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Fully Constrained Linear Spectral Unmixing:
Analytic Solution Using Fuzzy Sets

José Luis Silván-Cárdenas and Le Wang

Abstract—The linear mixture model is a convenient way to
describe image pixels as a linear combination of pure spectra –
termed endmembers. The fractional contribution from each end-
member is calculated through inversion of the linear model. De-
spite the simplicity of the model, a nonnegativity constraint that is
imposed on the fractions leads to an unmixing problem for which it
is hard to find a closed analytical solution. Current solutions to this
problem involve iterative algorithms, which are computationally
intensive and not appropriate for unmixing large number of pixels.
This paper presents an algorithm to build fuzzy membership
functions that are equivalent to the least square solution of the
fully constrained linear spectral unmixing problem. The efficiency
and effectiveness of the proposed solution is demonstrated using
both simulated and real data.

Index Terms—Fuzzy sets (FSs), linear spectral unmixing (LSU),
subpixel fractional cover.

I. INTRODUCTION

L INEAR mixture models assume that mixed spectra from
remote sensing images are produced as linear combina-

tions of signatures from distinct materials (endmembers) that
are present in the sensor’s instantaneous field of view [1]–
[3]. The relative contribution of each endmember is, in prin-
ciple, proportional to its planimetric area, and the process of
estimating the relative cover of each material is referred to as
linear spectral unmixing (LSU). LSU methods are important
for hyperspectral image analysis and have been shown to be
effective for the quantification of the relative abundance of ma-
terials [4], land cover proportions [5], and species composition
[6], [7], or as a precursor for spatial resolution enhancement
[8], [9].

For endmember fractions to be meaningful, they must sum
to one (sum constraint) and be nonnegative (nonnegativity
constraint). The simultaneous consideration of these two con-
straints during the inversion of the mixture model is termed
the fully constrained LSU (FCLSU) problem. Researchers have
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noted that the sum constraint is easy to implement, but the
nonnegativity constraint is not. As a result, most studies imple-
ment only the sum constraint and then apply the nonnegativity
constraint to the result. Hu et al. [10] compared the Lagrange
multiplier (LM) optimization method that is proposed in [5]
for solving the partially constrained problem and a quadratic
programming (QP) procedure for solving the FCLSU problem
[11], [12]. The study concluded that the partially constrained
approach was preferred over the fully constrained approach
based on the computational demands of the QP algorithm alone.

On the other hand, it has been shown that the solution of
the partially constrained problem generally yields suboptimal
approximations to actual mixing fractions [4]. Because of this,
several studies have sought to develop efficient algorithms to
solve the fully constrained problem [4], [13], [14]. However,
existing solutions involve iterative algorithms, which are com-
putationally intensive and nonsuitable for large-scale applica-
tions. Heinz and Chang [4] proposed a solution that is based
on the LM optimization method. In that method, the sum
constraint is added as an additional equation to the mixture
model, and the solution is determined through an iterative
algorithm for the nonnegative-constrained problem [13]. In the
latter case, the inequalities of the nonnegativity constraint are
transformed into equality constraints through slack variables,
and the minimization of the residual is carried out through
LM optimization. Unfortunately, the adoption of these kinds of
approaches has proved unfeasible for large-scale applications.
This is made evident by the fact that one of the most popular
pieces of software for remote sensing image analysis (ENVI by
the ITT Visual Information Solutions, Inc.) does not include a
solution for the fully constrained problem. Instead, it provides
only a solution to the partially constrained problem with the
sum constraint.

This paper shows by construction that the optimal solution
to the FCLSU problem can be conveniently expressed in terms
of fuzzy set (FS) operations, which results in a highly efficient
method when the number of endmembers is less than seven.
A summary of relevant definitions from the FS theory and the
linear mixture models is first provided in Section II. Then,
in Section III, the explicit solution of the FCLSU problem
is derived and expressed in terms of FS operations. The FS
algorithm is summarized in Section IV. The efficiency of this
method was tested and compared with that of a traditional QP
algorithm [11] and the partially constrained methods that are
available in the ENVI software. The results from the tests are
summarized in Section V. A summary of the contribution is
provided in Section VI.
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II. THEORETICAL CONSIDERATIONS

A. FSs

FSs are generalizations of classic (crisp) sets to account for
partial membership [15]. Let F denote the set of FSs in R

n. For
any A ∈ F , a membership function μA : Rn �→ [0, 1] is defined,
so that μA(x) is the grade of membership of x in A. Since
the indicator functions of classic sets are special cases of the
membership functions, classic sets are also in F .

For two FSs, i.e., A and B, the intersection set is denoted
by A ∩B, and its membership function is defined as μA∩B =
μA ∧ μB = min(μA, μB). Likewise, the union set is denoted
by A ∪B, and its membership function is defined as μA∪B =
μA ∨ μB = max(μA, μB). The compliment set of A is denoted
by A, and its membership function is defined as μA = ¬μA =
1− μA. The difference set is denoted by A−B, and its mem-
bership function is given by μA−B = μA ∧ ¬μB . The operators
∨, ∧, and ¬ are referred to as conjunction, disjunction, and
negation, respectively. A function γ : [0, 1]m �→ [0, 1] that is
expressed in terms of these operators is referred to as a Boolean
formula. The set K(A) = {x|μA(x) = 1} is called the kernel
of A. The set S(A) = {x|μA(x) > 0} is called the support
of A. For the two FSs A and B, the crisp set L(A,B) =
{x|μA(x) = μB(x)} is referred to as the projection set of A
onto B.

