oligonucleotides T7-
SLS and PABPI-d2. Template for transcription of
dA RNA, which lacks 77 nucleotides of A-rich
sequence near the 5% end of the 5% UTR, was
generated by inverse PCR of clone TbPABPI-5%-2
with oligonucleotides PABPI-17 and PABPI-18.
The resulting PCR product was filled and phos-
phorylated [44] and circularized with T4 DNA
ligase. This plasmid was then PCR amplified with
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Fig. 1. cDNA and deduced amino acid sequences of the T. brucei PABPI. Positions and orientations of oligonucleotides used to
amplify portions of the PABPI cDNA are indicated by underlining and arrows. Double underlining denotes a region of overlap
between the PABPI-8 and PABPI-19 oligonucleotides. The portion of the spliced leader sequence present in cDNA clones is
italicized. A 76 nt A-rich stretch near the 5% end of the 5% UTR and two AT repeat regions near the 3% end of the 5% UTR are shaded.
Deduced amino acid sequences in agreement with the three tryptic peptide sequences of a previously reported T. brucei poly(A)
binding protein ([58]; see text) are underlined.

oligonucleotides T7-SLS and PABPI-d2 to
provide the transcription template. Template for
transcription of dAU RNA, which lacks 51 nucle-
otides of primarily AU repeats, was generated by
an identical strategy as the dA template, except

that the inverse PCR was done with oligonucle-
otides PABPI-14 and PABPI-15. RNAs were
transcribed with T7 polymerase, and radiolabeled
RNAs were internally labeled by incorporation of
[a32P]UTP.
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2.7. UV cross-linking assays

UV cross-linking assays were carried out in a
volume of 15 ml containing 750 fmols of GST-
PABPI, 7.5 fmols radiolabeled wild type 5% UTR
RNA, 10 mM magnesium acetate, 80 mM potas-
sium chloride, and 100 mM Tris (pH 8.5). Com-
petition reactions contained 10-, 50-, 100-, or
500-fold molar excess unlabeled wild type, dA, or
dAU 5% UTR RNA. UV cross-linking was carried
out as previously described [50].

3. Results and discussion

Degenerate primers (PABPI-1 and -2) corre-
sponding to conserved PABPI amino acid se-
quences were designed with a bias toward the T.
cruzi sequence [51] and used in a nested PCR
amplification of T. brucei procyclic form cDNA
as outlined in Materials and methods (Fig. 1). A
primer based on the resulting sequence (PABPI-6)
was then used in conjunction with a third degen-
erate primer (PABPI-7) to amplify a large portion
of the open reading frame. Finally, additional
primers based on the sequences of the previously
generated PCR products were used to amplify the
extreme 5% and 3% regions of the cDNA. The 5%
region was amplified from procyclic form cDNA
by RACE with oligonucleotide PABPI-3 and an
oligonucleotide containing spliced leader RNA
sequence, and the 3% region was amplified from an
in vivo-excised lZAP II cDNA library by nested
inverse PCR [45] using oligonucleotides PABPI-3
and PABPI-8 in the first round and PABPI-19
and T7 in the second round.

The full length cDNA (Fig. 1) encodes an open
reading frame of 1665 nt. The 5% UTR, exclusive
of the spliced leader sequence, differs between the
two clones sequenced, measuring either 275 or 279
nt. All PABPI mRNAs described to date contain
50-70 nt A-rich regions in their 5% UTRs [32,51–
55]. Likewise, the T. brucei PABPI mRNA con-
tains a 76 nt region consisting of 70% A residues
near its 5% end (shaded in Fig. 1). An AT repeat
region comprised of two stretches of AT repeats
(shaded in Fig. 1), one of 14 nts and one of 18 or
22 nts (depending on the clone), is present near

the 3% end of the 5% UTR. The 5% UTR of T. brucei
PABPI is similar to that of T. cruzi PABPI cDNA
[51] in that both contain a A-rich region; however,
AT repeats were not identified in T. cruzi. Since
the entire 5% UTR of the T. cruzi sequence was not
obtained, AT repeats may be present upstream of
the region sequenced. Nevertheless, the T. brucei
and T. cruzi PABPI 5% UTRs differ in organiza-
tion since in T. brucei the AT repeats are down-
stream of the major A-rich region.

