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The landscape pattern of Daqing city, China has undergone a significant change

in 1990–2000 as a result of the rapid urbanization process. The focus of this paper

is to quantitatively capture landscape pattern and its spatial dynamics of Daqing

city at the landscape level over the 10 years span. A traditional supervised

classification (maximum likelihood classification) was carried out on Daqing

region using three sets of Landsat Thematic Mapper (TM) imagery, respectively

acquired in 1990, 1996, and 2000, and the classification results were transformed

to polygon layers and input into geographic information system (GIS) software.

In order to facilitate our examination of landscape pattern and its dynamics in

Daqing, we chose two categories of landscape indices with supplementary

ecological meanings. They are patch-based indices and spatial heterogeneity-

based indices. Specifically, for the first category, three representative indices

(Patch size coefficient variation, Landscape shape index, and Area-weighted

mean patch fractal dimension) were calculated. For the latter category,

Shannon’s diversity index, Contagion index, Proximity index, and Fragment

index were chosen and computed. Based on the derived indices, a general trend of

landscape change was revealed: wetland was degraded into grassland resulting in

a more fragmented pattern, whereas grassland was cultivated and taken over by

agriculture. Forest coverage decreased with the small patch replaced by grassland

and agriculture, while city was sprawling by merging neighbouring land cover

and land use types. GIS-based landscape index, coupled with remote sensing

analysis, proved its unique value and effectiveness in assessing landscape pattern

and dynamics.

1. Introduction

Increasing awareness about the importance of the sustainability of natural resources

is stimulating the improvement of current methods to better understand and quantify
the landscape evolution, as is the result of complex interactions between physical,

biological and social forces in time and space (Turner 1987). Notwithstanding the

ease-of-use merit possessed by field methods, such methods are labour intensive

and weak to unveil spatial pattern at the landscape scale as well as grasp changes

that occurred in a long time frame (Nelson 1983).

Remote sensing data, in conjunction with geographic information systems (GIS)

has been recognized as an effective tool in quantitatively measuring landscape
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pattern and its change at a relatively large spatial scale (Nelson 1983, Singh 1989,

Metzger and Muller 1996, Frohn 1998, Quattrochi and Luvall 1999, Petit et al. 2001,

Roy and Tomar 2001). To discover the change of spatial pattern, two types of

method have been developed in the past. The first type of method is to conduct

change detection in the pixel-by-pixel manner before or after the classification is

performed on the original images (Ridd and Liu 1998, Petit et al. 2001, Roy and

Tomar 2001, Yang and Lo 2002). We hereby refer to it as the raster-based method.

Alternatively, the second type of method begins the analysis by converting

classification results to vectors; from this, various spatial indices are derived to

summarize the spatial pattern at each given time. Then a comparison is made on the

spatial indices to detect the spatial pattern changes over different times (Singh 1989,

Jensen 1996, Zhao et al. 1996, Zheng et al. 1997, Macleod and Congalton 1998,

Miller et al. 1998, Mas 1999, Roy and Tomar 2001, Yang and Lo 2002).

Correspondingly, this method is referred to as the vector-based method.

Compared to raster-based change detection methods, the vector-based methods

are advantageous in capturing inherent spatial structure of landscape pattern.

Within this category, a variety of landscape metrics have been proposed. The first

category of commonly used indices is the patch-based indices that characterize the

configuration for the individual landscape class or at the whole landscape base

(Patton 1975, Forman and Gordron 1986, Gardner et al. 1987, Schumaker 1996,

Chuvieco 1999, Imbernon and Branthomme 2001). Indices of patch size and patch

shape have been widely used to convey meaningful information on biophysically

changed phenomena associated with patch fragmentation at a large scale (Viedma

and Meliâ 1999, Fuller 2001). These configuration indices vary as a function of the

shape of patches and usually correlate with the basic parameter of individual patch,

such as the area, perimeter, or perimeter–area ratio, but perform poorly in reflecting

the spatial location of patches within the landscape (Imbernon and Branthomme

2001). Hence, another kind of indices was proposed to reflect spatial heterogeneity

by quantifying the spatial structures and organization within the landscape. O’Neill

et al. (1988) first developed dominance and contagion indices based on information

theory to capture major features of spatial pattern throughout the eastern United

States. According to Gustafson and Parker (1992), the proximity index quantifies

the spatial context of patches in relation to their neighbours; specifically, the

nearest-neighbour distance index distinguishes isolated distributions of small

patches from the complex cluster configuration of larger patches (Turner 1989).

The above two groups of indices, the patch-based and heterogeneity-based, reflect

two aspects of the same spatial pattern, and complement each other. Notwith-

standing the choice of either group of indices relies on the emphasis in a specific

research, it is preferred to adopt both groups of indices when speculating on a

spatial pattern (Turner and Gardner 1990) because landscape pattern possesses both

homogeneous and heterogeneous attributes.

