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Abstract

Discrimination of above-ground objects from terrain has proven to be surprisingly difficult to automate in computers, especially
for large areas of varied terrain characteristics. Several methods have been developed for filtering the LiDAR data, of which three
approaches are more prevalent: linear prediction, slope based and morphological filtering. A common ground to all these
approaches is that the range of scales at which feature variations exist tends to be smaller than the range of scales at which terrain
variations exist. In this paper, a model-based approach is described in which multiscale gradient of the surface variation is
computed and used to adaptively erode the gridded LiDAR data within a multi-resolution, analysis–synthesis framework, namely
the multiscale Hermite transform (MHT). The method was tested over nineteen datasets, including urban and forest areas. An
average coefficient of agreement was computed over all datasets and compared with that obtained from other methods. Results
showed that the proposed method was within the top three among nine methods tested.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

High-spatial resolution digital terrain models (DTM)
are of prime importance for many forestry and urban
applications, including flood control, road design, forest
management, as well as urban planning and manage-
ment. Airborne Light Detection and Ranging (LiDAR)
is now a widely used technology for the high-spatial
resolution measurement of the earth surface. LiDAR
systems deliver dense sets of three-dimensional points
of ground elevation plus the height of above-ground
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features such as buildings, trees and cars. The terrain
surface is generated through the interpolation of ground
points (see e.g. Lloyd and Atkinson, 2002). Before the
interpolation process can be run, non-ground points
need to be eliminated from the entire LiDAR data, a
process referred to as filtering (Kraus and Pfeifer, 1998;
Lohmann et al., 2000; Vosselman, 2000).

The surface elevation data (z) delivered by the
LiDAR system can be seen as a superposition of three
components, namely terrain elevation (t), above-ground
feature height (f) and error term (e). Otherwise stated,

z ¼ t þ f þ e ð1Þ
where e accounts for vertical errors that may be due to
several factors (e.g., measurement deviations due to
instrument calibration, quantization errors due to finite-
precision processing and/or storage, etc.). Thus, the
etry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.
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Table 1
Characteristics of the study sites used in the ISPRS test

Site Cell
size

Ref.
data

Characteristics

CSite1 1 m samp11 Steep slopes, mixture of vegetation and
buildings on hillside, buildings on hillside,
data gaps

1 m samp12
2 m ⁎red1
4 m ⁎red2

CSite2 1 m samp21 Large buildings, irregularly shaped
buildings, road with bridge and small
tunnel, data gaps

1 m samp22
1 m samp23
1 m samp24

CSite3 1 m samp31 Densely packed buildings with vegetation
between them, building with eccentric roof
left (bottom corner), open space with
mixture of low and high features, gaps

CSite4 1 m samp41 Railway station with trains (low density of
terrain points), data gaps1 m samp42

FSite5 2 m samp51 Steep slopes with vegetation, quarry,
vegetation on river bank, gaps2 m samp52

2 m samp53
2 m samp54

FSite6 2 m samp61 Large buildings, road with embankment,
gaps

FSite7 2 m samp71 Bridge, underpass, road with embankments,
gaps

The study site FSite8 is not included here. Names starting with ‘C’
correspond to urban regions, while names starting with ‘F’ correspond
to rural regions.
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filtering problem of LiDAR data implies its disaggre-
gation on the above components. Evidently, even in the
case of a negligible error component, the problem is ill-
conditioned as there are more unknown variables than
equations. Therefore, no unique solution exists, and dif-
ferent solutions will differ in the way unknown variables
are further constrained. The general guidance for building
good constraints should be that the different components
have essentially different spatial structures. While dis-
crimination of objects with slightly different spatial
structures embedded in the LiDAR data is more or less
easily carried out by human beings, it has proven to be
surprisingly difficult to automate in computers. Therefore,
developing efficient and effective methods for terrain
filtering is currently an active topic of research.