Let B = Γ(A1, . . . , Am) be a composite set from the FSs
A1, . . . , Am through Γ : Fm �→ F . Then, B has a membership
of the form

μB = γ (μA1
, . . . , μAm

) (1)

where γ : [0, 1]m �→ [0, 1] is a Boolean formula with the same
structure as Γ but with set operators (union, intersection, and
compliment) that are replaced by Boolean operators (conjunc-
tion, disjunction, and negation, respectively). Furthermore, if Γ
does not include negation operators, then the kernel and support
of B are given by

K(B) =Γ (K(A1), . . . ,K(Am)) (2)

S(B) =Γ (S(A1), . . . , S(Am)) . (3)

A special kind of FSs is comprised by fuzzy half-spaces. Let
the hyperplane h : wTx− b = 0 with normal vector w ∈ R

n

and bias parameter b ∈ R. h splits R
n in three regions: 1) the

plane itself; 2) the left-hand side; and 3) the right-hand side. A
point x0 ∈ R

n is said to lie on the left half-space if wTx0 − b <
0, or it is said to lie on the right half-space if wTx0 − b > 0.
Hence, the FS H that is specified by a membership function of
the form μH = μ(wTx− b), where

μ(λ) =

{
1, for λ ≤ 0
1− λ, for 0 < λ < 1
0, for λ ≥ 1

(4)

is considered here as a fuzzy half-space in R
n. Note that

the support and the kernel of H are completely specified by
the function λH(x) = wTx− b. Specifically, x0 ∈ K(H) if
λH(x0) ≤ 0, and x0 ∈ S(H) if λH(x0) < 1.

For a given Boolean formula γ : [0, 1]m �→ [0, 1], the mem-
bership function of (4) fulfills the following property:

γ (μ(λ1), . . . , μ(λm)) = μ (γ̄(λ1, . . . , λm)) (5)

where γ̄ has the same structure as γ but with conjunction
operators replaced by disjunction operators and vice versa. This
property can be shown by induction and using the shorter form
μ(λ) = 0 ∨ (1 ∧ ¬λ) for (4).

For a given FS formula Γ : Fm �→ F and its corresponding
Boolean formula γ : [0, 1]m �→ [0, 1], the aggregate set H =
Γ(H1, . . . , Hm) of half-spaces Hi with membership functions
μi = μ(wT

i x− bi) = μ(λi) for i = 1, . . . , p has a membership
function

μH = μ (γ̄(λ1, . . . , λm)) (6)

which follows from (1) and (5). More explicitly, we have

μH(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x ∈ K(H)
1− λ1, x ∈ (S(H)−K(H))

⋂
L(H,H1)

. . .
1− λm, x ∈ (S(H)−K(H))

⋂
L(H,Hm)

0, x ∈ S(H)
(7)

where the transition region that is defined by the difference
set S(H)−K(H) has been split through the projection sets
L(H,Hi) that were defined earlier. The aggregate set H shall
be considered a fuzzy half-space if K(H), S(H), and S(H)−
K(H) are all nonempty sets.

B. LSU

Consider an image pixel p = [p1, . . . , pn]
T with n spectral

bands. Assume that the spectrum in each pixel is a convex com-
bination of m spectrally distinct materials or endmembers with
reflectance spectra e1, e2, . . . , em covering the corresponding
ground area of the pixel. The fractions of the ground area that
is covered by these endmembers are denoted by f1, f2, . . . , fm,
respectively. Then, the mixed pixel is expressed as

p = Ef + ε (8)

where f = [f1, . . . , fm]T is a column vector of subpixel frac-
tional cover; E = [e1, . . . , em] is an n×m matrix containing
the m endmember spectra as column vectors; and ε is the
residual that is not explained by the linear model. If p and
E are known, f is usually estimated through a least square
(LS) optimization. Specifically, f is estimated by solving the
following optimization problem:

min
f

(p− Ef)T (p− Ef) (9)

that is subject to

i. lT f = 1

ii. f ≥ 0

where l is an m-length column vector of ones, and 0 is an
m-length column vector of zeroes. The objective function in
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(9) defines spectral similarity in terms of the Euclidean norm.
A generalization of the FCLSU problem that considers other
measures of the spectral similarity can be found in [14]. In this
paper, the Euclidean norm is adopted as a measure of spectral
similarity.

The theory of convex geometry shows that a unique solution
exists to the optimization problem of (9), provided that m ≤
n+ 1, and the differences among endmembers form the basis of
the (m− 1)-dimensional space. It also follows that the solution
is error free for points that are inside the convex hull of the
endmembers. When constraints are ignored, the unconstrained
LS (ULS) solution is written as [16]

fULS = M−1ET p (10)

where M = ETE. If the sum constraint is considered alone,
it is also possible to find an analytical solution through LM
optimization [4], [5]. The sum-constrained LS (SLS) solution
can be expressed as [16]

fSLS = fULS − lT fULS − 1

lTM−1l
M−1l. (11)

The fully constrained LS optimization problem previously
mentioned can be alternatively written as the QP optimization
problem [4], i.e.,

min
f

(
1

2
fTMf + cT f

)
(12)

that is subject to

i. Aeqf = beq

ii. Af ≥ b

where c = −ET p, Aeq = l, beq = 1, A = −I , and b = 0. In
this paper, a QUADPROG function in the optimization toolbox
of the software package MATLAB (The MathWorks, Inc. 2002)
was used as follows:

fQP = QUADPROG(M, c,A, b, Aeq, beq, 0, l, fULS) (13)

where the last three arguments define the lower and upper
bounds of f and the starting solution, respectively. The lat-
ter was set to the ULS solution that is given by (10). The
QUADPROG function calls a private function QPSUB of the
optimization toolbox, which is a general-purpose code that is
written in the MATLAB programming language for handling
several forms of the general QP problem, i.e., unconstrained QP,
QP with equality constraints only, etc. The QPSUB solves the
problem in (12) using medium-scale optimization, as described
in [12] and [17].

