
Abstract
In this study, a variogram-based texture analysis was tested
for classifying detailed urban land-use classes, such as
mobile home, single-family house, multi-family house,
industrial, and commercial from a digital color infrared
aerial photograph. Spectral classification was first carried
out to separate the building class from non-building classes.
Then, a building-presence binary image was generated
so that building pixels were assigned a value of “1” and
non-building pixels were assigned a value of “0.” Multiple
texture bands were further generated employing a vari-
ogram-based texture analysis and used for land-use classifi-
cation. The generation of the building presence binary
image allowed us not only to fully explore the capability of
variogram-based analysis on spatial pattern detection, but
also to prevent the variogram-based analysis from being
disturbed by the natural fluctuation of spectral signals.
The result from using a mosaic test image was considered
satisfactory with a kappa coefficient of 0.72.

Introduction
The urban environment contains a variety of spectrally
different materials, such as soil, grass, trees, plastic, metal,
shingle wood, and concrete. Traditional pixel-based spec-
tral classifications assign each pixel to one of the candidate
classes based on its brightness value, which indicates the
spectral reflectance of the earth surface. However, using
spectral information alone is not sufficient for classifica-
tion of spectrally heterogeneous land-use classes, such as
mobile home, single-family house, multi-family house,
industrial, and commercial. Therefore, texture information
from spatial patterns is often used to complement spectral
information. New texture bands, in addition to original
spectral bands, may be used together in classification.
Each pixel in each of the texture bands is assigned a digi-
tal value as a reflection of the spatial variation of pixel
brightness in the neighborhood in a sense of describing
local textures.

There are several approaches of creating texture bands.
The variogram of geostatistics, applied in a window-based
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function, is a relatively recent technique (Miranda et al.,
1992; Miranda and Carr, 1994). The variogram is commonly
represented by a graph of semi-variance against the lag.
The lag is the distance between paired data points. The
semi-variance is half the average of the squared difference
between paired data values. The mathematical function of
the semi-variance (�) by certain lag (h) can be expressed as
(Burrough and McDonnell, 1998):

where n is the number of paired pixels; z (xi) and z (xi � h)
are pixel values at xi and xi � h, respectively.

Variograms allow remote sensing researchers to measure
the degree of spatial autocorrelation inherent in different
landscapes as recorded in remote sensing images. However,
the spectral values calculated in the variogram may be
influenced by multiple factors, such as soil type, solar
radiation, precipitation run off, flooding frequency, and
wind direction. Each factor may have its own sub-variogram
representing a unique autocorrelation structure, while a
combined effect will create a summed, observed variogram.
Burrough and McDonnell (1998) thus suggested that a prag-
matic approach was to use a domain-specific variogram
whenever possible. For this reason, we generated a building-
presence variogram to describe spatial patterns alone. Rather
than computing variograms directly using pixel gray values,
we computed the variogram based on a binary image of
buildings. The binary image will replace the original spec-
tral image to serve as a base to extract autocorrelation
information contributed by the building pattern alone. The
rationale of using this binary image was not only to remove
the effect of spectral fluctuation caused by a number of
factors, but also to highlight and reserve the spatial patterns
of buildings.

There have been two main approaches of using the
variogram as texture measures in the field of remote sensing.
One approach was that the variogram was modeled by a
mathematical function and the coefficients of the function
were used as texture measures. Some example studies
included Ramstein and Raffy (1989), Herzfeld and Higginson
(1996), Chen and Stow (2002), and Chen and Gong (2004).
The other approach was to use semi-variance values at
various lags as texture measures. Some example studies
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Figure 1. A mosaic test image of eight types of urban
land-use, including, from left to right, top to bottom,
mobile home I, mobile home II, single family I, single
family II, multi-family I, multi-family II, industrial, and
commercial. Mosaic boundaries are marked with black
lines to distinguish between different types of land-use.
The entire image size is 929 by 1,222 pixels.

included Carr (1996), Lark (1996), Berberoglu et al. (2000),
Chica-Olmo and Abarca-Hernández (2000), and Maillard
(2003).