In the past, several methods have been developed for
filtering the LiDAR data within which linear prediction
(Kraus and Pfeifer, 1998), slope/height-difference (Rog-
gero, 2001; Shan and Sampath, 2005; Sithole, 2001;
Vosselman, 2000) and morphologic filters (Kilian et al.,
1996; Zhang et al., 2003) rank among the most popular
approaches. A common ground to all these approaches is
that the range of scales at which feature variations exist
tend to be smaller than the range of scales at which
terrain variations exist; however, explicit scale estima-
tion has not been considered yet in the filtering problem.

In this work, we investigate how the scale–space
theory (Witkin, 1984) — widely used in the fields of
digital image processing and computer vision — can be
tailored to extract the terrain profile from the LiDAR data.
The scale–space theory was first introduced as a
generalization of existing notions of Gaussian pyramids
(Burt and Adelson, 1983). Moreover, it has been shown
that both the scale–space representation and the Gaussian
pyramid are embedded in the so-calledmultiscaleHermite
transform (MHT) (Silván-Cárdenas and Escalante-
Ramírez, 2006). The MHT provides a well-founded
way of relating spatial structures across different scales
and provides a rich representation of a signal in terms of
local derivatives. It also shares several properties with the
wavelet theory, a mathematical tool that has deserved the
consideration of scientists inmany fields, even for LiDAR
segmentation (Thuy and Tokunaga, 2001, 2004).

The content of this paper is organized in five sec-
tions. In Section 2, we describe the data used and its
preparation for testing the proposed method. In Section 3,
we first introduce the MHT theory and its relation to the
well-known scale–space theory for signal processing.
Then, we present a surface model used to infer the
relation of terrain elevations with measured surface
elevations. We also define a multiscale erosion operator
in the MHT domain. Finally, we describe a semiauto-
matic MHT-based filtering method. The method was
tested over nineteen datasets, including urban and forest
areas from data sets acquired. The results and conclu-
sions are presented in Sections 4 and 5, respectively.

2. Data used

2.1. Data source

The International Society for Photogrammetry and
Remote Sensing (ISPRS) Commission III/WG3 has
tested a number of algorithms developed in the past
(Sithole and Vosselman, 2003; Vosselman, 2002). The
results of the test, as well as the data used, have been
made available through the society's web site (www.
commission3.isprs.org/wg3/). For this research, nine-
teen datasets over urban and forest areas, as well as their
respective reference (ground-truth) data, were acquired
from the ISPRS web site. The data was captured by an
Optech ALTM scanner, and both first and last returns are
available. These datasets are located along eight study
sites over the Vaihingen test field and Stuttgart city
center. The study cites have varied terrain characteristics
and diverse feature content (e.g., open fields, vegetation,
buildings, road, railroads, rivers, bridges, power lines,
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water surface, among others). The sites represent four
regions with urban characteristics and four regions with
rural characteristics as described by Sithole and Vossel-
man (2003). These are listed in Table 1. The study site
FSite8 was not used in this research because no ground-
truth data was available.

2.2. Data preparation

The original point cloud, as well as the reference
terrain points, were interpolated to a grid. Prior to inter-
polation, outliers were removed following two steps. In
the first step, the elevation histogram was examined and
elevation thresholds were set up to eliminate the lowest
and highest tails from the distribution. Remaining outiers
were searched using the minimum height difference of
each point with respect to all its neighbors. A Delaunay
triangulation was used to define the neighbors of each
point. Points that were too high or too low, with respect
to their neighbors, were removed from the dataset. The
remaining points were then gridded within a 1- 2- or 4-
meter resolution grid using the nearest-neighbor rule.
The spatial resolution was set up based upon the point
spacing of each dataset (Table 1). In addition, a gap mask
was built. Each cell having its nearest point at a distance
greater than twice the cell size was defined as a gap cell.
Although gaps were filled with the nearest-neighbor
interpolation, they were not taken into account for the
accuracy assessment.

