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Invasive species disrupt landscape patterns and compromise the functionality of ecosystem processes. Non-
native saltcedar poses significant threats to native vegetation and groundwater resources in the southwestern
U.S. and Mexico, and quantifying spatial and temporal distribution patterns is essential for monitoring its
spread. Considerable research focuses on determining the accuracy of various remote sensing techniques for
distinguishing saltcedar from native woody riparian vegetation through sub-pixel, or soft classifications.
However, there is a lack of research quantifying spatial distribution patterns from these classifications, mainly
because landscape metrics, which are commonly used to statistically assess these patterns, require bounded
classes and cannot be applied directly to soft classifications. This study tests a new method for discretizing
sub-pixel data to generate landscape metrics using a continuum of fractional cover thresholds. The developed
approach transforms sub-pixel classifications into discrete maps compliant with metric terms and computes
and interprets metric results in the context of the region to explain patterns in the extent, distribution, and
connectivity of saltcedar in the Rio Grande basin. Results indicate that landscape metrics are sensitive to sub-
pixel values and can vary greatly with fractional cover. Therefore spectral unmixing should be performed
prior to metric calculations. Analysis of metric trends provides evidence that saltcedar has expanded away
from the immediate riparian zones and is displacing native vegetation. This information, coupled with control
management strategies, can be used to target remediation activities along the Rio Grande.
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1. Introduction

Invasive species threaten the environment and ecosystem health
by disrupting natural landscape patterns and interfering with
ecosystem processes (Dukes & Mooney, 2004; Vitousek et al., 1997).
Saltcedar (Tamarix spp.) is recognized as one of the most invasive
vegetation species, particularly across the southwestern United States
and Mexico (Morisette et al., 2006). The shrub-like weed persists in
drought conditions by outcompeting native vegetation for water
resources, but offers fewer benefits to wildlife (Everitt & DeLoach,
1990). Impacts of saltcedar invasion are most pronounced in the Rio
Grande basin where limited water supplies are increasingly depleted
by its presence. Quantifying spatial and temporal distribution patterns
of saltcedar is essential for monitoring and predicting its spread for
ecosystem management.

Remote sensing is used extensively for saltcedar detection (Everitt
et al., 1996), and classification procedures for differentiating saltcedar
from native vegetation are tested rigorously (Everitt & DeLoach, 1990;
Groeneveld & Watson, 2008; Hamada et al., 2007; Narumalani et al.,
2009; Pu et al., 2008; Silván-Cárdenas & Wang, 2010; Wang & Silván-
Cárdenas, under revision). Sub-pixel or soft classification methods,
which assign each pixel multiple fractions according to various land
covers (Keshava & Mustard, 2002; Roberts et al., 1998; Song, 2005),
are often the most expedient means to obtain detailed saltcedar
information when high resolution imagery cannot be obtained.
Silván-Cárdenas and Wang (2010) tested various sub-pixel classifi-
cation techniques for saltcedar detection and found that these
procedures enhance the utility of Landsat data for tackling the
saltcedar invasion problem.

Advances in remote sensing have refined and improved sub-pixel
classification methods, but there is a notable lack of research
extrapolating spatial pattern information from these soft classifica-
tions in order to quantify saltcedar distribution. Research has estab-
lished that landscape structure patterns influence ecological
processes (Bekker et al., 2009; Mas et al., 2010), and these spatial
patterns can be measured for remote sensing classifications using
landscape metrics (Bekker et al., 2009; Brown et al., 2000; Harold
et al., 2005; Kamusoko & Aniya, 2007; Soto et al., 2009; Southworth
et al., 2004). Walsh et al. (2008) also found that coupling spectral
measurements with metric analysis can provide insight into the
process of invasion, yet there are no known studies applying
landscape metrics to saltcedar data.

This noted dearth of research is likely due to a computational
limitation of landscape metrics in which discrete classes with hard
boundaries are required formetric analysis. Sub-pixel classifications, a
common approach for saltcedar detection, generate fractional land
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covers. These proportional values form continuously changing land
cover gradients across the study area and do not produce discrete
class boundaries. Sub-pixel classifications therefore cannot be directly
subjected to metric calculations.

A handful of studies have attempted to resolve this issue by
reclassifying sub-pixel proportions into hardened regions according
to proportional ranges (e.g., 0–0.1, 0.1–0.2, 0.2–0.3, etc.) and
computing separate metrics for each range (Rashed, 2008; Van de
Voorde et al., 2009; Walsh et al., 2008) without regard for values
above or below the range limits. This range method is suitable for
analysis of specific proportional ranges but is not optimal for
analyzing entire landscapes, especially in the context of invasive
species. The degree of spread of an invasive species correlates with
local abundance (Affre et al., 2010), and higher degrees of spread have
been found to have greater detrimental impacts on native vegetation
(deWinton & Clayton, 1996). Based on this logic, it is imperative to
include all pixels with fractional cover greater than the chosen
threshold when discretizing sub-pixel classifications for metric
analyses. These pixels exceedingly satisfy the selected criteria for
saltcedar proportion and represent, at minimum, equivalent stress to
the system, therefore it is appropriate to include them when
computing metrics.

