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Small-area population estimates for a non-census year are essential for supporting a

wide variety of planning processes. Many demographic or geographic-information-

based models have been developed for generating small-area population estimates.

Little research, however, attempted to integrate these two types of models to achieve

a better estimation. This study explores the feasibility of incorporating geographic

information system (GIS), remote-sensing and demographic data into the housing-

unit (HU) method, a popular demographic model, to estimate small-area population

in Grafton, WI, USA. In particular, two major components of the HU method, HU

counts and persons per household (PPH), are obtained by modelling their relation-

ships with demographic and geographic factors using a sequence of ordinary least-

squares (OLS) regression models. Analysis of results indicates that spatial factors

derived from remote sensing and GIS datasets, together with demographic informa-

tion, can significantly improve the accuracy of small-area population estimation.

1. Introduction

Accurate estimates of small-area population are essential for supporting a wide

variety of planning processes. The size and distribution of the population are often

key determinants for resource allocation for state and local governments (Smith et al.

2002). Population estimates are critical in decisions about when and where to build

public facilities such as schools, libraries, sewage treatment plants, hospitals and

transportation infrastructure. Population estimates are also often used by private

sectors for customer-profile analysis, market-area delineation and site-location iden-

tification (Martin and Williams 1992, Plane and Rogerson 1994). In addition, popu-

lation information is an important input in many urban and regional models, such as

land-use and transportation-interaction models, urban-sprawl analysis, environment-

equity studies and policy-impact analysis (Rees et al. 2004). Clearly, accurate and
timely population estimates are of great importance (Smith et al. 2002). Accurate

population data, however, is only available for every decade through the national

census survey. It is obvious that this frequency does not meet the needs for rapid-

growth areas where noteworthy local intercensal population changes occur. Thus,

appropriate estimation methods for such geographical areas are extremely necessary.

Numerous methods have been proposed for population estimates in demography,

such as the component method II (CM-II), the administrative-record (AR) method, the

ratio-correlation (RC) method and the housing-unit (HU) method (Ghosh and Rao
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1994). The CM-II updates population estimates by accounting for the major compo-

nents of local demographic change. The population is calculated by starting with the

recent census population, adding the estimated number of births, subtracting the

number of deaths, then adding net migration and the changes in group-quarter popula-

tion. The AR method, similar to the CM-II, additionally uses administrative records
for estimating net migration for population under age 65. These records include federal

income-tax returns, immigration and naturalization service records and military-

movement records. The RC method relates population changes to the changes in

several symptomatic indicators, such as school enrolment, car registration, work-

force information and occupied HUs. A regression model is used to construct the

relationship between population changes and the changes of symptomatic indicators

between two census years. In the HU method, population estimates for a small area are

calculated as the product of the number of occupied HUs and household size plus the
population in group quarters. Among all these methods, the HU method is the most

commonly used and considered one of the most accurate and cost-effective methods for

small-area population estimation (US Census Bureau 1998, Smith and Cody 2004). In

fact, the HU method has been used by US Census Bureau as the single method for

estimating population of subcounty areas (e.g. incorporated places and minor civil

divisions) since 1996 (US Census Bureau 1998, 2005, Smith and Cody 2004).

In addition to these demographic models, remote-sensing and geographic informa-

tion system (GIS) techniques provide an alternative for small-area population estima-
tion. One early application of the remote-sensing technique is the house-counting

approach. In particular, dwelling units are manually counted from high-resolution

aerial photographs, and then these counts are multiplied by the surveyed household

size to derive population estimates (Lo 1986a,b). This approach, although relatively

accurate, requires a tremendous amount of time and labour and is rarely employed by

state and local agencies. To address this issue, automatic approaches have been

proposed for HU and population estimation. With these approaches, either spectral

radiance/reflectance or urban physical parameters are extracted from remote-sensing
imagery to represent housing information. With these parameters, regression models

are typically applied to derive population estimates (Lo 1995, Webster 1996, Chen

2002, Harvey 2002a,b, Li and Weng 2005, Wu and Murray 2007). Similarly, existing

GIS datasets, such as transportation network and land-use land-cover data, were also

applied to derive population estimates (Qiu et al. 2003, Wu et al. 2005).