When researchers used modeled variogram coefficients
as texture measures, they assumed that the fitted model of
a variogram best represented spatial characteristics of the
studied object or phenomena. On the other hand, when
researchers used individual semi-variance values as texture
measures, they assumed that the semi-variance at certain
lags best represented the spatial characteristics. The weak-
ness of the first approach is that the modeled coefficients
may not have sufficient discriminatory power for identifying
different land-uses. On the other hand, although individual
semi-variance values may contain more information, they
require intensive computation and are sensitive to natural
fluctuation of spectral signals. To overcome the problem
due to spectral signal fluctuation, we computed the vari-
ogram based on the binary image of buildings. The use of
a building-presence variogram instead of a pixel-gray-value
variogram was expected to mitigate the problem of noisy
signals.

Classifying urban land-uses has been a challenge for
remote sensing researchers (Donnay et al. 2001). The objec-
tive of this study was to test variogram-based texture analysis
for urban land-use classification. Specifically, we tested
whether or not a building-presence variogram could effec-
tively classify urban land-use. We first classified the building
class using a common spectral classification approach.
A building-presence image was then created by assigning
building pixels a value of “1” and non-building pixels a
value of “0.” We then derived multiple semi-variance tex-
ture bands from the building-presence image; each pixel in
the texture band was assigned a digital value of the semi-
variance calculated at a certain lag in a surrounding neigh-
borhood. A supervised classification procedure was finally
operated based on multiple texture bands to get a final urban
land-use map.

Study Area and Data Preparation
The study area is the City of Austin, the capital of Texas.
Austin is a fast-growing city and has a variety of urban
land-uses (COA, 2001). For the purpose of testing new
approaches for urban land-use classification, we used
a mosaic test image with eight types of urban land-use
(Figure 1). Training images were also selected for each type
of land-use separate from the mosaic test image (Figure 2).
The images are two-foot (approximately 0.61 meters) spatial
resolution, three band (green, red, near-infrared) color
infrared digital orthophotos. We obtained the digital
orthophotos from the City of Austin Planning Department.
The original aerial photographs were taken in the year
of 2000 by Analytical Surveys Incorporation contracted
by the City. The land-use areas were arbitrarily selected
throughout the Austin area. The major land-use types of
the City’s existing land-use inventory included mobile
home, single family, multi-family, industrial, and commer-
cial. Mobile home refers to trailers; single-family land-use
refers to single houses; multi-family land-use refers to
apartments or condominiums. We selected two specific
types from each of the three major types of land-uses due
to their significant difference of building patterns. The
particular type of industrial land selected was a storage
warehouse, and the commercial land selected was a
shopping center. Existing land-use inventory of digital
vector data from the City of Austin Planning Department
were used as ground truth for evaluating classification
results.

Analysis
Classifying the Building Class
The first step of our variogram-based texture analysis was to
classify the building class from the training and test image.
We directly applied a K-Means unsupervised classification
to automatically generate sixteen clusters and picked out
clusters most representing the building class (Figure 3a). We
then applied a 3 by 3 low pass filter twice to suppress
speckles for deriving a better representation of the building
class (Figure 3b). The same procedures were applied to the
training images (Figure 4).

Observing Variogram Patterns
Before deriving semi-variance texture bands for classifica-
tion, we calculated the average variogram from individual
training images to observe how variogram relates to land-
use (Figure 5a). The graph showed that all land-use vari-
ograms were different. Generally each land-use variogram
reached a sill at a certain range. Mobile home I had the
shortest range between 8 and 16 lags (approximately 2.4
and 4.9 meters, respectively), which may correspond to
the relatively small structure size and short distances
among the mobile homes. The sills of commercial, indus-
trial, and multi-family I were higher than that of mobile
home, single family, and multi-family II, which may be
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Figure 2. Training images for eight types of urban land-
use, including, (a) mobile home I, (b) mobile home II, (c)
single family I, (d) single family II, (e) multi-family I, (f)
multi-family II, (g) industrial, and (h) commercial. The
entire image size is 1,015 by 1,222 pixels.

interpreted that the former group of land-use had more
heterogeneous spatial-autocorrelation structures of buildings
than that of the later group.