This study tests a new method for discretizing sub-pixel
classifications for metric analysis by setting a continuum of fractional
cover thresholds and converting continuous cover fractions to
discrete cover classes based on fractional cover thresholds. The
study subjects multiple sub-pixel classifications to this threshold
approach in order to calculate landscape metrics, and interprets
metric results to explain spatial and temporal distributions of
saltcedar across the study area. The objectives of the research are to
(1) compare the Soft Maximum Likelihood Classification (SMLC;
Foody et al., 1992) and the Tessellated Spectral Linear Unmixing
(TLSU; Silván-Cárdenas & Wang, 2010) techniques for sub-pixel
saltcedar detection using a time series of Landsat TM data, (2) test a
threshold continuum approach for reclassifying sub-pixel fractional
cover from soft classification results in order to calculate landscape
metrics, (3) analyze the spatial patterns of saltcedar and interpret
them according to the extent, distribution and connectedness of
growth across the landscape, and (4) compare saltcedar patterns to
native vegetation patterns to determine if coupled landscape
structure changes are occurring in the ecosystem.
Fig. 1. Location of the study site, the Forgotten River Reach of the Rio Grande. Red false-c
2. Study area and data

2.1. Study area

The Forgotten River is an approximately 100 km stretch of the Rio
Grande, between 30°23′–29°35′N latitude and 104°50′–104°24′ W
longitude, that runs along theMexico–U.S. border and is one of the least
researchedareas of theentire river system. The studyarea consists of the
vegetated riparian zone on both sides of the river (Fig. 1), comprised
mostly of saltcedar with mixes of native willow (Salix spp.) and
mesquite (Prosopis spp.). The climate in the region is semi-arid to arid,
with average annual rainfall amounts of less than 30 cm andmaximum
summer temperatures as high as 40 °C. Topography is characterized by
canyons and small valleys with elevation ranging from 700 m to 950 m.
In general, water resources in the region are scarce, and the presence of
saltcedar exacerbates shortages.

2.2. Image pre-processing

Three Landsat TM images (30-m spatial resolution), acquired from
Path 31, Row 39 on 29 December 2000, 8 December 2004, and 3
December 2008, provide the basis for quantifying saltcedar spatial
pattern changes over time. Late fall–earlywinter is the optimal time to
distinguish saltcedar from remotely sensed images as the foliage turns
a yellow-orange-brown color, and the spectral characteristics are
vastly different from the surrounding native vegetation (Everitt &
DeLoach, 1990; Everitt et al., 1996).

Landsat TM images were georeferenced to a base Landsat 7 ETM+
image with root mean square errors of 0.011, 0.011 and 0.008 pixels
respectively. The ETM+ image was acquired on 19 December 2005,
concurrent with the acquisition of an Airborne Imaging Spectro-
radiometer for Applications (AISA) image on 21 December 2005
obtained for hyperspectral endmember selection. AISA was calibrated
to measure 61 bands in the range of 430 to 1000 nm at a spatial
resolution of 1 m. Georeferencing the TM images to the ETM+ image
collected coincident with AISA provided continuity between the two
datasets. TM images were corrected for atmospheric effects using the
iteratively re-weighted Multivariate Alternation Detection (IR-MAD)
technique (Canty & Nielsen, 2008) with a synthetic Landsat image
(AISA30) serving as reference data. AISA30 was produced by spectral
resampling the AISA image using ENVI's built-in filter functions and
olor composite of cropped Landsat imagery emphasizes the vegetated riparian zone.
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spatial resampling the image using an average filter function tool to
match the resolution of the Landsat TM images. Spectral subsets
(Bands 1–4) of the Landsat TM images were selected to correspond
with the spectral range of AISA, as this range has been shown to be
effective for saltcedar discrimination (Everitt & DeLoach, 1990).
Finally, images were masked to include only the vegetated buffer on
either side of the Forgotten River.

3. Methods

The methodology consists of three sequential stages (Fig. 2). In the
first stage, the Landsat images are subjected to two soft classification
Fig. 2. Three stages of the methodology. At each stage, data are processed (white
rectangles) and new datasets are generated (gray rectangles), which form the inputs
for the next stage. In Stage I, Landsat TM images are classified using two sub-pixel
classification techniques to derive fractional covers. In Stage 2, sub-pixel fractional
covers are discretized into nine separate maps, one for each threshold value, and pixels
recoded 1 for inclusion, or 0 for exclusion in metric analyses. In Stage 3, discretized
maps are subjected to landscape metric analysis.
techniques in order to derive sub-pixel fractional cover values for
multiple land cover classes. In the second stage, the fractional covers
are reclassified into discrete values using the proposed threshold
continuum approach. Lastly, landscape metrics are computed to
characterize the spatial structure of saltcedar across the landscape.
Saltcedar metrics are analyzed across time and also compared to
spatial patterns for native woody riparian vegetation to determine if
saltcedar landscape structure changes are coupled with correspond-
ing, opposite changes for the native vegetation.

3.1. Sub-pixel classification

Each Landsat TM image is subjected to two sub-pixel classification
techniques to derive fractional land cover values: (1) SMLC and
(2) TLSU.