3. Methodology

3.1. The multiscale Hermite transform

The implementation of the MHT is based on the
single-scale Hermite transform, whereas the single-scale
transform decomposes a signal into a set of decimated
(i.e., filtered and sub-sampled) versions of the original
signal. For the purpose of this research, the signal is a
rectangular grid of elevation values measured by the
LiDAR sensor and is referenced in a two-dimensional
space, z(x, y). The signal is analyzed by convolution
with a bank of Gaussian derivative filters.1 Here, we
summarize the theory for two-dimensional discrete
signals and refer the reader to the original for more
details concerning the decomposition of continuous
signals (see Silván-Cárdenas and Escalante-Ramírez,
2006, and reference cited therein).
1 Here, the term filtering is used in the context of signal processing:
the application of an operator (filter) that removes frequency
components from the signal.
Let z(x, y) denote a two-dimensional discrete signal
defined on grid G. The discrete Hermite transform
decomposes the signal as

zðx; yÞ ¼
XN
n;m¼0

X
p;q

zn;mðp; qÞb⁎n ð2p−xÞb
⁎
mð2q−yÞ ð2Þ

with the coefficient of the expansion given by

zn;mðp; qÞ ¼
X

ðx;yÞaG
zðx; yÞbnðx−2pÞbmðy−2qÞ ð3Þ

for n,m=0,…,N, where

bnðxÞ ¼ 2−N
ffiffiffiffiffiffiffi
Cn
N

p Xn
j¼0

ð−1Þn−jCj
nC

xþN=2þj−n
N−n ð4Þ

and bn⁎(x)=2bn(−x)= (−1)n2bn(x), for x=−N/2, …, N/2
and n=0, …, N, are the analysis and synthesis functions,
respectively. These functions are normalized finite
differences of binomial kernels (where, Cn

m=n!/(n−m)!
m!, for m=0, …, n, denotes the binomial coefficients).
Table 2 shows the values obtained for the finite
differences (i.e, the sum term of Eq. (4)) and its norm
(i.e., the inverse of the remaining factor), for N=6 and
N=8, respectively. These sequences are hereafter
referred to as binomial filters.

The binomial filters are discrete approximations of
the Gaussian-derivative filters. More specifically, bn(x)
tends to gnðx=

ffiffiffiffiffiffiffiffiffi
N=2

p Þ= ffiffiffiffiffiffiffiffiffi
N=2

p
as N goes to infinite,

where

gnðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
�2nn!

p dn

dxn
e−x

2
: ð5Þ

Thus, the coefficient zn,m approximates the normalized
partial derivative of order n with respect to x and order m
with respect to y, of the Gaussian-smoothed version of z at
each sampling site, where the standard deviation

ffiffiffiffiffiffiffiffiffi
N=4

p
of theGaussian function determines the degree of smooth-
ness. Thus, z0,0 denotes the samples of the smoothed
signal, z1,0, the samples of its first-order partial derivative
with respect to x, z0,1, the samples of its first-order partial
derivative with respect to y, and so forth.

By definition, the first resolution level in themultiscale
setting corresponds to the single-scale transform with
N=8, say zn,m

(1) . Subsequent resolution levels are iteratively
computed from the low-pass coefficient, with N=6, as