Resampling Effects
To investigate resampling effects on variogram patterns, we
resampled the original 2-foot resolution training images to
16-feet-resolution images and calculated their variograms
(Figure 5b). Comparing Figure 5a and 5b, the general shape
of all variograms were almost the same, although the resam-
pled variograms were not as smooth and continuous as the
originals. Since resampling procedure did not change much
of the variogram patterns, we decided to use the resampled
images so that we can efficiently test different approaches.
The original 2-foot resolution mosaic test image was then
resampled to a 16-foot resolution image (Figure 6).

Optimal Window Sizes and Lags
The semi-variance texture bands were created based on
certain lags and certain pixel window sizes. Different window
sizes were tested within the limit of the training image, and
different lag sizes were tested within the limit of the window

Figure 3. (a) The results after applying a K-Means unsu-
pervised classification to the mosaic test image. White
areas are mostly buildings and a few pavements of
roads and drive ways. Black areas are other spectrally
different materials. (b) The results after further applying
low pass filters.
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Figure 5. (a) The average variogram calculated from train-
ing images. Each lag distance was one pixel length (2 feet)
and the semi-variance was rescaled 900 times. The scale
factor was decided by experiment to allow the rescaled
maximum close to a value of 255, which was the maximum
pixel value allowed in an 8-bit image. (b) The average vario-
gram calculated from resampled 16-feet-resolution training
images. Each lag distance was one pixel length (16 feet)
and the semi-variance was rescaled 900 times.

Figure 6. The 16-foot resolution mosaic test image
resampled from the original 2-foot resolution image. The
optimal window sizes for each land-use were drawn by
the side in their actual scales.

Figure 4. (a) The results after applying a K-Means
unsupervised classification to training images. (b)
The results after further applying low pass filters.
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size. The optimal window sizes and the optimal lags that
could achieve the highest classification accuracy were
investigated.

Optimal window sizes are selected based on better
characterization of spatial patterns of land-use categories
with less boundary effect. The boundary effect refers to
the situation that assigning class for a pixel which is close
to the boundary of two or more neighboring classes is
confused within a window (Gong, 1994; Xu et al., 2003).
The dilemma was that the pixel window size should not
be too small or too big. When the window was too small to
contain enough building class pixels to analyze their spatial
relationship, the derived semi-variance would not represent
the texture well as a whole. When the window was too
large, it straddled two neighboring classes and the derived
semi-variance was a mixture of class textures. In other
words, too small window sizes caused high within-class
variation and too large windows caused high between-class
confusion. Both extreme window sizes cast difficulty on
the classification. This boundary effect was especially
significant for our study area since it mainly comprised
small parcels of urban land-use, in contrast to the commonly
large, homogeneous parcels of rural land-use.

Optimal window sizes were usually decided empirically
(e.g., Gong and Howarth, 1992; Xu et al., 2003), so were
optimal lags (e.g., Berberoglu et al., 2000). Similarly, this
study investigated the optimal window sizes and optimal
lags through repeated experiments. Semi-variance texture
bands in different window sizes and different lags were
derived for both the mosaic test image and the training
image. Training signatures for each land-use type were
computed from training images based on certain combina-
tion of texture bands. Classifications using the Maximum
Likelihood Classifier (MLC) were then operated based on
different combinations of texture bands to investigate the
optimal window sizes and optimal lags (Figures 7 through
Figure 11).

We also investigated the optimal number of texture
bands and the classifiers that achieved the best accuracy
(Figure 12 and Figure 13). Accuracy assessment was based
on 400 random samples with 50 for each class. In addition,
we computed signature separability based on different
combinations of texture bands to investigate whether or not
training signature separability is a good predictor of classifi-
cation accuracy.