3.1.1. Soft maximum likelihood classification (SMLC)
Maximum likelihood classification (MLC) is the most common

supervised classification technique for remote sensing data (Richards
& Jia, 1999) and has proven to be the most robust method when
spectral information is normally distributed (Bischof et al., 1992). The
discriminant function calculated for each pixel maximizes the
posterior probability that a pixel belongs to a certain land cover
class and assigns each pixel to a single class according to the highest
probability.

The posterior probabilities from MLC, which have been shown to
be related to land cover proportions in a pixel (Foody et al., 1992; Hill
et al., 2007) serve as the fractional land covers in SMLC. In this study,
three classes are defined: saltcedar, native woody riparian vegetation
(native), and other. We are limited in the number of classes based on
the availability of four Landsat TM bands that coincide with the
spectral range of AISA. The first two classes are defined by the
biological focus of the study to discern saltcedar from all other native
woody riparian vegetation species. The third class, other, includes
very diverse spectral characteristics and is intended to capture all
other types of non-woody vegetation as well as all other non-
vegetated land covers. Table 1 lists the specific land covers included in
each class.

Training samples were selected from GPS polygons of vegetated
areas collected during field campaigns in November 2004 and
December 2005. Training samples were verified against the AISA
image acquired concurrent with the 2005 field campaign and high
resolution aerial photography from 1996, 2004, and 2008 (Texas
Water Development Board, 2010). Care was taken to ensure that
training pixels selected for the 2000 image did not change land cover
class from 1996 to 2004, and it was assumed that these pixels retained
their same land cover in 2000. A total of 298, 293, and 379 training
pixels were selected for the 2000, 2004, and 2008 images, respec-
tively. From the training samples, SMLC calculates the probability
(0.0–1.0) that a pixel belongs to each class with the constraint that the
three probabilities, which serve as the fractional land cover values,
must be non-negative and sum to one. Accuracy is assessed using the
sub-pixel confusion–uncertainty matrix (SCM; Silván-Cárdenas &
Wang, 2008) which utilizes a finer resolution image for reference data
and does not rely on test samples from the original images. Refer to
Section 4.1 for explanation of the accuracy assessment and collection
of reference data.

3.1.2. Tessellated linear spectral unmixing (TLSU)
TLSU (Silván-Cárdenas & Wang, 2010) is based on Delaunay

tessellations where spectral endmembers form the vertices of a
simplex (i.e., a triangle in two-dimensional space, tetrahedron in
three-dimensional space, etc.). A mixed pixel is plotted in spectral
space, and enclosing endmembers are selected based on spectral
proximity to the mixed pixel. The pixel is linearly unmixed as a
combination of three endmembers, originating from each of the three

image of Fig.�2


Table 1
Land cover types for the three classes.

Class Land cover types

Saltcedar Saltcedar (Tamarix spp)

Native woody riparian vegetation Mesquite (Prosopis glandulosa)
Poverty weed (Iva axillaris Pursh)
Willow (Salix spp)
Gray brush
Marshy weed (Limnophila spp)
Native bushes

Other Grasses (all types)
Creosote bush (Larrea tridentate)
Sand
Desert gravel
Paved road
Roof
Water (shallow and deep water bodies)
Wetland
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classes: saltcedar, native woody riparian vegetation, and other (see
Table 1). Spectral signatures for endmembers were collected during
the 2004 and 2005 field campaigns. Unmixing results are reported as
non-negative fractions and must sum to one for each pixel. Silván-
Cárdenas and Wang (2010) found that TLSU outperforms both
unconstrained and fully constrained linear spectral unmixing
methods, while non-linear approaches show only marginal improve-
ment but with significant computational burden. TLSU calculations
were completed in Matlab technical computing environment (The
Mathworks, Inc. 2002) and utilize averaged hyperspectral vegetation
measurements obtained from AISA using the ground truth GPS points
and polygons for vegetated areas collected during the field campaigns
that occurred during the late fall–early winter periods of 2004 and
2005. Additional polygons for non-vegetated endmembers were
selected directly on-screen from visual image interpretation.

3.2. Threshold continuum reclassification

The SMLC and TLSU fractional values must be modified before
implementing landscape metrics since metrics are only directly com-
Fig. 3. Examples of discretized maps using (a) the range approach and (b) the threshold c
assigned a value of 1 and are included in metric analyses. White pixels do not satisfy the crite
generate sporadic, isolated pixels (0.0–0.1 and 0.1–0.2), and can produce a ‘donut hole’ eff
fractional cover value.
patible with hard classifications. Past studies have employed a range
approach to harden soft classifications whereby pixels are grouped
based on distinct proportional ranges. Pixels satisfying the criteria at
each range are hardened into separate groups for metric analysis
(Rashed, 2008; Van de Voorde et al., 2009; Walsh et al., 2008). This
approach separates pixels using upper and lower limits and does not
consider values above or below the range extent. Reclassifying the data
in thismannerpromotes sporadic, isolatedpixels andpatches (groups of
connected, similar pixels) and can create a ‘donut hole’ effect (Fig. 3a),
which can lead to inaccurate and unreliable metric calculations.