Daqing city, in the Heilongjiang Province of China, is the largest base for the

petrochemical industry in China. Over the last decade (1990–2000), Daqing has

undergone a high-speed economic development and environmental deterioration as

well. The objective of this study is twofold: (1) to analyse and interpret the landscape

pattern as well as its change in Daqing during the last 10 years using remote sensing

and GIS; and (2) to explore the inter-linkage between landscape change, economic

development, and land management. To enable a comprehensive investigation of the

complex and heterogeneous landscape in Daqing, we chose a set of landscape indices
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with the inter-complementary ecological meaning. Finally, these indices are analysed

to effectively examine both the current landscape pattern and the retrospective

change process for monitoring ongoing changes.

2. Study site and data preparation

2.1 Study site

The study was carried out in Daqing city, the energy capital of China, maintaining a

variety of landscape types due to its unique geology and climate environment.

Daqing lies in the middle of Songlen Plain in Heilongjiang Province in the north-east

of China (figure 1), between 122u429–125u509 E longitude and 45u209–47u309 N

latitude. Daqing city has five districts—one city and four counties—and covers an

area around 21 000 km2 with a population of 2.50 million.

The study area shows the typical characteristics of large-scale Mesozoic and

Cenozoic land sediment basin covered mainly with meadow, halophyte and swamp.

After long geotectonic movements, Daqing ends up with a unique geological

structure for the storage of oil. Since the elevation ranges from 126–165 m, the study

area is a relatively flat plain with the elevation difference ranges from 10–39 m.

Figure 1. Study area, Daqing city, China.
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Mean annual precipitation is 437 mm and the rainy season is in summer and

autumn, varying seasonally between hot, wet summer and cool, dry winter.

Daqing, once a rural area, has become the largest oil production base since the oil

was explored in 1959. Although Daqing is now diversifying its energy-oriented

economy, the petroleum and petrochemical industries are still main backbones of its

economy. The continual construction of the oilfield has spoiled the original

landscape pattern over the last 50 years. Reduction of swamp, grassland and forest

has resulted in the deterioration and desertification, potentially affecting the future

landscape pattern, regional environment and climate. Moreover, since the fast

economic development, the population in the Daqing region has grown greatly

during the last 50 years, increasing from 100 000 in 1945 to 2.5 million in 2000

(Statistic Bureau of Daqing 2001). As a result, the Daqing region, which contains

rich landscape types, is subject to rapid changes in landscape pattern, especially in

the natural swamp, grassland and forest.

2.2 Satellite data and other reference sources

Landsat Thematic Mapper (TM) satellite images were chosen in this study for the

change detection of Daqing during the 10-year period between 1990 and 2000. All

the images were acquired from late June to September in Daqing area since all the

vegetations are growing up during this growing season. Six cloud-free scenes were

used to cover the entire study area with two adjacent scenes, path 119 and row 27

and 28, during the following dates: 20 July 1990, 22 September 1996 and 22 June

2000. Digital image processing was performed on a SUN workstation using

ERDASTM software.

Other reference data used in this research are: (1) a soil thematic map at the scale of

1 : 100 000 from the Committee for Agricultural Development Planning of Daqing in

the 1980s; (2) a vegetation thematic map at the scale of 1 : 750 000 from the Geography

Institution of Changchun, Chinese Academy of Sciences in 1973; (3) a district map at

the scale of 1 : 100 000 from Daqing land bureau in 1999; (4) a land use map at the

scale of 1 : 100 000 from Daqing land management bureau in 1994; and (5) the social

and economic statistical data during 1949–1999 from Daqing statistic bureau.

3. Methods

3.1 Geometric rectification and radiometric normalization

Geometric rectification plays a significant role in the process of multi-temporal change

detection. In this paper, the two scenes (119/27 and 119/28) acquired in1990 were used

as reference images to correct the other four scenes in 1996 and 2000. All images were

registered to the UTM map projection, WGS 84, Zone 51, on a SUN workstation

using ERDASTM Software. Fifty ground control points (GCP) were chosen. They were

evenly distributed throughout the whole study area and most of them were laid on the

distinguishably discerned objects, for example, the intersections of roads, aqueducts, or

the fence tree around the agriculture. The registration procedure achieved at an

accuracy of less than 0.5 pixel rms. error (RMSE) for both images in 1996 and 2000.

Our study area runs across two scenes of TM imagery. Therefore, a mosaic had to

be done in the preprocessing step. Due to the variation of sensor–target–illumi-

nation geometry (Mas 1999, Yang and Lo 2002, Wang et al. 2004), it is necessary to

conduct image-to-image radiometric normalization between the adjacent images so

that in the resultant mosaic image, the distribution of brightness values with the two
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images is as close as possible (Richards 1993). To implement this idea, we performed

a histogram matching between the adjacent scenes for the same year and thus, wind

up with three mosaic images corresponding to three different years.

3.2 Landscape classification

Gained from the long-term field knowledge of geology, geography, vegetation and

land use in Daqing, we set up a two-tier hierarchical classification scheme. The first

level is composed of three classes: natural landscape, semi-natural landscape, and

human landscape. In turn, the second level comprised 10 different classes as listed in

table 1. Considering the requirement of traditional maximum likelihood classification

(MLC) and the size of our study area, we chose a separate set of training and test

samples around 600 pixels for the imageries at each year. The ancillary data
mentioned in §2.2, including soil thematic map, vegetation map and land use map,

were overlaid on the image to help to select the samples. Landscape maps composed of

10 landscape classes for 1990, 1996 and 2000 were produced with a traditional MLC.