Since QP optimization can be computationally intensive, a
reasonable alternative is to first calculate the SLS solution using
(11) and then test whether any fractions are negative. If all the
fractions fall within the unit interval, then the solution is found,
and the search stops; otherwise, QP optimization is invoked.
This method is hereafter referred to as partial QP (PQP).

III. FS SOLUTION

This section shows that the optimal solution to the FCLSU
problem can be expressed as fFS = μH(p), where μH(x) =
[μ1(x), . . . , μm(x)]T is composed of membership functions
of fuzzy half-spaces. The explicit structure of each of these
functions is

μi(x) =

Ki∨
k=1

∧
j∈Jk

μ
(
w

(i)
j · x− b

(i)
j

)
(14)

for i = 1, . . . ,m; x,w(i)
j ∈ R

n; b(i)j ∈ R; Ki ∈ Z; Jk ⊂ Z; and
μ(·) is the membership that is introduced in (4). The symbols∨

and
∧

in (14) denote the overall minimum and overall
maximum of their arguments.

Without loss of generality, only the derivation of f1 = μ1(p)
is shown. The derivation of all other fractions would follow an
analogous procedure.

A. Preliminaries

Assuming that there are at least two endmembers, write the
linear mixture model in the following form:

p = f1e1 + f2e2 +

m∑
i=3

fiei + ε. (15)

Then, subtract e1 from both sides of the equation, and substitute
f2 by 1− f1 − f3 − · · · − fm (from the sum constraint) to
arrive at the following:

f1(e2 − e1) = (e2 − e1)− (p− e1) + ε+

m∑
i=3

fi(ei − e2).

(16)

The last term on the right side of this equation must be taken
as zero for m = 2. For m > 2, this term can be annihilated by
multiplying both sides of the equation by an orthogonal vector
to the subspace that is spanned by the base {ei − e2, for i =
3, . . . ,m}. Such an orthogonal vector can be expressed as
e′1 − e1, where e′1 is the projection of the point e1 onto the
hyperplane h1 containing all endmembers, except e1. This step
is similar to the orthogonal subspace projection approach that
is discussed in [18]. Hence, the solution for f1 can be written as

f1 = 1− (e′1 − e1)
T (p− e1 − ε)

(e′1 − e1)
T (e2 − e1)

. (17)

Note that (e′1 − e1)
T (e2 − e1) = ‖e′1 − e1‖2 because both e′1

and e2 are in h1, and e′1 is the nearest point in h1 to e1. In
particular, e′1 = e2 for m = 2.

Now, define the following:

w1 =
e′1 − e1

‖e′1 − e1‖2
, b1 = wT

1 e1

so that h1 : wT
1 x = b1 + 1 is the hyperplane containing the

points e2, . . . , em. Using these definitions, rewrite (17) in the
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Fig. 1. Two endmembers in two dimensions (e1 and e2). (a) Partition of the
mixing space with residual vector ε that is indicated for each region (R0, R1,
and R2) and the minimum distance axis λ1. (b) Plot of fractions as a function
of λ1.

shorter form, i.e.,

f1 = 1− wT
1 (p− ε) + b1. (18)

The next step is to consider the form of ε. As stated earlier,
the set of points that are defined by a linear mixture—with non-
negative fractions that sum to one—defines the convex hull of
the set of endmembers. Hence, the minimization of ‖ε‖ implies
the search for a point p′ = p− ε that is inside the convex hull
and is the nearest point to p. For points that are outside the
convex hull, the nearest point is the orthogonal projection of
point p onto the nearest facet of the hull, where a facet can
be a vertex (0-facet), an edge (1-facet), a face (2-facet), a cell
(3-facet), or r-facet in general for r = 0, . . . ,m− 2.

Before deriving the solution for the general case, consider the
cases of two and three endmembers.

B. Two Endmembers

As depicted in Fig. 1, the residual vector can have one
of three forms, depending on the region where p is located.
Each region represents the set of points that share a common
nearest facet of the convex hull. By convention, here and in
other examples, the boundary points are included in the region
that is associated with the smallest number of vertices. The
three regions can be characterized by means of the variable
λ1 = wT

1 p− b1, varying along the line containing e1 and e2.
This variable takes negative values for R0, values between zero
and one for R1 (excluding the boundary points), and values that
are greater than one for R2.

Consider the definitions in Fig. 1(a) to write the explicit
expression for the residual as

ε =

{
p− e1, for λ1 ≤ 0
p− e1 − λ1(e2 − e1), for 0 < λ1 < 1
p− e2, for λ1 ≥ 1.

(19)

Now, replace ε in (18) to obtain the following:

f1 =

{
1, for λ1 ≤ 0
1− λ1, for 0 < λ1 < 1
0, for λ1 ≥ 1.

(20)

Finally, use the definitions in (4) and λ1 to write the following:

f1 = μ
(
wT

1 p− b1
)
. (21)

A similar procedure can be used to show that f2 = μ(λ2),
where λ2 = 1− λ1. Fig. 1(b) shows a plot of these member-
ships as functions of λ1.

C. Three Endmembers

For m = 3, there are seven possibilities for ε. Fig. 2(a)
illustrates these seven possibilities for two bands. Once again,
each region represents the set of points that share a common
nearest facet of the convex hull.