The 3% UTRs of both T. brucei clones measure
388 nt. However, northern blot analysis of T.
brucei procyclic form RNA reveals one PABPI
mRNA species of :5 kb (data not shown). Since
our 5% sequence includes the spliced leader, to-
gether these data indicate that the 3% UTR is over
3 kb, significantly longer than the length deduced
from the cDNA sequence. Thus, the cDNA was
likely primed at an internal A-rich stretch in the 3%
UTR. Similar results were obtained in T. cruzi ;
however, in this case it could not be confirmed
that the discrepancy in length was due to the 3%
UTR since the complete 5% UTR was not obtained
[51]. Unusually long 3% UTRs of :1.5 kb have
also been reported for human and Drosophila
PABPI mRNAs [53]. The significance of such
long PABPI 3% UTRs is unknown, but they are
presumably involved in posttranscriptional regu-
lation of gene expression. Their presence in an
mRNA encoding an RNA binding protein sug-
gests autoregulation via 3% UTR binding, but this
remains to be experimentally tested.

The deduced amino acid sequence of T. brucei
PABPI is 555 amino acids in length (Figs. 1 and
2) with a calculated molecular mass of 62.2 kDa
and isoelectric point of 10.1. This size agrees with
that of PABPI proteins from other organisms
which have been reported to be 62–73 kDa
[32,51–55]. The predicted protein is 86.4% identi-
cal and 88.7% similar to the T. cruzi PABPI. The
C-terminal one-third is the most divergent region
between these two species, and contains a five
amino acid insert in T. brucei relative to T. cruzi
(Fig. 2). Outside of the Kinetoplastida, the T.
brucei PABPI sequence is most homologous to the
Caenorhabditis elegans PABPI (40.6% identity and
50.3% similarity). Homologies to other PABPIs
range from 32.0–38.9% identity and 41.3–48.5%
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similarity. The predicted T. brucei protein con-
tains amino acid motifs common to all PABPI
proteins (Fig. 2; [32,51–55]). For example, the
N-terminal two-thirds of the protein comprises
four RNA binding domains (RBDs; [19]), each
containing an RNP-1 and an RNP-2 element
(shaded in Fig. 2). The most N-terminal RNP-1
motif is the most highly conserved of all the
motifs. This RNP-1 motif may be critical for
poly(A) binding since the two N-terminal RBDs
have been shown to be essential for this activity
[18]. The C-terminal third of the protein is not
highly conserved between species. However, like
PABPI proteins from other species, a portion of
the C-terminal region of the T. brucei protein is
proline-rich (amino acids 383–474; 23% proline).
In addition, an 11 amino acid sequence near the
extreme C terminus is well-conserved among all
species (boxed in Fig. 2). Interestingly, a similar
sequence has been identified in the HTLV-I envel-
ope protein gene [56] and a 100 kDa rat protein
structurally related to the U1 snRNP 70 kDa
protein and possibly involved in sexual matura-
tion [57]. While the function of this motif is
unknown and it is has been shown to be dispens-
able for binding of PABP1 to poly(A) [18], its
conservation suggests it plays an important role.

Purification of a 65 kDa poly(A) binding
protein from T. brucei by affinity chromatography
on single stranded DNA-agarose and poly(A)-
Sepharose has previously been reported [58].
Three peptide sequences were obtained from a
tryptic digest of this protein. The protein was
presumed to be PABPI based on the sequence
conservation of these peptides, the strong affinity
and specificity of the protein for poly(A), and the
protein degradation pattern [58]. Since the PABPI
cDNA described here predicts a protein of 62.2
kDa containing exact matches to all three of the
previously reported peptide sequences (Fig. 1), the
data indicate that we have obtained the cDNA
sequence encoding the previously described 65
kDa T. brucei poly(A) binding protein.

Southern blot analysis was carried out on ge-
nomic DNA which had been digested with XhoI,
EcoRV, EcoRI, or DraI (data not shown). A
XhoI restriction site is present in the PABPI open
reading frame, while no sites for the other en-

zymes are present in the cDNAs sequenced. When
probed with a radiolabeled fragment correspond-
ing to sequence upstream of the XhoI site, two
bands are observed in the XhoI digest, and one
band is observed in all other lanes, indicating the
presence of two copies of the PABPI gene as was
observed in T. cruzi [51].