The accuracy of resultant landscape maps was assessed with an independent set of

test samples on the study area. An error matrix was firstly generated. The producer

accuracy, user accuracy, overall accuracy as well as Kappa coefficient were derived
and reported in table 2. We corrected several large errors on the map. For example,

the saline was misclassified as city in the vicinity of the lake due to the similar

spectral response between the two land cover types.

3.3 Landscape index analysis

Although a wide variety of landscape indices have been applied in describing the

spatial composition and configuration of landscape pattern, many of them

substantially overlap each other (Giles and Trani 1999, Tischendorf 2001). In order
to reduce the redundancy, we selected a set of landscape indices that have least

mutual correlation while possessing complementary ecological meanings. The

indices were calculated with the Fragstats (UMASS 2004) and ARC/INFO software.

Table 1. Hierarchical classification systems and the definitions used in training samples.

First level Second level
Training samples using colour composite

(bands 4, 5, 3) Code

1. Human
landscape

1.1. Agriculture Primarily for the production of rice and fibre,
shows in the image as light or dark red, green
with strip texture

1

1.2. City Intensively used by the building, and shows
in the image as mixed pixels of light blue.

2

1.3. Village Usually be around by the agriculture with
straightforward edge; mixed texture; and
darker than the city

3

2. Semi-natural
landscape

2.1. Grassland Mixed pixels of red, white, and light green. 4
2.2. Forest Identified on higher elevations, regular

shape, red or dark red
5

3. Natural
landscape

3.1. Lake Smooth, cyan, blue, and sometimes black 6
3.2. River Irregular shape, ultramarine 7
3.3. Saline White or light, most near to the water 8
3.4. Floodplain Along the river, black or dark red 9
3.5. Wetland Dark red and distributes along north-east of

Daqing
10
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Table 2. The accuracy assessment of the 1990, 1996, and 2000 landscape maps from Landsat images by maximum likelihood classification.

Train sample Test sample User accuracy (%) Producer accuracy (%)

1990 1996 2000 1990 1996 2000 1990 1996 2000 1990 1996 2000

Agriculture 624 635 624 616 624 629 64.71 70.97 70.79 80.36 64.25 94.75
City 610 624 622 626 608 612 72.80 87.01 93.33 87.22 79.28 89.05
Village 610 614 607 600 625 613 70.79 74.49 69.61 74.33 71.28 83.69
Grassland 607 605 602 600 609 622 69.09 87.44 87.78 71.17 93.76 76.21
Forest 612 605 606 617 603 633 89.50 83.13 98.64 98.06 91.54 91.47
Lake 611 610 612 614 601 609 97.77 92.72 95.60 99.84 99.67 96.22
River 603 627 608 600 620 633 99.89 99.82 96.37 89.50 87.10 96.21
Saline 637 618 614 609 621 610 91.29 96.31 96.51 82.59 96.78 90.66
Floodplain 624 617 645 611 612 609 69.14 88.71 84.88 52.46 91.18 76.52
Wetland 608 619 613 607 619 601 91.72 98.97 78.02 67.55 93.38 66.72
Overall accuracy (%): 80.77 (1990); 87.77 (1996); 86.24 (2000)
Kappa: 0.79 (1990); 0.86 (1996); 0.85 (2000)
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3.3.1 Indices to measure patch attributes

(1) Patch size coefficient variation (PSCOV)

PSCOV~PSSD=MPS

while MPS~

Pm

i~1

ai½ �

m
; PSSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i~1

ai{MPS½ �2

m

v
u
u
u
t 1

1000

� �
ð1Þ

where ai is the patch size, m is the total number for ith landscape, and MPS is the

mean patch size.

PSCOV is one of the typical indices to indicate the distribution of area among the

patches by finding out the area difference among patches within one landscape class.

Basically, the class with a large PSCOV (or PSSD) is less uniform than that with a

small PSCOV (or PSSD) (Chuvieco 1999), i.e. if the landscape class is dominated by

several big patches, both PSCOV and PSSD values would be large.

(2) Landscape shape index (LSI)

The first index to characterize landscape shape is the edge density (ED), a simple

ratio between the perimeter and area.

ED~
Pi

Ai

ð2Þ

Since the simple ratio is usually affected by the patch size, we used the modified

perimeter–area ratio here to imply the shape of landscape (Patton 1975, Schumaker

1996).

LSI~Pi

.

2
ffiffiffiffiffiffiffiffi
pAi

p ð3Þ

where Pi and Ai are the perimeter and area of the ith landscape. As the modified

index of ED, LSI attains its minimum value when the shape of patches is completely

regular, such as a circle, and it increases when the patch turns to be more complex

(Schumaker 1996, O’Neill et al. 1999, Fuller 2001).

(3) Area-weighted mean patch fractal dimension (AWMPFD)

Fractal dimension, with its value ranging from 1 to 2 for a two-dimensional

landscape (Mandelbrot 1967), is another modified shape index to indicate the patch

shape in the landscape ecology. It is usually built on the linear regression between

the logarithms of perimeter and area (De Cola 1989).