Use the definitions of the regions in Fig. 2 to write the
residual vector in the following form:

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p− e1, for p ∈ R0

0, for p ∈ R1

p− e1 − λ2(e2 − e1), for p ∈ R2

p− e1 − λ3(e3 − e1), for p ∈ R3

p− e2, for p ∈ R4

(λ1 − 1) (e′1 − e1) , for p ∈ R5

p− e3, for p ∈ R6

(22)

where λj = wT
j p− bj with wj and bj for j = 1, 2, 3 that are

respectively being defined as

w1 =
e′1 − e1

‖e′1 − e1‖2
, b1 = wT

1 e1

w2 =
e2 − e1

‖e2 − e1‖2
, b2 = wT

2 e1

w3 =
e3 − e1

‖e3 − e1‖2
, b3 = wT

3 e1.

These variables (λ’s) represent projection axes that are aligned
along the vectors e′1 − e1, e2 − e1, and e3 − e1, respectively
[see Fig. 2(b)].

Now replace ε in (18) to obtain the following:

f1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for p ∈ R0

1− λ1, for p ∈ R1

1− λ2, for p ∈ R2

1− λ3, for p ∈ R3

0, for p ∈ R4 ∪R5 ∪R6.

(23)

In this case, f1 follows the form in (7), i.e., it represents a fuzzy
half-space in R

n. As such, the fraction can be expressed in
terms of the membership functions of the type in (4).

The next step consists of applying the property (2) to write
f1 in the more compact form of (6). The idea here is to find
a formula for the support of f1, i.e., the region for which
f1 > 0, in terms of the support of the fuzzy half-spaces that
form it and then replace the set operators by the correspond-
ing Boolean operators. As an example, consider Fig. 2(c).
This figure indicates the support of f1 (shaded region) and
the boundary of the half-spaces that form it. The straight
lines correspond to hj : w

T
j x = bj + 1, and the member-

ships μHj
= μ(wT

j x− bj) define the fuzzy half-spaces Hj for
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Fig. 2. Three endmembers in two dimensions. (a) Partition of the mixing space that is imposed by the minimization of ‖ε‖. (b) Projection of p− e1 along the
minimum distance axes λ1, λ2, and λ3. (c) Support for the fraction f1 (shaded region) with the boundary straight lines (λi = 1, for i = 1, 2, 3). (d) Contour
lines for the fraction f1.

i = 1, 2, 3 that determine f1. For this particular case, the sup-
port of f1 can be expressed as

S(f1) = [S(H1) ∪ S(H3)] ∩ S(H2). (24)

Therefore, the fraction results in the following:

f1 =
[
μ
(
wT

1 p− b1
)
∨ μ

(
wT

3 p− b3
)]

∧
(
wT

2 p− b2
)
. (25)

Fig. 2(d) shows the contour lines for the surface that is produced
by (25). The contour lines make evident the transition region of
the fuzzy half-space.

D. Any Number of Endmembers

As observed in previous cases, the minimization of ‖ε‖
implies a partition of the mixing space into a number of regions,
each of which shares a common nearest facet of the convex
hull of endmembers. In general, there are 2m − 1 facets for
m ≤ n+ 1. With so many facets and, hence, regions, it is
hard to write an explicit formula for the residual vector of the
general case. Instead, it is much easier to inspect the form of
the fraction for the following three relevant regions: 1) the core
or saturation region; 2) the support minus the core region, i.e.,
the transition region; and 3) the complement of the support, i.e.,
the null region. As noted in the following, each of such regions
is associated with a distinct set of facets of the convex hull.

Let X denote the set of endmembers and 2X denote the
power set, excluding the empty set. Consider the partition
of the power set 2X = {e1} ∪ F ∪G, where F = {A|A ∈
2X , e1 ∈ A, |A| > 1} and G = {A|A ∈ 2X , e1 /∈ A}, so that
|F | = |G| = 2m−1 − 1. As it turns out, the core of f1 is as-
sociated with the facet {e1}; its transition region is associated
with the facets in F , and its support is associated with facets
in G. Furthermore, consider an order in F and G, so that
Fj = Gj ∪ {e1} and |Gj | ≥ |Gk|, for j < k, where Fj and Gj

denote the jth facet in F and G, respectively. The ordering is
selected, so that F1 is the facet containing all the vertices and
G1 is the facet containing all the vertices but e1, e.g., for three
endmembers F1 = {e1, e2, e3}, F2 = {e1, e2}, F3 = {e1, e3},
G1 = {e2, e3}, G2 = {e2}, and G3 = {e3}.

Now, if the nearest facet to p is e1, then p′ = e1 = p− ε,
and (18) results in f1 = 1. If the nearest facet to p is in G,

then p′ lies on the hyperplane h1 containing all endmembers,
except e1, i.e., wT

1 p
′ = b1 + 1, and (18) results in f1 = 0. If the

nearest facet is in F , then there are two possibilities. The first
one occurs if p is inside the convex hull, i.e., the nearest facet
is F1 and ε = 0, for which (18) results in f1 = 1− λ1. The
other possibility occurs if the nearest facet is Fj , for j > 1. The
evaluation of f1 in this case requires additional definitions.

Let e(j)1 denote the nearest point of e1 in the subspace that is
defined by the points in the facet Gj . If |Gj | = 1, the subspace
is a point, and the nearest point is the subspace point itself. If
|Gj | > 1, the nearest point is given by the orthogonal subspace
projection as

e
(j)
1 = e1 + (I −DD#)(e1 − e) (26)

where D is a base matrix that is formed by all linearly in-
dependent differences of the vertices in the facet Gj , D#

denotes the pseudo inverse of D, and e is any point in Gj . It
can be shown that, regardless of its dimension, the subspace
is contained in the hyperplane hj : w

T
j x = bj + 1 with the

following parameters:

wj =
e
(j)
1 − e1∥∥∥e(j)1 − e1

∥∥∥2 , bj = wT
j e1. (27)

Furthermore, the set of such hyperplanes, for all facets in G,
forms the support of f1, and the function λj(x) = wT

j x− bj
takes values between zero and one for the points that are in the
transition region of f1.