The full length PABPI open reading frame was
cloned into pGEX-4T1 in-frame with GST. The
recombinant plasmid was transformed into E.
coli, and fusion protein expression induced with
IPTG (Fig. 3). Affinity purification of GST-
PABPI fusion protein on glutathione-Sepharose
revealed a major protein of :91 kDa, the ex-
pected size based on the reported apparent molec-
ular mass of T. brucei PABPI (65 kDa; [58]) plus
the added 26 kDa of GST. Several smaller minor
bands were also observed. These presumably rep-
resent GST-PABPI degradation products, since
similar, discrete degradation products were ob-
served during the purification of PABPI from
both T. brucei and T. cruzi [51,58]. The minor
species we observe at apparent molecular masses
of 75 and 61 kDa correspond in size to the major
breakdown products reported for the kinetoplas-
tid proteins, taking into account the added size of
the GST moiety. In addition, we observed binding
of A-rich RNA to both the full size and 75 kDa
protein (see below), indicating that the smaller
protein contains PABPI sequence. This is consis-
tent with the results of Pitula et al. [58], who
reported that the largest T. brucei PABPI break-
down product retains the capacity to bind
poly(A).

We next wanted to investigate the RNA bind-
ing properties of the GST-PABPI fusion protein.
PABPI proteins from yeast [32] and humans [33]
have been shown to bind the 5% UTRs of their
own mRNAs, presumably through interaction
with A-rich stretches present in these RNAs.
Binding affinity to 5% UTR RNA is comparable
with that observed for poly(A) [32]. Such binding
may form an autoregulatory loop, and one study
showed that in in vitro translation reactions addi-
tion of recombinant PABPI protein repressed
translation of PABPI mRNA [33]. Like all re-
ported PABPI mRNAs, the 5% UTR of the T.
brucei mRNA contains an A-rich stretch (Fig.
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Fig. 2. Sequence comparison of PABPI proteins. PABPI amino acid sequences from T. brucei (Tb; GenBank accession number
AF042190), T. cruzi (Tc; U06070), Caenorhabditis elegans (Ce; U24123), Xenopus lae6is (Xl; X57483), Saccharomyces cere6isiae (Sc;
P04147), Homo sapiens (Hs; U33818), and Arabidopsis thaliana (At; Q05196) were aligned using CLUSTAL W. * Indicates identical
amino acids, : indicates conserved substitutions, and . indicates semi-conserved substitutions. RNP-1 (8-mer) and RNP-2 (6-mer)
motifs are shaded. A conserved 11 amino acid motif in the C termini of all PABPI proteins and present in two non-PABPI proteins
([56,57]; see text) is boxed.

4(A)). Also present in this region are two closely
spaced sets of AU repeats (Fig. 4(A)), and we
thought it possible that the T. brucei PABPI
might show affinity for AU-rich RNAs, since
poly(A) tails of mitochondrial RNAs in kineto-
plastids frequently contain substantial numbers of
U residues [3,40,59–61]. In order to determine
whether the T. brucei PABPI binds to its own 5%
UTR, we carried out UV cross-linking experi-

ments. The wild type 5% UTR RNA used in these
experiments contained 311 nts comprising exclu-
sively the PABPI 5% UTR sequence, including the
majority of the spliced leader sequence (Fig.
4(A)). Both the 91 kDa GST-PABPI protein and
the 75 kDa breakdown product exhibited binding
to radiolabeled wild type 5% UTR RNA (Fig. 4(B),
lane N). No binding was observed to GST alone
(data not shown). To determine if the A-rich or
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AU repeat regions of the 5% UTR were involved in
this binding, two deletion mutants were con-
structed. dA RNA harbored a deletion of 77 nts
spanning the A-rich region, and dAU RNA har-
bored a deletion of 52 nts encompassing the AU
repeats (Fig. 4(A)). Unlabeled wild type, dA, and
dAU RNAs were then used in UV cross-linking
competition experiments. GST-PABPI binding to
radiolabled wild type 5% UTR was significantly
competed in the presence 10-fold excess unlabeled
wild type 5% UTR RNA, and was abolished by a
100-fold excess of this RNA (Fig. 4(B), WT).
Deletion of the AU repeat region had no effect on
the ability to compete for binding of wild type 5%
UTR RNA to GST-PABPI (Fig. 4(B), compare
WT with dAU). Indeed, the 5% UTR RNA lacking
AU repeats appeared to show a slightly increased