The threshold continuum approach is tested here as an alternative
to the range approach and incorporates the continuous spectrum of
fractional covers into landscape metric calculations. The threshold
approach treats the landscape as a gradually changing gradient and
eliminates problems associatedwith the range approach by aggregating
all pixels with values greater than the threshold value and reassigning
pixel values through binary reclassification (Fig. 3b). All pixels
exceeding a cutoff value are reclassified as 1 and included in the metric
calculation. All pixels below the cutoff value are assigned a value of
0 and excluded from metric calculations. This binary reclassification is
repeated at each threshold increment. In this way, the landscape is
characterized according to a continuum of established minimum pro-
portions of saltcedar that can be related to the degree of invasion.

Themain advantage to the threshold approach is thatmetrics can be
compared across the continuum of threshold values to determine how
landscape structure is changing as the proportion of saltcedar increases.
Additionally, data loss that typically results from discretizing soft
classifications isminimizedby the ability to set infinitely small threshold
increments. Key thresholds can also be identifiedwhere spatial patterns
show the greatest response to changes in saltcedar proportion. The
threshold continuum approach for calculating landscape metrics on
sub-pixel data and analyzing those results in terms of vegetation cover
changes represents a methodological contribution of this study.

Each of the SMLC and TLSU results was reclassified into nine
discrete maps of saltcedar presence–absence using the threshold
continuum approach. The nine maps were derived by partitioning the
sub-pixel data at nine threshold values set in 0.1 increments from 0.0
to 1.0. All pixels with saltcedar proportions greater than or equal to
the threshold break were assigned a value of 1 and all other pixels
were assigned 0. For example, when the 0.3 threshold is applied, all
ontinuum approach. Gray pixels satisfy the respective range or threshold criteria, are
ria, are assigned a value of 0 and omitted frommetric analyses. The range approach can
ect (0.3–0.4). The threshold approach generates a more contiguous landscape at each
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Fig. 4. Conceptual illustration of increasing degrees of (a) cohesion and (b) normalized
landscape shape index (nLSI). As cohesion increases, gray pixels become more
connected. As nLSI increases, patch shapes become more complex and less compact.
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pixels with fractional cover of 0.3 and greater are coded 1 (refer to
Fig. 2, Stage 2). Pixels with proportions below 0.3 are coded 0 and
omitted from metric analyses. In order to eliminate the 0.0 threshold
case where every pixel is included and metrics are calculated for one,
single, homogeneous patch occupying the entire study area, 0.1 was
chosen as the starting threshold.

3.3. Landscape metric analysis

Landscapemetricswere calculated using FRAGSTATS 3.3 (McGarigal
et al., 2002). FRAGSTATS is a spatial pattern analysis software program
that can compute a host of landscape metrics; however, many of these
measures are redundant (Tang et al., 2005). The number of patches
(NP), patch size coefficient of variation (PSCOV), patch cohesion index
(Cohesion), and normalized landscape shape index (nLSI) were chosen
to characterize fragmentation, connectedness, and shape complexity.
These metrics were selected because they provide insight into the
changing spatial patterns of saltcedar with reduced redundancy. A total
of 216 metric values were calculated (2 classifications 3 years 9
thresholds 4 metrics=216 values).

NP (Forman & Godron, 1986; McGarigal & Marks, 1995) is a count
of the number of patches at each fractional cover threshold and
provides information on fragmentation. Patches are defined here as a
contiguous group of pixels based on the eight-neighbor rule. Large NP
indicates a fragmented landscape.

NP = ni ð1Þ

where

n= the number of patches of class i.

PSCOV (McGarigal & Marks, 1995) is a measure of the distribution
of area among patches. Large PSCOV indicates less uniformity in size
among the patches and therefore usually signifies greater fragmen-
tation. Coefficient values are percentages that are greater than or
equal to zero with no upper limit.

PSCOV =
PASD
MNPA

100ð Þ ð2Þ

where

PASD= Patch Area Standard Deviation

PASD =
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MNPA= Mean Patch Area

MNPA =
∑
n

j=1
xij

ni
ð4Þ

and

ni= the number of patches of class i
xij= area of patch j of class i.

Cohesion (Schumaker, 1996) measures the physical connected-
ness of patches at each fractional cover threshold and is computed
from patch area and perimeter. It is generally accepted that patches
will gradually merge as the proportion of patch cells in the landscape
increases, eventually forming one, large, highly-connected patch.
Cohesion increases with increasing patch cells until an asymptote is
reached near the critical proportion. Above this value, the cohesion
index is no longer sensitive to patch configuration (Gustafson, 1998).

COHESION = 1−
∑
n

j=1
pij

∑
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pij

ffiffiffiffiffi
aij
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pij= the perimeter of patch i of class j (in terms of the number of
cell surfaces)

aij= the area of patch i of class j (in terms of the number of cells)
A= the total number of cells in the landscape
n= the number of patches of class i.

Cohesion values are unitless and range from 0 to 100. As values
approach zero, the patches become increasingly fragmented and less
connected. Higher cohesion values indicate a more connected
landscape (illustrated in Fig. 4a), however cohesion will equal zero
when the landscape consists of a single patch.