To acquire a normalized fractal dimension, we calculated the area-weighted mean

patch fractal dimension using the following equation:

AEMPED~
Xm

i~1

2 ln 0:25pið Þ
ln aið Þ

ai

A

� �� �

ð4Þ

where pi and ai are perimeter and area, respectively, of each patch within one

landscape class; A is the total area for one landscape class. Theoretically, the

AWMPFD of the highly convoluted perimeter will approach closer to 2 than the
simple perimeters due to an increasing complexity in the patch shape (Schumaker

1996, Olsen et al. 1999, Read and Lam 2002).
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3.3.2 Indices to measure spatial heterogeneity

(1) Shannon’s diversity index (SHDI):

SHDI~{
Xm

i~1

Pi ln Pið Þ½ � ð5Þ

The SHDI measures the landscape diversity using two components: the number of

different patch types, m, and the proportional area distribution, Pi, among patch

types. Furthermore, the other two indices will be calculated followed by the diversity

index to measure the dominance and evenness. They are: patch dominance (PD) and

patch evenness (PE):

PD~Hmaxz
Xm

i~1

Pi ln Pið Þ½ �

PE~
H

Hmax
; Hmax~ln mð Þ

ð6Þ

where H is the SHDI and m is the number of patch of ith landscape class; Pi is the

probability of ith class in the landscape. In this study, we used the ratio between the

area of ith class and the total landscape area to denote Pi. Indices of landscape

diversity, dominance and evenness have been widely used to indicate the size and

distribution of patches in the landscape (O’Neill et al. 1988, Viedma and Meliâ

1999).

(2) Contagion index (CONT)

CONT, developed by O’Neill et al. (1988), quantifies both composition and

configuration of the landscape (Li and Reynolds 1993):

CONT~1z
Xm

i~1

Xn

j~1

Pij ln Pij

� 	
,

2 ln nð Þ

Pij~PiPj=i, Pj=i~mij



mi

ð7Þ

where Pij is the probability that a patch of ith landscape is found adjacent to a patch

of jth landscape, while m is the patch number within one landscape category and n is

the number of landscape categories. Pi is the probability that a randomly chosen

polygon belongs to patch type i, and Pj/i is the conditional probability. In this study,

we set this conditional probability as the ratio of i adjacent to j. A large CONT

reflects the clumping of large contiguous patches while a small CONT value reflects

a landscape that is dissected into small patches (O’Neill et al. 1988, Turner 1990, Li

and Reynolds 1993, Griffith et al. 2002).

(3) Proximity index (PI)

In landscape ecology, nearest-neighbour distance is defined as the distance from a

patch to the nearest neighbouring patch of the same type, based on edge-to-edge

distance. Mean nearest-neighbour distance (MMND), nearest-neighbour standard

deviation (NNSD) and nearest-neighbour index (NNI) were chosen to calculate in

this study as follows:
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MNND~

Pm

i~1

hi

m
; NNSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i~1

hi{MNNDð Þ2

m

v
u
u
u
t

NNI~MNND=ENND; ENND~
1

2
ffiffiffiffiffiffiffiffi
n=a

p

ð8Þ

where hj is the distance from each patch to its nearest neighbour, m is the total

number of nearest neighbour to this patch, and n and a are the number and area,
respectively, of this class. ENND is the expected value of MNND in random. The

NNI ranges between 0 and 1 and the less NNI, the landscape is less random and

more clumped. The proximity indices measure both the degree of patch isolation

and the degree of fragmentation of the corresponding patch type within the specified

neighbourhood of the focal patch (Gustafson and Parker 1992).

(4) Fragment indices (FI)

We chose the total core area (TCA), core area percentage of landscape (CPL) and

mean core area per patch (MCA) to denote the landscape fragmentation:

TCA~
Xm

i~1

ac
i ; CPL~

Pm

i~1

ac
i

A
; MCA~

Pm

i~1

ac
i

m
ð9Þ

where ac
i is the core area, the interior habitat as an undisturbed area in the ecological

meaning; A is the total class area, m is the number of patch.

To identify the core area of each patch, we smoothed the sharp edge and

calculated the core area within each patch. These edge-to-interior indices provide

fragmentation information of the class, i.e. the higher the ratio between core area

and total area is, the less fragmented this class would be (Fragstats*ARC 2004).

To summarize, two categories of landscape indices were chosen from the

perspectives of the patch attributes and spatial heterogeneity. The patch-based

indices consist of PSCOV, LSI and AWMPFD with aims to measure the area

distribution and the shape of landscape among the patches. Regarding the spatial

heterogeneity-based indices, we chose SHDI to describe the landscape diversity, CI

to measure the composition and configuration of landscape, PI to denote the degree

of isolation, and FI to measure the landscape fragmentation.