Taking into account the size of land-use parcels in
the mosaic test image (Figure 6), we tested eight different
window sizes from 13 by 13 lags to 41 by 41 lags in an
increment of four lags (Figure 7 and Figure 8). For each
window size, except the window size of 13 that only allowed
for one to six lags, eight semi-variance images based on
one to eight lags were generated. Classifications were oper-
ated based on eight texture bands for each window size.
Classification accuracies as measured by the Overall Kappa
Coefficient, Conditional Kappa Coefficient, and signature
separability of the average Bhattacharrya Distance were
computed.

Comparing with Using Gray Value Images and a Building Footprint Image
To verify our hypotheses that a building-presence variogram
could represent land-use characteristics better than a pixel-
gray-value variogram, we generated semi-variance images
based on each of the original gray-value image bands and
used for land-use classification (Figure 14). In addition, we
conducted land-use classifications based on semi-variance
images derived from a building-footprint image that was
converted from available building-footprint vector data,
since there was confusion between the building class and
the pavement class in our initial spectral classification.

Results
Single Optimal Window
Comparing classification accuracies based on different
window sizes, Figure 7a showed that medium window
sizes between 17 to 29 lags achieved higher classification
accuracies. The significance test of kappa coefficient
from kappa variance further indicated that the difference
between window 25 or 29 and others were statistically
significant at the 0.99 probability confidence level. The
overall trend could be explained that too small or too large

Figure 7. Comparison of (a) classification accuracies,
and (b) signature separabilities based on different
window sizes. The data point for window 41 is not shown
because of its relatively small number.
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Figure 10. Comparison of conditional Kappa coefficients
of land-use classes based on different lags.

the boundary effect, especially when the window size was
large.

Comparing conditional kappa coefficients for land-use
classes based on different window sizes, Figure 8 showed
that different land-use classes had different optimal window
sizes. The optimal window sizes for mobile home I, mobile
home II, single family I, single family II, multi-family I,
multi-family II, industrial, and commercial were 17, 21, 25,
21, 29, 29, 25, and 33, respectively. Referencing with the
mosaic test image in Figure 6, the trend may be explained
that for land-use with large buildings or with buildings
away from each other, such as multi-family I, multi-family
II, and commercial, relatively large window sizes were
preferred. On the other hand, for land-use with small build-
ings or with buildings close to each other, such as mobile
home I, mobile home II, and single family II, relatively small
window sizes were preferred.

Single Optimal Lag
To investigate the optimal lag, we compared classification
accuracies based on different lags. Taking into account the
size of window sizes, we tested eight different lags from
one lag to eight lags (Figure 9 and Figure 10). For each lag,
four semi-variance images based on four optimal window
sizes (17, 21, 25, 29) were used for classification. In other
words, classifications were operated based on four texture
bands for each lag. Figure 9 showed that classification
accuracies were generally higher for small lags. The dif-
ference of kappa coefficients between lag 1 or lag 2 and
others are statistically significant at the 0.99 probability
confidence level. There may be two explanations for the
overall trend. First, semi-variance of small lags better
represented local textures when more data pairs were
computed for the semi-variance. Second, semi-variance of
small lags were more invariant to the boundary effect since
data points for calculating the semi-variance were close
together and were more likely to belong to the same class.

Comparing conditional kappa coefficients for land-use
classes based on different lags, Figure 10 showed that
different land-use classes had different optimal lags. For
example, the optimal lags for mobile home I, multi-family II,
industrial, and commercial were lag 1, lag 3, lag 3, and lag
5, respectively. Referencing with the mosaic test image in

window sizes for texture measures did not represent local
textures well.

Comparing signature separabilities based on different
window sizes, Figure 7b showed that the bigger the window,
the higher the signature separability. The overall trend could
be explained that the bigger the window size, the more invari-
ant the derived semi-variance signature and the more objective
representation of the local texture.