zðkþ1Þ
n;m ðp; qÞ ¼

X
x;y

zðkÞ0;0ðx; yÞcnðx−2pÞcmðy− 2qÞ ð6Þ



Table 2
Binomial filters for (a) N=6 and (b) N=8

n\x 0 1 2 3 4 5 6 Norm

0 1 6 15 20 15 6 1 26=
ffiffiffi
1

p

1 1 4 5 0 −5 −4 −1 26=
ffiffiffi
6

p

2 1 2 −1 −4 −1 2 1 26=
ffiffiffiffiffi
15

p

3 1 0 −3 0 3 0 −1 26=
ffiffiffiffiffi
20

p

4 1 −2 −1 4 −1 −2 1 26=
ffiffiffiffiffi
15

p

5 1 −4 5 0 −5 4 −1 26=
ffiffiffi
6

p

6 1 −6 15 −20 15 −6 1 26=
ffiffiffi
1

p

n\x 0 1 2 3 4 5 6 7 8 Norm

0 1 8 28 56 70 56 28 8 1 28=
ffiffiffi
1

p

1 1 6 14 14 0 −14 −14 −6 −1 28=
ffiffiffi
8

p

2 1 4 4 −4 −10 −4 4 4 1 28=
ffiffiffiffiffi
28

p

3 1 2 −2 −6 0 6 2 −2 −1 28=
ffiffiffiffiffi
56

p

4 1 0 −4 0 6 0 −4 0 1 28=
ffiffiffiffiffi
70

p

5 1 −2 −2 6 0 −6 2 2 −1 28=
ffiffiffiffiffi
56

p

6 1 −4 4 4 −10 4 4 −4 1 28=
ffiffiffiffiffi
28

p

7 1 −6 14 −14 0 14 −14 6 −1 28=
ffiffiffi
8

p

8 1 −8 28 −56 70 −56 28 −8 1 28=
ffiffiffi
1

p

Each row gives the filter order (first column), the de-normalized filter
coefficients (center columns), and its norm (right column).
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with cnðxÞ ¼ ð ffiffiffi
3

p
=2ÞnbnðxÞ, for n,m=0, …, 6, k=1, …,

K. The computed coefficients approximate the Gaussian
derivatives of the smoothed signal with scale parameter
Nk=2·4
k at a sub-sampling rate of 2k. Thus, the ratio

between the smoothing degree and the sub-sampling rate
remains constant across the resolution levels.

In the inversion process, the low-pass coefficients are
re-synthesized from coarser resolution levels as

zðkÞ0;0ðp; qÞ ¼
X6
n;m¼0

X
i; j

zðkþ1Þ
n;m ði; jÞc⁎n ð2i−pÞc⁎n ð2j−qÞ ð7Þ

for k=K−1, K−2, …, 1 with c
⁎
n ðxÞ ¼ ð ffiffiffi

3
p

=2Þ−nb⁎n ðxÞ.

Fig. 1(a) illustrates the scheme of computation for the
MHT at three resolution (or scale) levels, where only
the coefficients up to the second order for each level
are shown. The first coefficient corresponds to the
low-pass (smoothed) version of the signal, whereas
signal details are encoded in the higher-order
(derivative) coefficients. The re-synthesis of the signal
from the coefficients are illustrated in Fig. 1(b). The
set of residuals obtained at each level (middle)
comprises the Laplacian pyramid (Burt and Adelson,
1983), whereas the set of partially synthesized signal
at each level comprises the Gaussian pyramid (right).
If zeroes replace residuals up to a given level of the
pyramid, the re-synthesized signal is a Gaussian-
smoothed version of the original signal. Moreover,
any Gaussian-smoothed version of the original signal
can be reconstructed by the proper weighting of the
coefficients (Silván-Cárdenas and Escalante-Ramírez,
2006). The set of all Gaussian-smoothed signals is
termed the scale–space representation of the input
signal (Witkin, 1984).
3.2. Surface model

Linear operators such as those employed in the
MHT are good tools to detect elevation changes that
occur at different scales. While changes in elevation
can be due to natural terrain relief or variation in
feature height, change in elevation due to transition
between ground and non-ground surface elevations
are more important from the filtering problem point
of view. The transition between ground and non-
ground is certainly complex for most real datasets;
however, we argue that most of them may be
expressed as linear combinations of shifted, scaled,
and rotated versions of a basic template. In the con-
text of the MHT, the ideal template function is the
error function (erf), that is introduced in probability
theory.



Fig. 1. (a) Computational diagram of the MHT showing three resolution levels, where DHT stands for discrete Hermite transform. The array of sub-
images at each level represents the coefficients up to the second order, where zn,m is located in row n+1 and column m+1 within the array. (b)
Computational diagram of the inverse MHT, where IDHT stands for inverse discrete Hermite transform and GI stands for Gaussian interpolation.
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Consider the following model for one-dimensional
surface profiles:

zðxÞ ¼ a0 þ
XM
i¼1

aierf
x� xiffiffiffiffiffiffi

4si
p

� �
ð8Þ

where a0, ai, xi, and si, for i=1, …, M, are the model
parameters. These parameters give the model flexibility
to represent both terrain and features of varied shapes
and sizes, provided that enough number of terms are
used.