Considering the aforementioned definitions, the projection of
p onto the facet Fj for j > 1, is given by

p′ = e1 +
(
e
(j)
1 − e1

)
λj . (28)

The substitution of this equation in (18) results in f1 = 1−
λj , where the identity (e′1 − e1)

T (e
(j)
1 − e1) = ‖e′1 − e1‖2 has

been used. The identity holds because e′1 is the nearest point in
h1 to e1, and e

(j)
1 is also in h1.
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The result, considering all the cases together, can be written
in the following form:

f1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, for p ∈ R0

1− λ1, for p ∈ R1

1− λ2, for p ∈ R2

. . .
1− λ2m−1−1, for p ∈ R2m−1−1

0, for p ∈
⋃2m

j=2m−1 Rj

(29)

where R0 is the region that has e1 as the nearest facet; Rj is the
region that has Fj as the nearest facet, for j = 1, . . . , 2m−1 − 1,
or facet Gj−2m−1+1 for j = 2m−1, . . . , 2m.

The last step is to express (29) in terms of the membership
functions μ(λj) for j = 1, . . . , 2m−1 − 1. This is equivalent to
building the support of f1 in terms of the support of the half-
spaces that are defined by λj(x) < 1. A general approach is
to build the disjunctive normal form (DNF) for the Boolean
formula. The idea behind a DNF is that the Boolean formula
describes the support as a union of convex sets, which are in
turn expressed as intersections of half-spaces.

Let K denote the number of convex sets of the support of
f1 and Jk denote the set of indexes of the half-spaces that are
included in the kth convex set for k = 1, . . . ,K. Then, the DNF
formula for the fraction f1 has the following form:

f1 =
K∨

k=1

∧
j∈Jk

μ
(
wT

j p− bj
)
. (30)

The problem turns now to determine the number of convex
sets K and the index sets Jk for k = 1, . . . ,K. An algorithm to
determine these follows.

E. Construction of the DNF Formula

The algorithm to build the Boolean formula in DNF requires
at least three endmembers. As shown in a previous section, no
Boolean formula is necessary for the case of two endmembers.
The idea behind the algorithm that is presented here is to form
the first convex set using only the hyperplanes that support the
convex hull, i.e., the hyperplanes that do not intersect the
interior of the convex hull. For each nonsupport hyperplane, a
new convex region is created. The hyperplanes that are included
in the new convex set are selected, depending on the position of
the projection of e1 with respect to the facet hyperplanes.

In formal grounds, hj : w
T
j x = bj + 1 is a support hyper-

plane of the convex hull if

wT
j ek − bj ≤ 1 (31)

for all k = 1, . . . ,m. This means that all the vertices of the
convex hull lie on the left side of a support hyperplane. A facet
hyperplane is a hyperplane that contains an (m− 1) facet of the
convex hull, i.e., the hyperplane containing all but one vertex.
As such, h1 is a facet hyperplane but not h2, h3, etc.

Given the aforementioned definitions, the algorithm to build
the DNF representation for the support of f1 is summarized

as follows:

1) Initialize k = 1 and J1 = Φ.
2) For each support hyperplane hj , add j to set J1.
3) For each nonsupport hyperplane hj ,

a) Update the counter k ← k + 1.
b) Add j to Jk.
c) For each hl, with l �= j,

i) If e(l)1 lies on the left-hand side, inclusive of all
facet hyperplanes containing the facet Fj , then
add l to Jk.

As an example of this algorithm, consider the case in Fig. 2.
As shown in Fig. 2(c), the lines h1 and h2 are support lines of
the convex hull, and thus, J1 = {1, 2}. For the nonsupport line
h3, a new convex set is added. The new convex set includes all
the lines that have its nearest point to e1 in the left side of all
lines containing the facet F3 = {e3}, i.e., the lines containing
the segments e1e3 and e2e3. Therefore, h2 and h3 are included
because their nearest points to e1 (e′′1 = e2 and e′′′1 = e3) lie on
the left side, whereas h1 is excluded because e′1 lies on the other
side of one of the facet lines. Then, J2 = {2, 3}, and there are
no more lines intersecting the convex hull. Using these sets in
(30) results in the following:

f1 = [μ(λ1) ∧ μ(λ2)] ∨ [μ(λ2) ∧ μ(λ3)] (32)

which can be reduced to (25).

IV. SPECTRAL UNMIXING AS MULTIPLE

BOOLEAN FORMULA EVALUATIONS

The most straightforward method for spectral unmixing
consists of independently building the Boolean formula for
each fraction. Then, evaluate each formula for all the mixed
pixels. The evaluation of all the formulas can start with the
facet hyperplanes. If all the memberships that are associated
to the facet hyperplanes fall within the interval (0, 1), then
the optimal solution corresponds to such memberships, and no
more hyperplane evaluations are required.

It should be noted that the time complexity for the calculation
of the membership function is exponential in m because the
method involves the calculation of up to 2m−1 − 1 hyperplanes
per fraction. However, for a fixed m, the time complexity for the
unmixing is linear in the number of pixels because the unmixing
consists of multiple evaluations of functions of the form of
(14). This characteristic is desirable because, in most practical
situations, m is relatively small, whereas the number of mixed
pixels can be several thousands or millions. For a relatively
large m, a more efficient strategy is desirable. One alternative
is to sequentially estimate the fractions, taking advantage of the
previously calculated fractions. The rationale of this method is
given as follows:

Once f1 has been obtained, one can subtract f1e1 from both
sides of (15) and divide by 1− f1 to obtain the following:

p− f1e1
1− f1

=
m∑
i=2

f ′
iei + ε′ (33)
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where f ′
i = fi/(1− f1) for i = 2, . . . ,m, and ε′ = ε/(1− f1).