3.4 Change detection

Post-classification comparison is often used to detect change in multi-temporal

images (Singh 1989; Jensen 1996; Mas 1999; Yang and Lo 2002). In the present

study, this procedure was employed on three independently classified maps at 1990,
1996 and 2000. In order to perform multi-temporal analysis, we applied a simple

addition using GRID program in ARC/INFO between two adjacent maps, 1990–

1996 and 1996–2000 by:

Outgrid~ grid1ð Þ � 10½ �zgrid2 ð10Þ

where grid1 is the classification code (table 1) on the ‘from’ image and grid2 is the
classification code on the ‘to’ image. For example, code 14 is the patch transferred

from agriculture to grass while code 11 means no change occurred. Using the above
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equation, we can identify both ‘from’ landscape and ‘to’ landscape as well as the

‘unchanged’ landscape.

4. Results and discussion

In this study, the regional characterization of landscape pattern and landscape

change was investigated for the study area over the 10-year period. The landscape

map produced from the image in 2000 exhibits a current landscape pattern in

Daqing city. All the landscape indices were analysed to describe the landscape

pattern in the past, present, and the change between these years. With a close

examination of results for each individual landscape, we found out the major

converted classes and grasped its trend in this evolution process.

4.1 Landscape pattern

Figure 2 is the present landscape pattern map of Daqing in 2000. It reveals a north–

south trend throughout the whole study area. Most of the agriculture is distributed

in the north and south-east, Lindian and Zhaozhou towns, while the city itself lies in

the east along the railway line between Haerbin city and Qiqihaer city. Most of the

lakes clump in the east of Daqing, Duerbote town, which is originally a huge pasture

with a continuum of grassland.

4.1.1 Patch characteristics of the study area. In Daqing, agriculture is the

dominant class and has large continuous patches, occupying 6793.09 km2 and

32.11% in the whole study area (figure 3, table 3). This can be attributed to

the regional characteristics and historical development of this area. The south

side of Daqing has fertile soil and sufficient rain for agricultural production.

Likewise, as a part of alluvial Songnen plain, the north side of Daqing,

Lindian town, is a traditional cultivation basin with ample rain and energy

source for farming use. Another dominant landscape is grassland, occupying

4905.67 m2 and 23.19% in the whole study area (table 3). Mass of grassland is

existent mainly in Duerbote grassland, with a large number of lakes and saline

inside.

Although the lake landscape does not own the largest area, it has the largest

average patch area (1.31 km2/each). The reason is obvious because lake has a natural

connection in space. Agriculture also has a high average area (1.15 km2/each)

although agriculture belongs to a human landscape. Forest, on the contrary, has the

smallest average area (0.12 km2/each). The result indicates that most of the forest in

the study area is fragmented or isolated. This is due to the extensive cultivation and

timber logging. From table 3, it can be discerned that wetland has a very high

PSCOV, so do agriculture and grass. Therefore, these three landscape types have

less even-area distribution among the patches. The village has the smallest PSCOV.

Since village is a particular man-made landscape type distributed around

agricultural land, results show an even-area distribution of village with a regular

shape in space.

Patch shape has significant ecological implications to support study of edge effect,

landscape change, and ecotone. Usually, the landscape type with an irregular shape

will achieve a high value in both edge density and shape index. Table 4 summarizes

the edge density and LSI derived in our study area. The high LSI value with the

grass landscape suggests an irregular shape and elongated edge of this class

throughout the whole study area. Agriculture and village also have high LSI and ED
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caused by the human disturbance. Compared to other landscapes, the lake and river

yield the lowest shape index since they are relatively straight edge.

In a further analysis of the patch shape, we compared AWMPFD to judge if the

landscape has the fractal characterization in different spatial resolutions, ranging

from 30–500 m. Figure 4 shows the high similarity in 30 m, 50 m, 100 m and 200 m.

However, the obvious decreasing of fractal dimension with river at 500 m suggests
river has a hierarchical structure at this resolution.

4.1.2 Spatial heterogeneity of the study area. The patch-based indices introduced

in the previous section characterize the patch size and patch shape, whereas the

Figure 2. The landscape pattern map of Daqing city in 2000.
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heterogeneity indices, on the other hand, allow for a better understanding of the

spatial characteristics and distribution of the landscape.

(1) SHDI

Table 5 shows the diversity, richness, and evenness of the landscape types in the

first level classification. The order of diversity through the study area is: natural

landscape 1.46.human landscape 0.81.semi-natural landscape 0.31. PD and PE

are two other indices used to measure the distribution of area among patch types

(table 5). Since agriculture and grassland, respectively, are two dominant classes

in human landscape and semi-natural landscape, both the human landscape and

Table 4. Landscape shape indices of Daqing city in 2000.

Classes LSI ED Landscape type LSI ED

Agriculture 46.33 12.11 Lake 8.29 1.64
City 15.29 3.57 River 5.35 0.84
Village 39.17 10.14 Saline 18.94 4.57
Grassland 51.31 13.47 Floodplain 15.36 3.59
Forest 11.84 2.62 Wetland 14.92 3.47
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Figure 3. Area of landscape classes.

Table 3. Area index analysis of Daqing Landscape in 2000.