Since optimal windows from classification accuracy
did not correspond to those from signature separability, we
concluded that signature separability is not a good predictor
of classification accuracy in this study. It may be caused by

Figure 8. Comparison of conditional Kappa coefficients of
land-use classes based on different window sizes.

Figure 9. Comparison of classification accuracies based
on different lags.
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the classification accuracy. Classification based on seven
lags was most accurate and higher than others at the
0.99 probability confidence level. The trend may be
explained that the semi-variance for each lag is critical
for representing local textures and should be used together
for classification.

Comparing classification accuracies based on different
numbers of window sizes, compound by their optimality
sequence and based on the most optimal lags of one and
two, Figure 11b showed that three or four window sizes
have the higher classification accuracy than others at the
0.99 probability confidence level. The trend indicated that
classifications should not be based on all window sizes.
Referencing with the classification accuracies based on
individual window sizes (Figure 7a), we concluded that a
combination of three or four middle-sized windows (17 to
29) were most accurate.

Optimal Number of Bands and Optimal Classifier
Combining optimal windows and optimal lags, we tested
different numbers of texture bands for classification, using
different classifiers. Figure 12 showed that classifications
using MLC based on 21 or 28 bands were less accurate than
that based on 7 or 14 bands, at the 0.99 probability confi-
dence level, while classifications using Minimum Distance
Classifier (MM) and Spectral Angular Mapper (SAM) were
more accurate when based on more number of bands, in
which the difference between 14 and 21 bands was statisti-
cally significant. The reason that combining optimal lags
and optimal windows did not have compound effects for
MLC and Mahalanobis Distance Classification (MDC) may be
because the number of training samples did not increase
with the number of bands, and thus the estimation of
statistical parameters became inaccurate and unreliable
(Hughes, 1968; Hsu et al., 2002). MLC and MDC both used
probability measures of covariance matrix and were more
affected by this Hughes phenomenon, in contrast to MM
and SAM that used straightforward Euclidean distance and
angular measures.

Figure 12 showed that the most accurate classification
was based on three optimal windows, seven optimal lags,
with Mahalanobis Distance Classifier (an overall kappa
coefficient of 0.72 and an overall classification accuracy of
76 percent). The classification map referenced with ground
truth land-use in Figure 13 showed that most of the land-use
is correctly classified except the boundary land-use. The
confusion matrix in Table 1 showed that mobile home I

Figure 11. Comparison of classification accuracies based
on (a) different numbers of lags, and (b) different
numbers of windows.

Figure 12. Comparison of classification accuracies based
on different numbers of bands and different classifiers.

Figure 6, the trend may be explained that for land-use with
small buildings that were close together, such as mobile
home I, a relatively short lag distance was preferred. On the
other hand, for land-use with large buildings that were far
apart, such as commercial, a relatively long lag distance was
preferred.

Multiple Optimal Lags and Multiple Optimal Windows
Comparing classification accuracies based on different
numbers of lags, compound by their optimality sequence
and based on the most optimal window of 29, Figure 11a
shows that generally the more number of lags, the higher
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hypothesis that a variogram-based texture analysis was
more accurate when based on building-presence image
than pixel-gray-value image, especially when the build-
ing-presence image was derived from existing building
footprint inventory data.

Discussion
The main constraint of applying a building-presence var-
iogram for urban land-use classification is that land-uses
without buildings, with few buildings, or with buildings
that do not have homogeneous spatial patterns or do not
relate to land-use types would be hard to classify. Particu-
larly the contemporary trend of the architectural design
of buildings seems to promote uniqueness and diversity.
Varied styles of neighborhoods with different spatial
patterns of buildings are being constructed nowadays,
which makes it difficult to establish standard spatial
patterns for land-use classes. Also, variogram analysis
modeled in an area at a time may not be applicable to
another area at another time when the spatial patterns
of buildings are so varied.