For example, Fig. 2(b) shows a simulated profile
using 22 erf terms. The contribution of the i-th erf term
to the overall profile has the shape of a smooth step
(Fig. 2(a)) with maximum elevation difference of ai/2,
center of transition located at xi, and smoothness
determined by the scale parameter si. This smoothness
characteristic of surfaces may be hard to quantify from
real datasets, especially because we are more used to
measuring distances and slopes. The estimation of the
scale parameter has been recognized as an important
issue in other fields, such as computer vision and image
processing, where many approaches have been pro-
posed. From our simple model, the maximum contribu-
tion of the i-th term to the slope, say mi, is reached at xi
and the scale parameter is related to this as

si ¼ a2i
km2

i

ð9Þ

The advantage of using Eq. (8) as a model for both
terrain and features is that its shape remains the same in
Fig. 2. (a) Error function plot and (b) simulated surface profile using
the model of Eq. (8).
the scale–space representation up to a shift of the scale
parameters, i.e., si becomes s+ si for all i, where s is the
scale parameter of the scale–space representation. In
fact, its MHT representation in the continuous domain
can be written explicitly as

zðkÞn ðnÞ ¼

a0 þ
P
i
aierf

n−2−kxiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 41−ksi

p
 !

; n ¼ 0

P
i

aiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 41−ksiÞnn=2

q gn−1
n−2−kxiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 41−ksi

p
 !

; n > 0

8>>>>>>><
>>>>>>>:

This representation is particularly useful for estimat-
ing the model parameters. First, the maximum contri-
bution of each term to the slope of the profile is given by
the coefficient of first-order at transition locations, i.e.,

mi ¼ zðkÞ1

1þ 41−ksi
2si

� �1=2

ð10Þ

where z1
(k) defines the surface gradient at xi. Second,

there is an approximated linear relation between the
ratio of the first- and third-order coefficients and the
underlying scale at each transition location, i.e.,

sj ¼ 4k aþ b
zðkÞ1

zðkÞ3

 !
ð11Þ

with a=−1/4 and b ¼ −1=
ffiffiffiffiffi
96

p
. In practice, because of

the discrete approximation of the MHT, these para-
meters are no longer constants but functions of the
resolution level k. Table 3 shows the least square (LS)
estimate of these values for up to six resolution levels
when the discrete MHT of an erf term is used. Third, a
transition point xj can be detected through the well-
known zero-crossing test, i.e.,

zðkÞ2 ð2−kxjÞ ¼ 0

zðkÞ3 ð2−kxjÞ < 0

(
ð12Þ

3.3. Multiscale erosion

Notice that the model of Eq. (8) is highly non-linear
on the parameters and there may be no unique set of
parameters for a given surface. Moreover, its general-
ization of two dimensions is not straightforward.
However, it is still useful for inferring how the
coefficients of the terrain component might be related
to the surface.

Eq. (1) can be translated into the MHT representation
as zn

(k) = tn
(k) + fn

(k), where the contribution of the error
component has been neglected as it is not of major



Table 3
LS-estimate of constants in Eq. (11) for the discrete MHT of an erf term

k 1 2 3 4 5 6 ∞

a −0.1708 −0.1745 −0.1835 −0.1966 −0.2076 −0.2131 −0.2500
b −0.0827 −0.0762 −0.0771 −0.0800 −0.0836 −0.0857 −0.1021

The exact values obtained from the continuous case are given in the right-most column.
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concern here. We hypothesize that the coefficients of the
ground component can be estimated from the observed
elevations. In particular, we consider a model of the
form 2

̂t
ðkÞ
n ¼

zðkÞn if terrainPN
i¼n

ciz
ðkÞ
i if non−terrain and n ¼ 0

0 if non−terrain and n > 0

8>><
>>: ð13Þ

for terrain extraction, where ci are constants to be
determined. For reasons that will become clear later, the
second case in Eq. (13) is termed the erosion operator.
The third case assumes a maximally flat terrain surface
underneath features and their vicinity. This model relies
on an a priori ground detection around transition points.