Classes Area (km2) Patch # % area Average area (km2) PSCOV

Agriculture 6793.09 5888 32.11 1.15 3409.65
City 1025.25 3908 4.85 0.26 2286.56
Village 1899.80 10733 8.98 0.18 373.29
Grassland 4905.67 9905 23.19 0.50 3494.66
Forest 501.01 4228 2.37 0.12 582.83
Lake 1295.56 989 6.12 1.31 986.64
River 210.63 639 1.00 0.33 407.66
Saline 1338.29 3548 6.33 0.38 810.99
Floodplain 2076.34 2875 9.81 0.72 2701.09
Wetland 1111.65 4379 5.25 0.25 3157.78
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semi-natural landscape have larger patch dominance and smaller patch evenness

than the natural landscape does. Hence, the Shannon’s diversity and patch evenness

have obviously inverse relationship with the patch dominance.

(2) CONT

We derived the contagion index for each class in order to measure the clumping

trends of the patches in this class. In general, a higher CONT implies a more

contiguous and homogeneous spatial pattern. Figure 5 suggests that all the

landscapes have similar values (range from 0.84–0.98) in the CONT, and the

natural landscapes have a little higher value than the human-disturbed landscapes

do in terms of the CONT. The large CONTs in lake and floodplain suggest the

patches within these two landscapes are big in size and adjacent throughout the

study area. The village has the lowest value of CONT than other classes do.

Obviously, the villages spread out within the coverage of agriculture on the

landscape map without much spatial connection between each other.

(3) PI

Table 6 presents the mean nearest-neighbour distance (MNND), nearest-

neighbour standard deviation (NNSD), and nearest-neighbour index (NNI)

computed for the spatial distribution of patches to reflect underlying natural

processes or human-caused disturbance patterns within each landscape type. It is

easily discerned that agriculture has the smallest value with MNND and NNI

(3.12 km and 0.33), while the grassland has the smallest NNSD (2.82 km).

Agriculture is clustered across the landscape from north to south, resulting in

generally a larger NNSD than grassland. The largest NNI (0.55) value for wetland

Table 5. Shannon’s diversity indices of landscape types.

Classes Shannon’s diversity Patch dominance Patch evenness

Human landscape 0.81 0.29 0.73
Semi-natural landscape 0.31 0.38 0.45
Natural landscape 1.46 0.15 0.91
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implies a nearly random distribution with this natural landscape, while the largest

MNND (10.06 km) and NNSD (14.52 km) values for river indicate the least

clustering existed in river due to its elongated shape in the southern part of Daqing.

As a result of these proximity indices, a trend was disclosed: human-disturbed land-

scapes have smaller proximity value than natural landscapes because of significant

decrease of the distance among patches associated with the human activity.

(4) FI

Core-area indices, such as the total core area (TCA), core area percentage of

landscape (CPLI), or mean core area (MCA), proved to be useful to distinguish the
extent of fragmentation (table 7). River is the longest landscape and has the smallest

value in TCA and CPLI in this study area. However, as a continuous landscape,

river has higher MCA than forest and village. Such results showed that the TCA,

CPLI and MCA have different ecological meanings. In this research, we found

CPLI is more informative than TCA because it involves both the interior area and

edge area of patch in its calculation.

Figure 6 shows the relationship between the total area, core area, CPLI and ED.

In the correlation analysis between each of two indices, the edge density has less

relation with the area indices with the R2 as 0.7428 and 0.5921, while the area indices

has higher R2 as 0.9742 and 1. This suggests that ED, although it is an index to show

the fragmentation of the landscape, has a closer tie to the edge effect than the

interior ecological environment.

4.2 Landscape dynamics

4.2.1 Quantitative description of landscape dynamics. Over the past 10 years,

Daqing has experienced tremendous change. The total changed area between 1990–

1996 and 1996–2000 are 11 804.88 km2 and 10 843.31 km2 and the percentage is

55.84% and 51.27%, respectively. As indicated in figure 7, the most significant

change appears to be the spread of agriculture landscape, the destruction of the

forests, and the loss of wetlands, i.e. the increasing of the human landscape and the

decreasing of the natural landscape.

The trend of the number of each landscape class to change varied with the patch

area (figure 8). During the 10 years, the patch number of agriculture and city
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Table 6. Proximity indices for landscape classes.

Classes Agriculture City Village Grassland Forest Lake River Saline Floodplain Wetland

MNND (km) 3.12 4.30 3.78 3.86 5.34 9.82 10.06 4.61 5.21 6.08
NNSD (km) 3.78 6.38 3.17 2.82 7.54 11.96 14.52 6.58 7.03 6.30
NNI 0.33 0.37 0.54 0.53 0.48 0.42 0.35 0.38 0.38 0.55

Table 7. Core area indices for landscape classes.