These demographic models and remote-sensing-/GIS-based approaches for popula-

tion estimation have been developed almost in parallel. Each of them, however, has its

own issues. The HU method, a popularly applied demographic approach, can only
produce population estimates at an aggregated geographical level (e.g. town, city or

county), instead of a finer local level (e.g. census-block level). This is mostly due to the

problems of data acquisition. Currently, commonly used data sources of HU information

are building permits and electric-customer information, most of which can only be

obtained at an aggregated geographical level. Although some methods have been devel-

oped to derive population and HU estimates at the block-group level using simple

interpolation and step-down techniques (Perry and Voss 1996), such estimates, however,

are unreliable. These techniques assume that population count in a census block is a linear
function of its geographic area, thereby distributing population from an aggregated unit

to a block accordingly. Such assumption, however, is problematic due to the hetero-

geneous population distribution within a geographic area. On the other side, remote-

sensing-/GIS-based automatic techniques can reveal detailed spatial information (either

5674 C. Deng et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
n
g
,
 
L
e
]
 
A
t
:
 
1
5
:
2
9
 
1
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0



radiance/reflectance or physical parameters). This information, however, is not directly

associated with HUs, and may produce large errors when applied as the solo data source

to estimate HUs or population (Harvey 2002a,b, Li and Weng 2005, Wu and Murray

2007). Therefore, state and local agencies seldom used remote-sensing/GIS-based auto-

matic approaches for producing small-area population estimates.
The other problem of both approaches is that the relationship between population

and HUs (or indicative parameters extracted from remote-sensing imagery) is always

assumed to be unchanged from the most recent decennial census (US Census Bureau

2005). Several researches have pointed out that the persons per household (PPH) in

the US has had a tremendously downward trend during the past two centuries, falling

from 5.8 in 1790 to 4.8 in 1900, then to 2.6 in 2000 (Kobrin 1976, Bongaarts 2001, US

Census Bureau 2001). This drop is most likely due to declining birth rates and the

tendency for adults to head separate households. Acknowledging the problems of
using historical PPH values, Starsinic and Zitter (1968) developed PPH estimation

methods through extrapolating historical trends. Smith (1986) adjusted the estimated

PPH in small areas by examining changes in larger areas (e.g. states) where current

PPH estimates are available from other sources. These simple approaches may gen-

erate biased results when PPH trends are not stable (Smith et al. 2002). Smith et al.

(2002) estimated the county-level PPH by introducing population-age structure vari-

ables, births, school enrolment and Medicare enrolment (for age 65 and older).

Currently, studies on the PPH estimation are rare, and it is of great necessity to
estimate the PPH at the detailed level (e.g. census block).

To address the above issues associated with the HU method and remote-sensing-/

GIS-based automatic approaches, we propose to integrate GIS and remote-sensing

techniques into the HU method for deriving better small-area population estimates. In

particular, the first objective of this paper is to redistribute new HUs at an aggregated

geographic level (e.g. village or town) to census blocks with the help of remote-sensing

and GIS information. The second objective is to develop a model for better PPH

estimation at the census-block level through incorporating remote-sensing, GIS and
demographic data. The remainder of this paper is organized as follows. The next

section introduces the study area and data. The third section details model development

and accuracy-assessment techniques. Analysis of results and accuracy assessment are

discussed in §4, and finally conclusions and future research are given in §5.

2. Study area and data

The village and town of Grafton, Wisconsin, USA (see figure 1) is selected as the study
area for this research. Located in the north of Milwaukee City, Grafton has a

geographic area of 66.1 km2, including a variety of land-use types, such as residential,

commercial, transportation, forestry and agricultural, as well as other rural lands.

Since 1990, Grafton has been experiencing rapid population growth, with a significant

amount of residential and commercial developments. Its population was 13 330 in

1990 and rose to 14 444 in 2000, with an increment of 7.7%. In addition, the HU

number rose from 4827 in 1990 to 5773 in 2000, with 946 new HUs constructed, or an

increment of 16.4%. Due to the noteworthy population growth in this area, detailed
population estimates are essential for supporting urban and rural planning.

For the study area, population data at the census-block level in 1990 and 2000 were

acquired from the US Census Bureau. In Grafton, there were 266 blocks in 1990 and 313

blocks in 2000. In fact, a number of census blocks in 1990 had been sub-divided into several
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smallblocks in 2000.Moreover, the boundariesof several censusblockshavebeenmodified.