affinity for GST-PABPI compared with wild type.
In contrast, 5% UTR RNA from which the A-rich
region had been deleted showed dramatically re-
duced ability to bind GST-PABPI (Fig. 4(B), dA).
Almost no competition was observed in the pres-
ence of a 10-fold excess unlabeled dA RNA, and
significant binding of wild type 5% UTR RNA was
observed even in the presence of 500-fold excess
of dA RNA. These studies indicate that the T.
brucei PABPI is capable of binding to the 5% UTR
of its own mRNA through an A-rich region near
its 5% end. The inability to bind to AU repeats
suggests that the RNA binding properties of the
T. brucei protein may be similar to that of PABPI
proteins from Xenopus [62] and humans [63],
which require a stretch of four or five consecutive
adenine residues for binding. One such adenine
stretch is apparently not sufficient for binding of
T. brucei PABPI, however, since the dA mutant
RNA contains a stretch of five consecutive adeni-
nes near its 3% end, and yet is not efficiently
bound. The position of adenine stretches within
the RNA may also be important for PABPI bind-
ing to short A-rich regions since ‘winners’ from in
vitro selection experiments with PABPI generally
contain the adenine stretches near their 5% ends
[62,63].

Isolation of the cDNA encoding the T. brucei
PABPI homolog will enable future genetic and
biochemical studies regarding the function(s) of
this protein in trypanosomes. It is almost certain
that some of these functions will be mediated by
mRNA 3% poly(A) tails. In addition, our demon-
stration that T. brucei PABPI can bind to the
PABPI mRNA 5% UTR suggests that this protein
may regulate the stability and/or translation of its
own RNA via 5% UTR binding. Expression of
other RNAs bearing A-rich 5% UTRs could also
potentially be affected, either positively or nega-
tively, by PABPI-5% UTR interactions. In vitro
translation experiments demonstrated that
PABPI-mediated translation repression was not
restricted to PABPI mRNA [33]. Addition of a
portion of human PABPI 5% UTR or an A poly-
mer to the 5% end of a control RNA also resulted
in repression of that RNA’s translation [33].
Moreover, PABPI has recently been shown to act
via 5% UTR binding as a message-specific transla-

Fig. 3. Bacterial expression of GST-PABPI fusion protein. E.
coli cells harboring the pGEX-4T1 plasmid with the T. brucei
PABPI gene in-frame with the GST gene were treated with
IPTG to induce fusion protein expression, and GST-PABPI
fusion protein was affinity purified on glutathione-Sepharose
4B. Fusion protein production and purification was assessed
by SDS-PAGE and Coomassie Brilliant Blue staining. Lysate
of uninduced cells (U), lysate of IPTG-induced cells (I), and
purified GST-PABPI (G). Arrow indicates the position of the
91 kDa GST-PABPI fusion protein. Size standards are shown
on the left.
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Fig. 4. Binding of GST-PABPI to PABPI 5% UTR sequences. (A) RNAs used in UV cross-linking assays. Shown is the complete T.
brucei PABPI 5% UTR sequence including the portion of the spliced leader sequence present in these constructs (italics). The
sequences of the oligonucleotides used to generate transcription templates are indicated by underlining, and their names and
orientations shown above their sequences. The sequence shown here represents the wild type (WT) 5% UTR RNA. The A-rich and
AU repeat regions which were deleted in dA and dAU RNAs, respectively, are indicated by shading and overlining. (B) UV
cross-linking competition experiments. Bacterially expressed GST-PABPI fusion protein was UV cross-linked to radiolabeled WT 5%
UTR in the presence of no competitor (N), or 10-, 50-, 100-, or 500-fold excess unlabeled RNA. Positions of size standards are
shown on the left.

tional activator in Chlamydomonas chloroplasts
[64]. Given the importance of posttranscriptional
gene regulation in trypanosomatids, it is likely
that PABPI will play a key role in the regula-
tion of gene expression in these organisms.
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