Classes Agriculture City Village Grassland Forest Lake River Saline Floodplain Wetland

TCA (km2) 5129.36 599.74 719.34 3183.36 219.44 1074.60 90.75 754.28 1613.79 700.32
CPLI 24.24 2.84 3.40 15.05 1.04 5.08 0.43 3.57 7.63 3.31
MCA (km2) 0.87 0.15 0.07 0.32 0.05 1.09 0.14 0.21 0.56 0.16
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increased in the beginning and then decreased. This is primarily due to the ‘nibble’ of

other landscape classes around them by human disturbance. Gradually, these small

patches joined into a larger and continuous patch when human disturbances

increased. Forest decreased in both the patch area and number of patches during the

10 year period, due to its conversion to grass or cultivated lands. It is worth noting

that although the total area of wetland keeps decreasing during 1990–2000, the

patch number starts to increase during the second period, 1996–2000. This result

Figure 6. The relationship between total area, core area, core percentage landscape index,
and edge density.
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Figure 7. Comparison of landscape area of each class between 1990 and 2000.
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indicates a gradual fragmentation process of wetland. Shrinkage of small wetlands

and fragmentation in the edge of the large ones are mostly found in the north-west

of Daqing city.

The proportion analysis of changes in Daqing landscape provides not only the

‘from’ and ‘to’ information, but also the quantity of conversion area (table 8). The

major changes are summarized as follows:

N Grass was converted to cultivated land during the 10 years, especially between

1990 and 1996. This is in accordance with the significant decrease in the patch

number of grass landscape. Although the speed of conversion slows down from

1996 and some cultivated land was regained by the grass, the area of

agriculture still keeps on increasing due to the fact that other classes, such as

forest and wetland, were converted to agriculture.

N The percentage of forest landscape decreased from 7.86% in 1990 to 4.26% in

1996 and 2.37% in 2000. The fact can be attributed to the commercial logging

and expansion of agriculture in the beginning of the 1990s.
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Figure 8. Comparison of landscape patch number of each class between 1990 and 2000.

Table 8. The first five rank of the main change of Daqing landscape between 1990 and 1996
and 1996 and 2000.

Change type

1990–1996

Change type

1996–2000

Change
patch

Change
area (km2) % area

Change
patch

Change
area (km2) % area

Grassland to
agriculture

14720 1968.14 9.31 Agriculture to
grassland

14406 1452.42 6.87

Agriculture
to grassland

5602 754.96 3.57 Grassland to
agriculture

8249 1110.14 5.25

Forest to
grassland

3119 615.05 2.91 Grassland to
floodplain

2414 541.30 2.56

Wetland to
grassland

1674 488.03 2.31 Forest to
agriculture

2726 420.78 1.99

Forest to
agriculture

6264 439.87 2.08 Wetland to
grassland

1578 169.39 0.81
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N Wetlands kept on decreasing during these 10 years. It is found that most of the

wetland was converted to grassland (table 8). A general trend of landscape

change was revealed: wetland was degraded into grassland resulting in a more

fragmented wetland, whereas grassland was cultivated and taken over by

agriculture.

4.2.2 Spatial characterization of landscape dynamics. In this study, we applied

similar indices as those of landscape pattern analysis to characterize the change of

patch attributes and spatial heterogeneity of each class throughout the study area.

Since lake, river and floodplain are greatly affected by precipitation in the particular

year, we will not discuss the changes that occurred in these three landscapes. In the

following section, we detail analysis of two groups of landscape: (1) increasing

landscape, including agriculture, city, and saline; and (2) decreasing landscape,

including forest and wetland.

PSCOV and AWMPFD values with the increasing landscapes changed in a

similar fashion: decrease in the first period and then increase in the second period

(table 9). A possible explanation is that the increasing part is not sprawl out from the

original one, but gradually joins into a continuous one from little ‘spots’ around it,

resulting in a more irregular shape first and then becoming regular in the second

period. Thus, an opposite trend was reflected in LSI: increase first and then

decrease. On the contrary, wetland experienced a completely reversed process. The

‘spots’ along the irregular edge were replaced by the straight edges, and then

fragmented pieces were replaced by other landscapes. Thus, LSI of the wetland first

decreased, and then increased during 10 years. However, PSCOV, LSI, and

AWMPFD in forest, kept on decreasing during the 10-year period. The different

trend in the wetland and forest is explained primarily by their different manner of

conversion. Since the forest is more fragmented than the wetland, the small part of

the forest is likely to be replaced by other types directly instead of breaking into

pieces first.

The results of spatial characterization indices suggest that these indices, as the

indicators of relation between the patches, provide complementary information to

those shape characterization indices (table 10). The CPLI showed the same trend

with the total area, increasing in the growing class and decreasing in the reduced

landscape. CONT in agriculture and city showed a slight decline in the first period

and followed by a significant increase, while the CONT in saline was steadily

Table 9. Patch attribute indices of Daqing during 10-year period.

Classes

PSCOV LSI AWMPFD

1990 1996 2000 1990 1996 2000 1990 1996 2000

Agriculture 40.60 31.47 34.10 47.52 63.22 46.33 1.26 1.22 1.26
City 20.54 10.49 22.87 19.54 23.37 15.29 1.15 1.13 1.18
Village 5.46 3.83 3.73 37.54 38.59 39.17 1.14 1.11 1.12
Grassland 50.84 20.15 34.95 60.04 42.63 51.31 1.27 1.19 1.22
Forest 16.31 8.32 5.83 25.64 18.04 11.84 1.16 1.12 1.10
Lake 7.63 7.80 9.87 10.07 9.71 8.29 1.09 1.09 1.11
River 6.18 10.15 4.08 4.61 5.77 5.35 1.21 1.18 1.16
Saline 11.03 6.36 8.11 15.60 22.44 18.94 1.16 1.14 1.15
Floodplain 16.27 22.32 27.01 27.00 19.95 15.36 1.18 1.22 1.23
Wetland 28.58 30.70 31.58 16.34 13.07 14.92 1.23 1.19 1.18
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increasing during the 10 years. The difference was caused by the limitation in spread

direction of saline. Since the saline usually distributes along the lake, it always

sprawls in one direction and keeps on increasing in the CONT during these years.