The metric nLSI (Patton, 1975; McGarigal & Marks, 1995)
measures the aggregation of a particular land cover by quantifying
the amount of edge surface relative to the amount that would be
present for a landscape with equal size but having a simple geometric
shape and no internal edge (McGarigal & Marks, 1995).

nLSI =
ei− min ei

max ei− min ei
ð6Þ

where

ei = total length of perimeter in terms of the number of cell
surfaces

min ei = minimum possible total length of perimeter of class i in
terms of the number of cell surfaces

max ei = maximum possible total length of edge perimeter of class i
in terms of the number of cell surfaces.
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Fig. 5. Saltcedar classification results for (a–c) soft maximum likelihood classification
(SMLC) and (d–f) tessellated linear spectral unmixing (TLSU) for a portion of the study
area. Dark red pixel indicate high proportions of saltcedar and dark green pixels
indicate low proportions.
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nLSI ranges from 0 to 1 and attains its minimum value, zero, when
the patch is completely regular (i.e., a circle or a square). It increases
as the patch becomesmore complex (Fuller, 2001; O'Neill et al., 1999)
with long, thin shapes, being the most complex and having the
highest nLSI values (Raines, 2002) (illustrated in Fig. 4b).

Metric results are analyzed across classifications, threshold values,
and time in order to interpret the changing spatial patterns of
saltcedar in the study area. The three-stage methodology applied to
saltcedar is also applied to native woody riparian vegetation in order
to compare the two and determine whether native vegetation and
saltcedar landscape structure changes in the study area are interre-
lated. Comparison of the spatial and temporal patterns of saltcedar to
those of native vegetation can reveal correlated changes and may
provide insight into the process of invasion.

4. Results and discussion

4.1. Sub-pixel unmixing results

Classification results for SMLC and TLSU are shown in Fig. 5. SMLC
results display distinct very high (dark red hues) and very low (dark
green hues) sub-pixel saltcedar proportions with few pixels classified
in intermediate ranges. TLSU results yield considerablymore variation
in sub-pixel proportions across the landscape, and the three images
display a wider range of intermediate red and green tones. Based on
field observation, saltcedar is intermixed with native vegetation and
occurs in varying proportions as the TLSU results suggest, not solely in
dense monocultures as the SMLC results suggest.

Accuracy was assessed using the composite operator proposed by
Pontius and Cheuk (2006) and evaluated using SCM (see Silván-
Cárdenas & Wang, 2008). Due to the difficulty of collecting ground
truth fractional coverage data in the field, SCM relies on reference
fractions developed from a finer resolution image, in this case the AISA
image. AISA was classified through MLC using training samples from
the vegetated GPS polygons collected during the 2004 and 2005 field
campaigns. A total of 610, 613, and 610 training pixels were chosen for
saltcedar, native woody riparian vegetation, and other, respectively.
The large number of training pixels is needed given the 61 spectral
bands of AISA. The classification was spatially resampled to 30 m to
match the resolution of the TLSU and SMLC classifications, and
precise land cover fractions were assigned to each pixel during the
resampling process to serve as reference data. A total of 1600
reference pixels were selected and measured against corresponding
pixels from the three images. No high resolution satellite imagery is
available over the study area for 2000 and 2008, therefore those
classifications were assessed using the AISA image. However, the
areas selected for the accuracy assessment did not change substan-
tially over the eight-year period, and the accuracy assessment is not
expected to be highly impacted by the different image acquisition
dates.

Overall, TLSU results were more accurate than SMLC results, with
fuzzy kappa coefficients, which are a generalization of the fuzzy
classification of the kappa coefficient used for hard classifications (see
Silván-Cárdenas & Wang, 2008), of 0.92, 0.94 and 0.92 for the 2000,
2004 and 2008 TLSU classifications, versus 0.83, 0.90 and 0.93 for the
same respective SMLC classifications. Based on visual comparison of
the classified images combined with field observation and the
accuracy assessment, it can be concluded that TLSU is more accurately
predicting the spatial extent and sub-pixel proportions of saltcedar in
the study area compared to SMLC.

4.2. Discretization

The threshold continuum approach is introduced in this study as
an alternative to the range approach for discretizing sub-pixel
classifications for metric analyses. A comparison of the range and
threshold approaches (Fig. 6) shows major differences in both the
number of pixels included at each threshold value and the distribution
of pixels across the ranges/threshold values. For the range approach
(Fig. 6a), the number of pixels in each of the nine ranges is nearly
uniform for both SMLC and TLSU. When pixels are reclassified using
the threshold approach (Fig. 6b), all pixels above the threshold value
are cumulated. Therefore, a larger number of pixels (and a larger
portion of the study area) are analyzed at each threshold value
compared to the range method. There is also a continuous, gradual
decline in the number of pixels as threshold increases, creating a
progressively changing landscape in terms of the number of pixels
assessed at each threshold. While the proposed threshold approach
improves the method for discretizing sub-pixel data for analysis of
invasive species spatial patterns by including a more comprehensive
range of fractional covers, it still constitutes a hardening of soft data.
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Fig. 6. Comparison of the number of pixels included at each discretization step using (a) the range approach versus and (b) the threshold approach. The range approach produces a
nearly uniform distribution of pixels for both the soft maximum likelihood classification (SMLC) and tessellated liner spectral unmixing (TLSU). For the threshold approach, each
threshold includes all pixels greater than or equal to the value. Therefore, the number of pixels continuously decreases as threshold increases, and the overall number of pixels is
greater since pixels are cumulated at each threshold value. 2008 classifications were used in this comparison, but 2000 and 2004 classifications exhibit similar trends.
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Therefore, some inherent sub-pixel detail will ultimately be lost,
especially when coarse threshold increments are applied.