A simple detection method can be carried out by
thresholding the terrain gradient, which is usually
smaller than the feature gradient. Combining Eqs. (9)
and (10) one can find a bound for the multiscale terrain
gradient G(k) = |z1

(k)| in terms of its maximum slope and
elevation difference, i.e., G(k)≤T(k), where

T ðkÞ ¼ 2kmmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2pð2kmmax=DmaxÞ2

q ð14Þ

is the multiscale threshold given in terms of the
maximum terrain slope mmax and the maximum terrain
elevation difference Δmax.

For two-dimensional signals, the multiscale gradient
is written as

GðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðkÞ21;0 þ zðkÞ20;1 :

q
ð15Þ

Unfortunately, the generalization of the erosion
operator to two dimensions is not straightforward. A
simple generalization that considers the coefficients up
to the first-order is considered here:

̂t
ðkÞ
0;0 ¼ c0z

ðkÞ
0;0 þ c1G

ðkÞ ð16Þ

In this simple case, the parameters c0 and c1 can be
determined by considering the one-dimensional case of
2 Here, t̂n denotes an estimate of tn.
an erf term. This results in c0=1 and c1 ¼ −1=
ffiffiffi
2

p ¼
−0:7071 as the best approximation.

3.4. The MHT-based filtering algorithm

The erosion operator of Eq. (16) and the multiscale
threshold of Eq. (14) are applied to adaptively remove
above-ground features as the MHT is computed. When
the gradient is greater than the corresponding threshold,
the low-pass coefficient is eroded by subtracting the
gradient, and all the other coefficients are set to zero.
Otherwise stated,

̂t
ðkÞ
n;m ¼

zðkÞn;m if GðkÞVT ðkÞ

zðkÞ0;0−G
ðkÞ=

ffiffiffi
2

p
if GðkÞ > T ðkÞ and n;m ¼ 0

0 if GðkÞ > T ðkÞ and n;m > 0

8>><
>>: ð17Þ

As a rule of thumb, the maximum resolution level K
of the MHT must be chosen in terms of the largest
feature size to be removed (say 2K).

The inverse transform is then computed from the
processed coefficients t̂n,m to obtain an approximation of
the terrain surface, t̂. In a final step, the original grid is
compared against the approximated ground surface to
filter the ground points from the LiDAR dataset. More
specifically, a label image L is generated with the
following rule

L ¼ ground; if z < ̂t þ �
non−ground; if zz ̂t þ �

�
ð18Þ

where ϵ is tolerance value. A good choice for this
tolerance would be the quantile of the approximation
errors that ensure omission (Type I) and commission
(Type II) errors are equally probable. In practice,
however, the true terrain surface is unknown and thus
the errors cannot be derived. Here, we determined
experimentally that ϵ=0.1 m was a good choice for most
of the tested cases.
4. Results

The validation of the erosion model (Eq. (16)) was
carried out by observing the average LS-estimate of c0
and c1 over all the reference sets. In this case, the



Table 4
Examples of LS-estimate of c0 and c1, and measurement (M) vs. estimate (T) of the maximum gradient

Dataset k c0 c1 R C P N D A T M

sample11 1 1.0 −1.0 0.38 0.99 0.0 772 100 56 2.09 2.55
2 1.0 −1.1 0.55 0.99 0.0 193 4.17 3.51
3 1.0 −0.5 0.79 0.99 0.0 28 8.21 5.13

sample24 1 1.0 −0.6 0.63 0.26 0.0 85 17 30 0.81 2.14
2 1.0 −2.1 0.77 0.19 0.4 22 1.59 2.85
3 1.0 1.1 1.09 0.15 0.9 4 2.94 3.34

sample53 1 1.0 −0.1 0.26 0.99 0.0 385 33 88 12.52 6.30
2 1.0 −0.1 0.21 1.00 0.0 99 12.99 9.42
3 1.0 0.0 0.17 1.00 0.0 25 13.12 11.77

Fig. 3. (a) Average kappa value for several methods and (b) kappa
value by sample set for the top-four methods.
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multiscale gradient threshold was set to the maximum
terrain gradient M, which was measured directly from
the MHTof the bare ground surface. At each level of the
multi-resolution decomposition, the root mean square
error (R) and the correlation coefficient (C) between the
eroded (t̂0,0

(k)) and true (t0,0
(k) ) transform coefficients were

computed. Only the sites that had a gradient value above
the maximum terrain gradient were assumed to be non-
ground and thus used for the LS estimation. In addition,
the multiscale threshold of Eq. (14) was computed using
measurements of the maximum aspect (A) and the
maximum height difference (D), which were made from
interactive 2-D and 3-D visualizations of the (unfiltered)
reference datasets.