All the increasing landscapes had the same trends in SHDI and NNI, which

increased first and then decreased. For the typical decreasing landscape, the forest

and the wetland, SHDI was always increasing and CONT was always decreasing,

which means more and more patches become fragmented and isolated. The different

trend in NNI between forest and wetland also implies two different shrinking ways

associated with them. The direct replacement of small forest patch by other types

drags the NNI up in the beginning. After the small patches finished their conversion,

large forest patches are also fragmented into small pieces along the edge, which pulls

NNI value back. On the contrary, wetland, continuous in the beginning, was

fragmented along its edge first and then replaced by other landscapes. This caused

the NNI to decrease first and then to increase.

5. Conclusion

The quantitative analysis of landscape pattern using multi-temporal Landsat TM

imagery enabled us to characterize the internal structure of landscape, compare the

landscape classes, and monitor the landscape dynamics throughout Daqing city.

This study explored the potential of satellite remote sensing, digital image

processing, and GIS-related techniques in producing accurate landscape maps and

statistical analysis of the landscape pattern.

This study revealed that spatial indices built on the classified vectors were useful

to detect landscape pattern and its changes. The modified perimeter–area ratio and

fractal dimension were found to be effective in the identification and description of

the shapes of landscape types. The SDI reveals the patch diversity at landscape level

for natural landscape, semi-natural landscape, and human landscape; CI measures

the degree of contiguity and homogeneity by revealing the clumping trends of

patches for each class; PI reflects underlying natural processes or human-caused

disturbance patterns; while FI measures the degree of fragmentation by the area of

interior habitat. All these spatial heterogeneity indices have great potential in

providing useful information about the overall spatial pattern of the landscape.

With incorporation of more and more biophysical or social–economic factors in the

research of this topic, the spatial statistics methods will demonstrate their unique

role in the quantitative analysis of landscape ecology.

Table 10. Spatial heterogeneity indices of Daqing during 10-year period.

Classes

SHDI CONT NNI CPLI

1990 1996 2000 1990 1996 2000 1990 1996 2000 1990 1996 2000

Agriculture 3.47 4.49 3.14 0.92 0.90 0.93 0.42 0.55 0.33 0.17 0.22 0.24
City 6.19 6.96 4.67 0.85 0.83 0.90 0.54 0.70 0.37 0.02 0.02 0.03
Village 7.65 8.21 7.94 0.84 0.82 0.85 0.52 0.64 0.54 0.03 0.02 0.03
Grassland 3.82 4.52 4.76 0.90 0.92 0.91 0.50 0.43 0.53 0.17 0.16 0.15
Forest 5.55 6.04 6.50 0.89 0.87 0.86 0.48 0.60 0.48 0.04 0.02 0.01
Lake 4.47 4.27 3.69 0.96 0.96 0.96 0.45 0.53 0.42 0.05 0.06 0.05
River 2.21 4.43 4.65 0.94 0.90 0.89 0.16 0.35 0.35 0.01 0.01 0.00
Saline 5.57 6.30 5.73 0.88 0.89 0.90 0.49 0.60 0.38 0.02 0.03 0.04
Floodplain 5.07 4.05 2.41 0.90 0.92 0.95 0.45 0.42 0.38 0.06 0.06 0.08
Wetland 3.02 3.07 4.16 0.93 0.93 0.91 0.47 0.45 0.55 0.05 0.04 0.03
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Landscape dynamics throughout the study area were estimated based on the

analysis of multi-temporal maps. This analysis indicated that from 1990 to 2000,

Daqing city experienced a vast amount of change due to the oil exploration. The

sprawl of city directly leads to the cultivation of the grassland, the loss of forests and

wetlands. Based on the derived index, a general trend of landscape change was

revealed: wetland was degraded into grassland resulting in a more fragmented

wetland, whereas grassland was cultivated and taken over by agriculture.

Current research results can be further improved from the following three aspects.

First, to minimize classification errors caused by spectral similarity of land cover

types, the contextual knowledge should be taken into account in the classification to

solve the belonging of ‘confused’ pixels. This will lead to a more accurate result in

the landscape pattern and dynamics analysis. Second, ecological, social, political,

and economic factors should be incorporated in the analysis of change detection.

The added awareness of the landscape context from these factors will assist in

making objective statements about the changes in time series. Finally, the emphasis

of this study is to assess landscape complexity and its dynamic process in the past

and current time. A natural future development of our study is to predict future

landscape pattern by combining spatial statistics with prediction models, such as the

Markov model or cellular Automata model.
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