Compared to the range approach, the threshold method is more
suitable for characterizing the landscape along a continuum of
established minimum land cover proportions that can then be related
to the degree of invasion or spread of vegetation. However, the range
approach does offer benefits for certain types of analyses that are not
attainable with the threshold approach. Specifically, in situations
where only low or very specific ranges of land cover proportions are
desired, the range approach should be utilized. Additionally, when
characterizing spatial patterns using the threshold approach, re-
searchers should be aware that for low thresholds, themetrics include
a wide variation of land covers and therefore characterize a
heterogeneous landscape. For studies seeking to analyze only uniform
pixels, the range approach is better suited.
Fig. 7. Metric values for soft maximum likelihood classification (SMLC) and tessellated line
fractional cover thresholds for (a) number of patches (NP), (b) patch size coefficient of var
values are linearly interpolated to produce curves.
4.3. Spatial pattern analysis

The landscape metric results for the SMLC and TLSU techniques
exhibit very different patterns (Fig. 7). In all four metrics tested, SMLC
values remain nearly constant across the fractional cover ranges. In
contrast, TLSU curves change significantly across thresholds. This
indicates that landscape structure varies as sub-pixel proportions are
increased. In terms of NP, the TLSU curve (Fig. 7a) peaks at the 0.3
threshold with 5640 patches. The most patches of saltcedar occur at
this proportion, and therefore this is the proportion where the
landscape is most fragmented. After the peak, the TLSU curve
decreases steadily across the remaining thresholds. The correspond-
ing SMLC curve does not show any fluctuations in NP and provides
little additional information regarding the state of fragmentation of
the landscape at different saltcedar fractional covers. PSCOV also
ar spectral unmixing (TLSU) classification results for saltcedar plotted across the nine
iation (PSCOV), (c) cohesion, and (d) normalized landscape shape index (nLSI). Metric
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Fig. 8. Comparison of 2000, 2004, and 2008 metric values for saltcedar fractional cover thresholds for (a) number of patches (NP) and (b) normalized landscape shape index (nLSI).
Values are calculated using tessellated linear spectral unmixing (TLSU) results and are linearly interpolated to produce curves.

Table 2
Change in area (ha) over time for the three classes.

Class 2000 2004 2008 Overall change

Saltcedar 3094 3273 4032 +938
Native woody riparian vegetation 3667 3303 3566 −102
Other 13,831 14,016 12,994 −837
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provides insight on fragmentation, and TLSU curves are again more
variable than SMLC curves (Fig. 7b). TLSU values decline across the
thresholds and range from a maximum of 2125 to a minimum of 107.
High PSCOV values for TLSU at low thresholds gives further evidence
that the landscape is most fragmented at low saltcedar proportions.
Values for SMLC range from 865 to 465 with minimal fluctuations
aside from a slight drop at the 0.9 threshold.

Cohesion results (Fig. 7c) follow the same trends seen thus far:
TLSU curves vary across the thresholds while SMLC curves remain
stable. The TLSU curve reaches a plateau at approximately the 0.3
threshold. This point where the asymptote is reached is referred to as
the critical threshold and signifies the cohesion index is no longer
sensitive to patch configuration (see Section 3.3). At thresholds below
0.3, the TLSU results are not sensitive to landscape cohesion. However,
TLSU is sensitive to changes across most of the threshold increments
and provides information on the varying degree of landscape
connectedness as sub-pixel proportion increases. The SMLC asymp-
tote is reached at 0.8, which implies that SMLC results are only
sensitive to patch connectedness at the highest proportion of
saltcedar.

The nLSI curves for TLSU and SMLC are similar in shape (Fig. 7d),
but TLSU values span a larger range (0.29–0.81 versus 0.14–0.32 for
SMLC) signifying that patch shape complexity for TLSU changes more
extensively as threshold increases.

Metric results presented in Fig. 7 are for the 2008 dataset, however
similar patterns were observed for the 2000 and 2004 datasets. In
general, metrics for SMLC results are less responsive to changes in
fractional cover than TLSU and demonstrate only minor variations
across the threshold continuum. The greater variation in metrics
derived from TLSU is likely because TLSU is formulated to consider
intra-class spectral endmembers when unmixing each pixel and is not
limited to the three general classes. TLSU has showed superior
performance to other linear mixture methods in deconstructing each
pixel into its precise combination of land covers, a result that is
attributed to the intra-class variability of spectral signatures (Silván-
Cárdenas & Wang, 2010). This improved accuracy is propagated into
the spatial pattern results, and the metrics based on TLSU classifica-
tions consequentially capture more variation in the landscape
structure.