The problem is exactly the same as previously noted, with the f ′
i

being the new fractions. However, the number of endmembers
is reduced by one, and the number of the hyperplanes that
need to be considered is reduced by about one half. One
can continue this process until, finally, fm = 1−

∑m−1
i=1 fi

without any further checking. Therefore, instead of evaluating
m Boolean formulas, each involving 2m−1 − 1 hyperplanes,
one evaluates the m− 1 formulas involving the 2m−1 − 1 and
2m−2 − 1, . . . , 3, 1 hyperplanes.

The two methods that are previously described, which are
hereafter referred to as FS and sequential FS (SFS), respec-
tively, were coded in MATLAB v6.5 (The MathWorks, Inc.
2002) and tested for efficiency and sensitivity to numerical
errors. Whenever possible, matrix operations were used in
order to avoid the overhead of MATLAB loops. As such, the
implementations are code compact but not memory compact.
A memory-compact implementation would require the use of
FOR loops that are time consuming in the MATLAB language.
A more efficient memory-compact implementation could be
attained with a lower level programming language, such as C
or Fortran. In such cases, the evaluation of the Boolean formula
could take the advantage of the zeroes and ones from partial
evaluations, i.e., if at least one operand of

∧
is zero, then all

the min term evaluates to zero, or if at least one operand of
∨

is one, then all the max term evaluates to one. This way, not all
the 2m−1 − 1 hyperplanes need to be evaluated.

Since the computation of the hyperplanes that are involved in
either aforementioned methods requires that no one endmember
is too close to the mixing space that is spanned by the other end-
members or else the problem may become ill conditioned, i.e.,
not amenable for digital computation, the condition number of
matrix ETE can be used for diagnostic purposes. The condition
number of a matrix is calculated as the ratio of its maximal to its
minimal singular values. A large condition number is indicative
of an ill-conditioned problem.

V. UNMIXING TESTS

The CPU time for various unmixing tests was measured
on a laptop computer (Pentium 4 at 2.8 GHz with 512 MB
of random access memory), for which unnecessary network
connections and background programs had been turned off.
The ULS (10), SLS (11), QP (12), and PQP (which were
described at the end of Section II-B) solutions were considered
here as benchmarks for the proposed FS and SFS methods. All
the methods were implemented in the MATLAB programming
language. In addition to the MATLAB implementations, the
sum-constrained solution, which is available in the commercial
software ENVI 4.3 (ITT, Visual Information Solution, Inc.),
was also applied. The details on the latter method are provided
in [19].

A. Tests From the Simulated Data

Two tests were designed to assess the methods’ efficiency as
a function of the number of endmembers and the number of
pixels. In addition, a test was designed to assess the methods’

sensitivity to numerical errors. In all these cases, the mixed
spectra were simulated using a previously published spectral
library [20]. Sixteen reflectance spectra, which represent a vari-
ety of land cover types, were selected from the spectral library.
These included three vegetation types (1-conifer, 2-deciduous,
3-grass), three soil types (4-gray silty clay, 5-reddish brown
fine sandy loam, 6-dark yellowish brown micaceous loam),
water (7-sea water), snow (8-medium granular snow), and eight
man-made materials (9-construction concrete, 10-construction
asphalt, 11-black gloss paint, 12-pine wood, 13-red smooth-
faced brick, 14-aluminum metal, 15-galvanized steel metal, and
16-reddish asphalt roofing shingle). Seven resampled versions
of these reflectance spectra were produced using filter functions
of distinct satellite sensors. Sensors were selected to repre-
sent varying dimensions of the mixing space. These included
SPOT1 (n = 3), MSS5 (n = 4), AVHRR7 (n = 5), TM5 (n =
6), SeaWiFS (n = 8), ASTER (n = 14), and MODIS (n = 35)
because band 36 fell outside the spectral range of the original
spectral library. The endmember fractions were simulated as
random numbers with a uniform distribution in the interval
[0, 1] and normalized to sum to one. The mixed spectra were
simulated through applying the linear mixing model with addi-
tive white Gaussian noise with standard deviation σ = 0.1. In
all the tests that are described in the following, simulations were
run five times with the same values for n, m, and k, but each
time, new fractions and noise components were generated, and
new endmembers were randomly selected.

1) Relative Efficiency: In the first test [see Fig. 3(a)], the
MODIS pixels (n = 35) were simulated as a mixture of four
randomly selected endmembers (m = 4), whereas the number
of mixed pixels k varied. Since the memory limitations in
MATLAB prevented the use of extremely large data sets, the
number of mixed pixels varied as k = 4i for i = 2, 3, . . . , 9.
Hence, the largest simulated MODIS data set was equivalent
to an image size of 512 × 512 pixels. Fig. 3(a) shows the
median CPU time for unmixing the MODIS pixels with the four
methods: the QP, PQP, FS, and SFS. The results indicated that
the performance of the QP and the PQP was no substantially
different. This is because the fraction of the mixed pixels
that fall within the convex hull is generally low under the
presence of noise, particularly when m < n+ 1. Likewise, the
performance of the SFS was comparable to that of the FS,
with the exception of two extreme points [see Fig. 3(a)]: the
smallest number of pixels and the largest number of pixels.
The latter case is of most interest in this study. The increase
in computer time by the SFS for the largest image size seemed
to be caused by the fact that the memory that was used was near
its limit. This is because the implementation of the SFS requires
the storage of the partial sums of the previously calculated
fractions and endmember time fractions, which are not required
by the FS. Interestingly, the FS solution took about 1% of the
computation time of the QP for unmixing no less than 212 pixels
(dotted line). When the number of pixels dropped below this
number, this percentage increased, yet it remained below 50%.