Future research could test the variogram analysis
based on a classified land-cover map, in contrast to a class-
ified building map, for inferring urban land-use. In this
approach, pixels of each land-cover class could be assigned
a mean spectral value of the class before calculating the
variogram. The rationale is to test whether or not spatial
patterns between land-cover classes relate to land-use
classes. In a similar way, the variogram analysis could be
based on a spectral cluster map from unsupervised classifi-
cation or gray-level reduction algorithms. Another possible
approach is to use a cross-variogram (Chica-Olmo and

Figure 14. Comparison of classification accuracies based
on a building-footprint image, a pre-classified building
image, and gray-value band images.

(MH1) and multi-family I (MF1) had the highest omission
error of 39 percent and 69 percent mainly from misclassify-
ing into their neighboring land-use of mobile home II (MH2)
and multi-family II (MF2) respectively.

Comparison with Using Gray Value Images and a Building Footprint Image
Figure 14 showed the comparison of texture analysis
based on a building-footprint image, a pre-classified
building-presence image, and three gray-value image
bands. Classifications were all based on 14 optimal
texture bands using MLC. The results supported our

Figure 13. Map of the most accurate classification (a) and ground truth land-use map (b). MH1 is
mobile home I; MH2 is mobile home II; SF1 is single family I; SF2 is single family II; MF1 is multi-family I;
MF2 is multi-family II; IND is industrial; COM is commercial.
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Abarca-Hernández, 2000) to measure the spatial relation-
ship between two land-cover classes, such as the building
class and the vegetation class, for inferring urban land-use.

Summary and Conclusions
This study tested the effectiveness of a variogram-based
texture analysis in the classification of urban land-use using
a mosaic test image of eight land-use classes. Optimal
window sizes, lags, numbers of texture bands, and classifiers
were also investigated. The best classification result was
considered satisfactory with 0.72 overall Kappa coefficient
and 76 percent overall accuracy.

Some of the major findings from the analysis include:

• Different classes showed different optimal lags and optimal
window sizes. Generally larger window sizes and longer lags
were preferred for land-use with large buildings or buildings
that were far apart, while smaller window sizes and shorter
lags were preferred for land-use with small buildings or
buildings that were close to each other.

• Texture bands based on all different lags could capture the
full spectrum of spatial characteristics and achieved higher
classification accuracy.

• Texture bands based on a few middle window sizes, specif-
ically windows 17, 21, 25, and 29, could avoid the boundary
effect and achieved higher classification accuracy.

• Variogram analysis based on a building-footprint image was
more accurate than based on a pre-classified building image,
while the analysis based on a pre-classified building image
was more accurate than based on a gray-value image.

Land-use classification for the urban areas gets more
difficult when urban land-use parcels are small and seg-
mented. It is common today that city planners do not plot
large, homogeneous land-use parcels as before, since the
sustainable trend in land-use planning is to promote mixed
land-use and encourage urban density instead of continuing
the homogeneous and sprawled land-use tradition. Vari-
ogram-based texture analysis with high spatial resolution
remote sensing images may provide a way to classify urban
land-use. Future research needs to test how accurate vari-
ogram-based texture analysis can classify small parcels of a
variety of detailed land-use types.
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TABLE 1. CONFUSION MATRIX FROM ACCURACY ASSESSMENT (MH1 IS MOBILE HOME I; MH2 IS MOBILE HOME II; SF1 IS SINGLE FAMILY I; SF2 IS SINGLE

FAMILY II; MF1 IS MULTI-FAMILY I; MF2 IS MULTI-FAMILY II; IND IS INDUSTRIAL; COM IS COMMERCIAL)

Classified Data

Reference
Data MH1 MH2 SF1 SF2 MF1 MF2 IND COM Total Commission Error

MH1 27 27 0%
MH2 14 44 3 5 66 33%
SF1 2 1 54 12 16 9 4 98 45%
SF2 66 1 67 1%
MF1 15 15 0%
MF2 1 3 18 33 6 61 46%
IND 22 22 0%
COM 1 43 44 2%
Total 44 45 58 86 49 34 31 53 400
Omission Error 39% 2% 7% 23% 69% 3% 29% 19% 76%
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