Results of the LS-estimate for a few sample sets are
shown in Table 4, where the probability of no-correlation
(P) and the number of points (N) used in the fitting
procedure are provided as well. The average LS-estimate
computed over all the datasets agreed with our initial
approximation of c0=1 (avg.=1.00) and c1=−0.7071
(avg.=−0.70). The few cases in which the correlation
coefficient was not statistically significant (say, when
P>0.1) are attributed to the relatively small sample
size used in the fitting procedure (say, N<30), which of
course decreases with the resolution. We also noticed a
considerably larger variability of c1 (st. dev.=0.70) in
comparison to that of c0 (st. dev. = 0.01). The
corresponding values of M, as well as the values of the
theoretical gradient threshold T, are also provided in
Table 4 for comparison purposes. Even though there was
a significant difference between the observations and the
model-based thresholds in several cases, certain agree-
ment was still observed. We believe that discrepancies
are mainly attributed to the fact that parameter measure-
ments were carried out through interactive visual
inspection, rather than by an optimization method.

The Cohen's kappa coefficient of agreement, as
derived from the error matrix (Congalton, 1991), was
used to rank the proposed method. Fig. 3(a) shows a bar
plot of the average kappa value over all the datasets for
each method, including the MHT-based method intro-
duced in the previous section. The kappa values for the
other methods were computed from the error matrices
reported by Sithole and Vosselman (2003). The kappa
statistic gives a measure of agreement between the
classification (terrain vs. non-terrain) produced by the
method and the true classification (obtained with the
reference data). In this sense, Type I (classify ground
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points as non-ground) and Type II errors (classify non-
ground points as ground) are considered equally
important. This, of course, may not be the case in
some applications, yet it provides an objective means to
compare different methods.

Even though the parameter selection for the MHT-
based method was not carried out through an optimi-
zation process, but rather guided by visual inspection of
the original unfiltered data, the results of the average
Fig. 4. Error distribution from sev
kappa value showed that, in general, the MHT method
performs very well (Fig. 3(a)), although below Axels-
son's method (Axelsson, 1999) yet similar to Pfeifer's
method (Pfeifer et al., 2001). Furthermore, from the
plots shown in Fig. 3(b) we can see that the MHT-based
method is more robust than other methods when data is
at low resolution (e.g., samp11red1, samp11red2. See
Fig. 4(b) and (c)). This method could also be potentially
useful in cases of large buildings (e.g., samp22, samp41.
eral data sets (see the text).
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See Fig. 4(g) and (d)), and when there is a low density of
terrain points (e.g., samp42. See Fig. 4(h)).

However, the major limitations of the method seems
to be the need for a proper selection of the maximum
slope and maximum height difference required for the
thresholds. The fact that it performed particularly poorly
(below the average) with the dataset samp53 may be
attributable not only to the wrong selection of these
parameters (notice the large discrepancies between the
measured and estimated maximum terrain gradient
given in Table 4), but also to the poor separability
achieved with the slope (see the histograms of Fig. 6(d)
and the discussion presented at the end of the
Conclusions section).