Critical thresholds, or points where the shape and slope of the
curves change, also provide insight regarding indicative proportions
at which significant landscape changes occur. From the results
presented in Fig. 7, these critical thresholds occur consistently
between 0.3 and 0.7 for each metric. This pattern in the location of
critical thresholds is an interesting finding of this research and may
prove useful in isolating the land cover proportions that affect the
greatest changes in landscape structure. Further investigation is
needed to determine the specific optimal fractional cover thresholds
or threshold ranges for each metric, but this is a promising area for
future research.

Based on the interpretation of the SMLC and TLSU results,
unmixing methods can have varying effects on associated metrics.
For SMLC, we observed very little change across fractional cover
thresholds, while for TLSU we uncovered considerable fluctuations in
metric results. Since results show that the unmixingmethod can affect
metric calculations differently, it is necessary to perform unmixing
prior to metric calculations as the value of the metric can change
drastically based on mixture method and sub-pixel fractional values.

This study is the first instance of landscape metrics being
calculated across a continuum of fractional cover thresholds, and
the two classifications tested, SMLC and TLSU, responded very
differently to metric calculations. Therefore, it is unknown how
other types of mixture methods will respond to threshold-based
metrics. Additionally, curves are interpreted based on extant studies
subjecting remote sensing classifications to landscape metrics.
However, since fine threshold increments may produce fine variations
in metric values, these curves may warrant more specific interpreta-
tion criteria in the future.

4.4. Temporal change

TLSU results were examined in depth to characterize saltcedar
distribution changes over time (Fig. 8). NP results for 2000 and 2004
(Fig. 8a) show only slight differences in metric values. However, for
the 2008 curves, there are substantial decreases in NP at low
thresholds and slight increases in NP at high thresholds when
compared to 2004 values. Since the total area of saltcedar increased
from 3273 ha in 2004 to 4032 ha in 2008 (Table 2), it can be inferred
that over time saltcedar has amalgamated many smaller patches into
fewer, larger patches, thus decreasing overall saltcedar densities.
Above the 0.6 threshold, NP values increase between 2004 and 2008
indicating saltcedar has propagated high density patches over time.
Given the ability of saltcedar to outcompete native vegetation, along
with its areal spread over time, it is reasonable to assume the increase
in the number of patches at high thresholds is due to the formation of
high-density stands and does not result from the fragmentation of a
few large patches into many, smaller patches.
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Normalized LSI, which provides information on the complexity of
patch shape, increases across thresholds for all years (Fig. 8b), but
2008 values are slightly lower than 2000 and 2004 values. High nLSI
values correspond to increasingly complex landscape shapes (e.g.,
longer, thinner riparian zones adjacent to the river). Therefore the rise
in complexity as threshold increases implies that the densest
saltcedar stands are likely located along river banks. This outcome is
supported by prior findings that saltcedar exploits bare, moist,
exposed sites with high water availability, such as river banks (Di
Tomaso, 1998; Everitt, 1980; Shafroth et al., 2005), and the resilience
and rooting abilities of saltcedar allow it to form monotypic stands in
those riparian zones (Hart et al., 2005). Lower nLSI values in 2008 can
be interpreted as the result of dense cover stands expanding beyond
the immediate riparian zone and forming more compact shaped
patches as they extend away from the river edge.

Fig. 9 provides examples of the changing saltcedar spatial configu-
rations over time at various small plots across the study area. From2000
to 2004, the number of pixels with high saltcedar proportions increases
slightly in each of the plots, and compact groupings are starting to form.
In 2008, there are prominent formations of high density saltcedar
patches, and large, compact groupings of pixels with high saltcedar
proportions are easily observed. These examples verify metric results
(see Fig. 8) which showed small changes between 2000 and 2004 and
more substantial differences in 2008. The examples in Fig. 9 also support
the inferences drawn from the metric results that saltcedar is forming
high density, compact patches over time.

4.5. Correlated class structure patterns

Prior research suggests that the changing spatial extent of
saltcedar is coupled with the displacement of native vegetation.
Fig. 9. Examples showing the information of high fractional cover saltcedar patches over time
and green pixels indicate low proportions. Subtle changes are apparent between 2000 and
pixels are evident.
Comparison of native and saltcedar class metrics can aid in supporting
this theory and may reveal where such transitions are occurring.
Based on the TLSU classification results, from 2000 to 2008 native
woody riparian vegetation saw a net loss of 102 ha while saltcedar
gained 938 ha (Table 2). These results are consistent with field
knowledge that saltcedar is outcompeting and displacing native
vegetation in the study area. The third class, other, accounts for
disagreement in area change between saltcedar and native vegetation.

Metric results for the two classes (Fig. 10) also corroborate prior
field knowledge that saltcedar is displacing native vegetation.
Although NP values (Fig. 10a) for native are higher than those for
saltcedar at high thresholds (0.7 and above), there is less total area
overall for native (3566 ha of native versus 4032 ha of saltcedar).
Therefore, the larger number of native patches at high thresholds
indicates greater fragmentation, and the increase in patches is not due
to a greater amount of native woody riparian vegetation.