In the second test [see Fig. 3(b)], the number of pixels
was set to k = 212, and the number and the dimension of
the endmembers varied as m = 2, 3, . . . ,min(10, n+ 1), and
n = 3, 4, 5, 6, 8, 14, 35 (i.e., all the aforementioned sensors),
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Fig. 3. CPU time using the QP, PQP, FS, and SFS algorithms. (a) The number of endmembers and bands are held fixed (m = 4 and n = 35, i.e., MODIS),
whereas the number of mixed pixels varied (k = 42, 43, . . . , 49). (b) The number of the mixed pixels was held constant (k = 212), whereas the number of
endmembers and bands varied (m = 2, 3, . . . ,min{10, n+ 1} for n = 3, 4, 5, 6, 8, 14 and 35). Vertical bars in all cases represent the minimum and maximum
CPU times obtained within multiple simulations, whereas all other lines, with the exception of the dotted line in (a), represent the median CPU time from a number
of simulations (5–35). The dotted line in (a) represents the percentage of FS to QP CPU median times (use vertical axis to the right).

respectively. It should be noted that the commonality of the
endmembers was not exploited by the general QP code that
is used in these tests. In order to provide a fairer comparison
between the computation times for the FS and QP methods,
the CPU time for the main loop of the QP algorithm was also
measured. This elapsed time excluded the repeated calculation
of the initial active set, which did not vary for a given set of
endmembers. Fig. 3(b) provides the median CPU time that is
measured for the QP, FS, and SFS and the median elapsed time
for the construction of the FS membership functions and for
the QP main loop. When the number of endmembers increased,
the computation time with FS increased faster than that with the
QP. The FS method was more efficient than the QP optimization
only for m < 7, while the SFS was even more efficient for
m < 9. The gain in efficiency by the SFS with respect to the
FS was more significant for m > 4. The results from the PQP
were not included in Fig. 3(b) because no significant difference
in computation time was observed with respect to the QP.
Nonetheless, the CPU time of the main loop of the QP code
was about 10% of the total time of the QP for m = 2, 40% for
m = 6, and 70% for m = 10. Likewise, the CPU time for the
calculation of the FS membership function was about 10% of
the total time of FS for m = 2, 2% for m = 6, and 0.5% for
m = 10.

2) Numerical Sensitivity: In the third test, the fractions that
were derived from the PQP, FS, and SFS methods were com-
pared against those that were derived from the QP method
from a sample of k = 100 mixed spectra of varying numbers of
endmembers and sensors, i.e., m = 2, 3, . . . ,min(9, n+ 1) for
n = 3, 4, 5, 6, 8, 14, and 35. Endmember matrices with condi-
tion numbers that are greater than 100 000 were excluded in the
computation of error measures, which is mainly because both
the QP and the PQP yielded not a number (NaN) values. Such
larger condition numbers generally occurred for m = n+ 1
and due to the relatively low spectral contrast among certain
endmembers. There were 279 sets of simulated pixels (k =
100). For each set of simulated pixels, the maximum absolute
difference (MAD) between the fractions that are estimated by
each method and the QP method was calculated. The median
and maximum statistics of the MAD are summarized in Table I.

TABLE I
COMPARISON OF THE PQP, FS, AND SFS WITH RESPECT TO QP. TABLE

ENTRIES WERE BASED ON 279 SETS OF THE SIMULATED MIXED PIXELS

WITH VARYING ENDMEMBERS AND BANDS (SEE THE TEXT)

Both the PQP and the FS were virtually the same solution
as QP optimization. There were, however, a few cases where
numerical errors caused slight deviations for the FS method
(with maximum difference with respect to the QP fractions
of 0.0162). This situation mainly occurred when the condi-
tion number was significantly large (i.e., nearly 100 000). In
contrast, for the SFS, there were many cases with maximum
error around 1. A close inspection of the results for the SFS
showed that numerical errors, presumably due to normalization/
denormalization of fractions, quickly increased with the num-
ber of endmembers, so that, for m = 4, the maximum MAD
was about 0.45 and, for m > 4, the maximum MAD topped
at 1.0.

B. Unmixing of Landsat Measurements

A fourth test was based on a Landsat ETM+ image (path 31,
row 39) that was acquired on December 19, 2005. The ETM+
image comes with nine bands, of which only six optical bands
(with a spatial resolution of 30 m) were used, whereas the
panchromatic and thermal bands were excluded. The test area
corresponds to a 100-km-length segment of the Rio Grande
river channel that runs from Candelaria to Presidio, TX, by a
cross section of 5-km width around the main channel of the
river. The objective of this test was to assess the improvement of
the FS over the unconstrained approach for retrieving subpixel
fractions of three land cover types and, at the same time, to
assess the relative efficiency with respect to the QP algorithm.
A total of k = 228, 800 Landsat pixels were processed by
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TABLE II
PERFORMANCE COMPARISON OF THE LINEAR UNMIXING

METHODS THAT ARE TESTED ON LANDSAT DATA

each method. The land cover types consisted of the following
classes: 1) invasive (Tamarix species in various phenological
stages); 2) native (predominantly Salix species and Prosopis
species); and 3) other (nonwoody, herbaceous vegetation, and
bare ground).

An inset of 10 km by 3 km that is located near Candelaria was
used for the endmember selection and accuracy assessment. At
this site, reference fractions were produced from a high-spatial-
resolution (1 m) hyperspectral image (of 61 bands, 10-nm
bandwidth, and 400–1000-nm spectral rage) that was acquired
with the Airborne Imaging Spectroradiometer for Applications
(AISA) sensor on December 21, 2005. Further details on the
production of the reference fractions are provided in [6]. The
endmembers were produced as the average spectra of up to
ten pixels with fractional cover that is greater than 90% in
the reference set. Although the endmembers that were used
were mixed pixels themselves, they were considered the most
spectrally pure representation for the three aforementioned
aggregated classes. Random samples (k = 300) from the inset
were used for accuracy assessment, which was carried out in
terms of the root-mean-square error (RMSE) measure.