Another factor affecting the performance of the pro-
posed method is the boundary problem of the convolution
filters (i.e, the problem of computing the convolution at
cells near the spatial boundaries). The boundary problem
was addressed here by imposing the symmetry condition.
According to this condition, the cell values along the
boundaries are reflected symmetrically beyond the spatial
extent. This solution may lead to misclassification of cells
around the boundary when strong deviation from the
symmetry assumption occurs. The errors can even
Fig. 5. Filtering result showing the boundary effect in CSite2.
propagate toward the central portion of the grid in cases
when too many resolution levels (or scales) are used,
which are in turn required for removing very large objects.
Fig. 5 shows an example of this problem for CSite2. Here,
the boundary problem results in the misclassification of
the ground along the right-hand side edge. Notice that the
method can detect the large buildings falling in samp22
and samp23; however, the kappa statistic obtained for
these sample sets are relatively low due to the boundary
effect. The error distribution for these sample sets are
shown in Fig. 4(d) and (f), respectively.

5. Conclusions

Many approaches to LiDAR filtering are based on
models of the ground in terms of local properties such as
height difference and slope (e.g., Shan and Sampath,
2005; Vosselman, 2000). The properties are measured
through spatially local operators, either morphologic or
structural. As the term local is indeed scale-dependent,
it is then necessary to integrate measurements at
different scales. This already had been noticed in the
context of mathematical morphology-based methods
(e.g., Kilian et al., 1996; Zhang et al., 2003, Zhang and
Whitman, 2005). However, an analysis–synthesis
framework had not been implemented for filtering
ground points from LiDAR data. In this paper, we have
proposed an approach based on the scale–space
representation of the gridded elevation values. Such a
representation is enriched by the use of the so-called
multiscale Hermite transform (MHT) which employs
derivatives of the smoothed version of the signal. It is
interesting to note that most of the approaches reviewed
incorporate height differences and local slope measures.
Others use the second derivatives (Axelsson, 1999) and
the Laplace operator (Maas, 1999) to find textural
variations that can be used in a more detailed
classification of the LiDAR data (e.g. ground, vegeta-
tion and buildings). We believe that the MHT
representation can be potentially useful in such cases,
as it is comprised of multiscale derivatives. The
advantage of using the MHT representation became
evident when a model-based characterization of the
LiDAR data was adopted. Specifically, the MHT allows
estimating the parameters using the first few
coefficients.

The method was tested with nineteen datasets
covering a wide spectrum of terrain shapes and diverse
feature types, both in urban and rural regions. The
datasets had already been used in a comparative study
conducted by the ISPRS Commission III/WG3 (Vossel-
man, 2002). Thus, this research has built upon previous
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results. The results obtained herein indicate that the
MHT representation was a viable tool to address the
filtering problem. Even though several assumptions and
simplifications were made in the model, the results
showed that this technique could compete with the most
popular methods.

Although the results reported herein look promising,
it has to be recognized that there are still a number of
issues that should be addressed in future research. For
example, a more rigorous assessment of the vertical
errors committed by the approximation used is a
mandatory issue for real applications. Another interest-
ing issue is how higher-order coefficients may be
incorporated in the erosion model and/or in the
prediction of the coefficients that are set to zero in the
decomposition process.

Currently, we are investigating how the scale
parameter could be used to obtain better separability
between transitions of terrain–feature and terrain–terrain
Fig. 6. (a),(c) slope and (b),(d) scale histograms for terrain, feature
types. We believe that the scale parameter may be a
determinant in the separability of above-ground features
from terrain. For example, in the case of Fig. 2(b), only
one term had a large scale (in the order of 100 times
larger than the rest of terms) and it might be the only one
interpreted as terrain by simply inspecting the profile.
Indeed, the average feature scale is consistently smaller
than the average terrain scale, whereas the average
feature slope is not necessarily smaller (or greater) than
the average terrain slope. This belief is supported by the
histograms of the estimated scales and slopes (Eqs. (10)
and (11)) of both terrain and feature components for all
the sample sets. Fig. 6 shows examples of such
histograms for the datasets samp11 and samp53. In all
cases, neither slope nor scale parameters are enough to
separate terrain elevations from feature height; never-
theless, the average scale for feature height was
consistently smaller than the average scale for terrain
variations. Furthermore, the scale histograms seemed
and surface obtained from (a),(b) samp11 and (c),(d) samp53.
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uni-modal in all the cases, whereas the slope histograms
appeared multi-modal in some cases (e.g., Fig. 6(d)).
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