According to nLSI values, saltcedar patches are more complex than
native patches at mid and high thresholds (above 0.3). Previous
findings from this research established that the highest density
patches of saltcedar are likely located along the river and that
saltcedar is expanding away from the river and forming a greater
number of contiguous, high-density patches. Comparison of native
and saltcedar nLSI values supports these findings as the highest
density saltcedar patches are more likely to occupy areas along the
river than native patches of comparable density because saltcedar
patches have higher nLSI values. Contrasting the expansion and
occupation along the river of saltcedar to the fragmentation and
decline in area of native vegetation, it can be inferred that saltcedar is
outcompeting native vegetation along the riparian zone.

It should be noted that while spatial patterns can be inferred from
landscape metrics, the metrics themselves do not provide spatially
for three different parts of the study area. Red pixels indicate high saltcedar proportions
2004 as red pixels begin to cluster. In the 2008 images, dense areas of high proportion

image of Fig.�9


Fig. 10. Comparison of metric values for (a) number of patches (NP) and (b) normalized landscape shape index (nLSI) for native woody riparian vegetation (native) and saltcedar.
Values are derived from the 2008 tessellated linear spectral unmixing (TLSU) classification results and are linearly interpolated to produce curves.
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referenced results. Therefore, spatial interpretation of landscape
metrics depends on inferences of each measure in the context of
regional knowledge and an understanding that values may differ in
structurally different landscapes (Hargis et al., 1998).

Saltcedar is one of the most threatening invasive species in the
southwestern U.S. (Hamada et al., 2007; Wang & Silván-Cárdenas,
under revision) and is a high priority species for control efforts
(Morisette et al., 2006). Quantifying the spatial and temporal
distribution patterns through landscape metrics can shed light on
the process of invasion and help inform ecosystem management
decisions. Through testing and applying the threshold continuum
approach, we found that metric results can vary significantly across
the landscape depending on sub-pixel fractional cover values. Spatial
interpretation of metric results indicate that saltcedar is expanding
away from the immediate river zone and is forming a greater number
of high-density patches and outcompeting native vegetation, espe-
cially along the river. These findings would not have been possible
using traditional approaches for implementing landscape metrics for
remote sensing classifications.

5. Conclusions

Landscape metrics are an attractive tool for quantifying spatial
patterns from remote sensing classifications, but they have not been
properly exploited to characterize saltcedar invasion. This is likely
because metrics cannot be computed directly for fractional cover
maps, which are the most viable option to obtain detailed saltcedar
infestation information using remotely sensed images. This research
tests a new technique for discretizing sub-pixel classifications for
metric analysis using a threshold continuum approach that converts
continuous fractional cover to discrete classes at gradually increasing
thresholds based on cumulated sub-pixel fractional cover. The study
tests the threshold approach for several soft classifications of saltcedar
along the Forgotten River Reach of the Rio Grande. The proposed
threshold method is more suitable for invasive species studies than
conventional approaches for discretization since landscape informa-
tion can be characterized according to the magnitude of invasion.
After examining the fractional cover classes using landscape metrics
(i.e., NP, PSCOV, Cohesion and nLSI), we interpreted the spatial
pattern results in the context of the study area.

The findings of this research include:

(1) Spectral unmixing methods are appropriate for discerning
saltcedar in the study area, but results are variable depending
on the classification scheme utilized. TLSU outperformed SMLC
in terms of more accurately classifying a continuous distribu-
tion of saltcedar across the landscape, a characteristic of the
study area that has been confirmed by field observation.
(2) Spectral unmixing should be performed prior to metric analysis
as metric results can be sensitive to changes in fractional cover.

(3) Over time, saltcedar stands are becoming less fragmented and
more compact in shape at higher sub-pixel proportions
indicating expansion of saltcedar invasion from the riparian
zone.

(4) Saltcedar is displacing native woody riparian vegetation over
time and space.

The results from this study can be used to inform ecosystem
management decisions regarding saltcedar eradication. Dense salt-
cedar patches are expanding away from the river, and targeting only
the immediate riparian zone through eradication strategies is not
effective for saltcedar remediation. Additionally, low threshold
patches of saltcedar have become more spatially cohesive over time
suggesting a wider overall areal extent of saltcedar distribution.
However, these low threshold patches of saltcedar also include a mix
of native vegetation and other land covers and therefore must be
treated with caution. For instance, aerially spraying herbicides to
these areas will blanket the region and not only exterminate saltcedar
bushes but also may negatively affect native vegetation.

There are several areas for future work arising from this study.
Further testing of a variety of unmixing techniques should be
completed to determine whether additional methods exhibit variable
curves, such as was seen with the TLSU results, or whether they
produce only minor fluctuations across thresholds, as with the SMLC
results. Additionally, since metrics are sensitive to sub-pixel fractional
cover and do not change linearly over time, future work should
include analysis of the rates of change at various thresholds to
determine if there are significant factors operating on the landscape at
specific land cover proportions and whether optimal thresholds for
landscape characterization can be identified.
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