Music for Flute \& ISPW
 (IRCAM Signal Processing Workstation)

by Cort Lippe

1994

$$
\begin{array}{ll}
\text { Commissioned by } & \begin{array}{l}
\text { François Bru and the French Section of the } \\
\text { International Society of Music Educators }
\end{array}
\end{array}
$$

Cort Lippe

Program Notes

Music for Flute and ISPW (IRCAM Signal Processing Workstation) (1994) was commissioned by the French flutist François Bru and the French Section of the International Society of Music Educators, realized at IRCAM in Paris, and premiered in Tampa, Florida at the 1994 International Symposium of Music Educators. The electronic part was created using the IRCAM Signal Processing Workstation, (a real-time digital signal processor), and the program Max which was developed by Miller Puckette, whose technical support, along with Zack Settel's musical advice, helped make this piece possible.

Technically, the flute pitches are tracked by the computer as the performer plays. This pitch information is sent to a "score follower", which allows the computer to follow the player's performance by comparing it to a copy of the score which is stored in the computer. At specific points designated in the score, electronic events are triggered by the score follower. The computer also tracks other parameters of the flute, such as amplitude, continuous pitch change, rests, articulation, timbre, tempi, etc., and uses this information to trigger specific electronic events, and to continuously control all the sounds (that is to say, the digital synthesis algorithms running in the computer). In this way, the player triggers and controls the computer output of this piece during performance.

Some of the sounds in the electronic part come directly from the composed flute part, and are transformed by the computer in real time during the piece. Thus, in certain cases, the musical and sound material for the instrumental and electronic parts are one and the same. Sound material other than the flute is often manipulated via time-stretching and granular sampling. Cross synthesis, and other more standard signal processing such as harmonizing, frequency shifting, phasing, spatialization, etc. are also employed. The instrument/machine relationship moves constantly on a continuum between the poles of an "extended" solo and a duo. Thus, musically, the computer part is sometimes not separate from the flute part, but serves rather to "amplify" the flute in many dimensions and directions; while at the other extreme of the continuum, the computer part has its own independent musical function.

This piece is influenced by and dedicated to the people and the extraordinary musical cultures of Burundi and Rwanda, which I hope will survive present conflicts.
Duration: 14 minutes.

Performance Notes

al niente, dal niente
trill or tremolo with the note(s) in parenthesis (if the notes inside and outside of the parenthesis are identical then trill with the same note using two different fingerings)
quarter-tone above or below, oscillate between $1 / 4$ tone higher and lower (approximate), following the graphic description of widening or narrowing range
accelerando note-group, ritardando note-group, play note-group without precise respect for the notated rhythm
strongest $s f z$ note-release possible
tongue-ram
air-current noise only slightly pitched, pitched air-current noise
percussive key slap on indicated pitch, percussive key slap and normale played note simultaneously
tongue pizzicato, tonguc pizzicato plus percussive key slap
overblow the octave (or even more depending on context)
multiphonic sound based on the notated pitch. Multiphonics should be chosen by the player based on the notated pitch under the multiphonic sign. The strength of a multiphonic's spectral content is specified by the darkness of the rectangle above the note, thus: a clear rectangle indicates no multiphonic, half-filled is medium strength, and a completely filled-in rectangle indicates a multiphonic with maximum strength. The arrows indicate moving smoothly to and from a multiphonic while holding the notated pitch.
whisper (unvoiced) the notated syllables into the flute while fingering the notated pitch, voiced whisper into the flute while fingering the notated pitch, combine unvoiced and voiced whispering freely
sing indicated pitch while playing

double tongue, flutter-tongue

electronic event number

- page 1-

(8)

(4)

-page 3-

-page 4-

(11)

(6) accel. poco
(7) (a tempo)
(8) accel. molto

(3)

fff

(12) $\operatorname{loc} \sigma$

non (non a tempo)
accel nolto ${ }_{\text {toco }}^{\text {ton }}$

$\rightarrow \xrightarrow{8} \square$

$m f$

fff
sempre Cres. \rightarrow
(breathe when necessary)

(19)
(20)

decres. poca a poco...

(2) (a tempo) poco stac. \rightarrow

(5) accel paco à poco \rightarrow

(6)(poco stacc.et a tempo)

(1) (pow stacc.)