The three methods (ULS, QP, and FS) were compared
in terms of the following: 1) predicted mixed pixel errors;
2) predicted fraction errors; and 3) CPU time. Table II summa-
rizes the results for this test. The results showed that the fully
constrained solutions (QP and FS) more accurately retrieve
subpixel fractions than the unconstrained approach (RMSE of
fraction), despite the higher goodness of the fit (lower RMSE
of reflectance) of the latter. Both the QP and the FS yielded the
same error measures, but the FS was 130 times faster than the
QP (considering the main loop only) and only 60 times slower
than the ULS.

C. Unmixing of Hyperion Measurements

The last test was based on a hyperspectral EO-1 Hyper-
ion image (30 m) that was acquired on December 26, 2006
(path 31, row 39). The objective of this test was to compare
the relative efficiency of the FS for unmixing hyperspectral
data with respect to a partially constrained approach that is
available in ENVI. Although the image location concurred with
the Landsat data that are previously used, the Hyperion imagery
did not overlap with the AISA imagery, and hence, no reference
fractions were available for this test.

The image that was acquired was in a processing level
(L1Gst) that provides radiometric calibration and orthorecti-
fication using a digital elevation model. The Hyperion image

contained 198 bands covering the Visible and Near InfraRed
(VNIR) and Short-Wavelength InfraRed (SWIR) from 427 to
2394 nm. (Bands 1–7, 58–76, and 225–242 had been elimi-
nated due to atmospheric absorptions.) A subset of 512 lines
by 256 samples was selected from the entire scene (k =
131, 072 pixels). After subsetting, the image digital numbers
were converted to at-sensor reflectance values based on [21],
and the image noise was reduced by retaining the first ten bands
from a minimum noise fraction (MNF) transform [22]. The
MNF bands that are beyond band 10 were eliminated because
they showed significant stripping artifacts from sensor align-
ment [21]. After band elimination, the inverse MNF transform
yielded a noise-reduced hyperspectral image, and no further
atmospheric correction was carried out. Then, the endmembers
were automatically generated using a sequentially maximum
angle convex cone (SMACC) algorithm that is available in
ENVI [23]. The SMACC algorithm identified five endmembers,
which were visually interpreted and labeled as Bright Soil, Dry
Grass, Water, Green Vegetation, and Dry Woody Vegetation.

The unmixing results from both methods are compared using
scatter plots in Fig. 4. As expected, the partially constrained so-
lution yielded negative fractions and never had an RMSE that is
greater than the fully constrained solution [except for the small
numerical errors; see Fig. 4(f)]. The CPU time for the unmixing
algorithm in ENVI could not be measured with the computer
clock. Instead, a hand watch was used to measure the elapsed
time between the last click to the time when the progress
bar ended. The CPU times were approximately 4 min and
25 s for the ENVI algorithm against 10.2 s for the MATLAB
implementation of the FS method. The former time may not be
representative of the unmixing algorithm that is implemented in
ENVI because it may have included unnecessary management
processes (e.g., access to disk and progress bar updating),
which were not included in the MATLAB implementation.
However, the exercise illustrated the viability of the proposed
method for hyperspectral image analysis.

VI. SUMMARY

In this paper, the solution of the FCLSU problem has been
explicitly derived using geometrical relations among the end-
members and the mixed pixels. The solution was conveniently
expressed in terms of the FSs. According to this approach,
the fractions of the mixture model are treated as membership
functions of the FSs in R

n. As it turned out, such FSs can
be built as combinations of half-spaces that are defined by the
hyperplanes. The constituent fuzzy half-spaces, as well as the
Boolean formula that specifies the way of combining them, de-
pend only on the set of endmembers. This characteristic makes
the FS solution more appropriate for large-scale mapping, i.e.,
when a large number of mixed pixels are to be processed.

The tests from the simulated and the real data sets showed
that the proposed FS algorithm was very efficient and viable
for unmixing a large number of pixels with few endmembers.
An SFS method has been also tested. This method was even
more efficient than the FS for larger numbers of endmembers.
Unfortunately, this method was also more prone to numerical
errors for such large numbers of endmembers. These results
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Fig. 4. Comparison of the FS unmixing with respect to a partially constrained method available in the ENVI software. The scatter plots correspond to (a) Bright
Soil fractions, (b) Dry Grass fractions, (c) Water fractions, (d) Green Vegetation fractions, (e) Dry Woody Vegetation fractions, and (f) RMSE.

suggested that the best strategy is to use the FS for m < 7. For
larger values of endmembers, the numerical solution, such as
that of the QP optimization, should be used instead.

Although the FSs and the spectral mixture models had been
previously independently used for subpixel analysis [24], [25],
a theoretical link between the two approaches had not been
drawn. Unlike in [26], the explicit solution of the FCLSU
problem is a nonlinear transformation of the mixed pixels. In
fact, the form of the solution shares similarity with a two-hidden
layer neural network, which also suggests the possibility for
estimating the endmembers from samples of fractions, as well
as a way for generalizing LSU to non-LSU, e.g., by relaxing the
linear saturation function [27]. Furthermore, the consideration
of other than the Euclidean norm as a measure of spectral
similarity, as proposed in [14], could be enabled through the
application of the FS method on a nonlinear transformation
of the data (e.g., normalization). Before these links can be
established, the FS solution for m > n+ 1 needs to be further
investigated.
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