To address this data inconsistency problem, an area-weighted spatial interpolation

(Goodchild and Lam 1980) was applied to the 1990 block data and associated information
was transferred to the 2000 block boundary. In addition to census data, detailed land-use

data for 1990 and 2000 (see figure 2) were obtained from the Southeast Wisconsin Regional

Planning Commission. A Landsat Thematic Mapper (TM) image acquired on 1 August

1989 and a Landsat Enhanced Thematic Mapper Plus (ETMþ) image acquired on 8

September 2000 were downloaded from the WisconsinView project website (http://

www.wisconsinview.org/). Both images were reprojected to the Universal Transverse

Mercator (UTM) projection (zone 16, datum WGS84), and a further georeference was

conducted to reduce geometry misregistration. The residual mean square (RMS) of the
georeferenced imagewaswithin 0.2pixel.Moreover, atmosphericcorrectionwasperformed

usingthealgorithmdevelopedbyRichter(1996a,b,2005).Inparticular,thismethodinvolves

two steps: (1) calculating the reflectance of every pixel based on standard atmospheres,

aerosol types and visibility and (2) correcting the adjacency effect using weighting functions.

More details about this algorithm can be found in Richter (1996a, 2005).These Landsat

images will be used to extract urban biophysical information for better estimation of HUs

and PPH. In this research, demographic and spatial data in 1990 are employed for model

development, and data in 2000 are applied for model calibration and accuracy assessment.

3. Methodology

3.1 HU estimation

With traditional demographic methods, the number of new HUs is typically estimated

from building permit and electrical-customer information. This information, however,

Figure 1. Study area as the town and village of Grafton, WI, USA.
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can only be obtained at an aggregated geographical level, and there is a need to assign

these new HUs to individual blocks. In this paper, two interpolation methods were

employed to derive HU estimates at the census-block level. This first method is the

simple step-down interpolation technique (Perry and Voss 1996), with which new HUs
at the aggregated level are assigned to each census block according to the geographical

area of that block. The second method is the dasymetric-mapping method developed in

this paper. Dasymetric mapping was created for visualizing population data consistent

to land-use types to avoid the problem of ecological fallacy. Dasymetric mapping has

been popularly used for population-density estimation and areal interpolation (Mennis

2003, Wu and Murray 2005, Mennis and Hultgren 2006), but not particularly applied

for HU estimation. In this paper, a dasymetric-mapping method was developed to

redistribute newly developed HUs to individual census blocks with the help of ancillary
remote-sensing and GIS data. In particular, three variables derived from remote-

sensing and GIS datasets are used. These variables include: (1) single-family land-use

area change, (2) multi-family land-use area change and (3) the change of normalized

difference vegetation index (NDVI), representing vegetation-cover change. It is

assumed that the number of newly developed HUs is positively associated with land-

use area changes (e.g. single-family and multi-family) and negatively related to

vegetation-cover change. In order to quantify the weight for each variable, an ordinary

least-squares (OLS) regression analysis model was developed as follows:

�HU ¼ a0 þ a1�RS þ a2�RM þ a3�NDVI; (1)

Figure 2. Detailed land-use data of (a) 1990 and (b) 2000 obtained from the Southeast
Wisconsin Regional Planning Commission (residential land uses are shown in colour).
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where �HU is the number of newly developed HUs in a block from time t1 to time t2,

�RS is the areal change of single-family land use in the block, �RM is the areal change

of multi-family land use in the block, �NDVI is the change of NDVI values in that

block, and a1, a2 and a3 are their coefficients, respectively. After obtaining the

relationship among newly developed HUs and the variables derived from remote-
sensing and GIS datasets, the total HUs for the aggregated area (e.g. town and village

of Grafton) can be re-distributed to each census block.

3.2 PPH estimation

Compared with the HU numbers, an accurate PPH estimate is more essential since a

minor error of PPH may result in a significant error in the estimated population. In

this paper, the current method, in which the PPH is assumed to be unchanged from
the previous census and three regression models that use demographic and remote-

sensing and GIS variables were developed. Demographic and economic variables

include population-age structures (e.g. parentage of people with 65 and over), house-

hold income and housing values. Variables derived from remote-sensing and GIS data

include distances to particular land uses (e.g. commercial centre, schools and recrea-

tional areas), vegetation-cover changes and textural information generated from

Landsat TM/ETMþ imagery. With these demographic and GIS-/remote-sensing-

related variables, the three regression models are described as follows.
The first model (model A) assumes that the relationship between PPH and demo-

graphic and spatial variables is unchanged over time. Therefore, it is possible to

estimate the PPH of time t2 based on the parameters obtained from the data of time

t1. Thus, this model is an ‘inherit model’, in which the PPH for time t2 is estimated

according to the relations obtained from the data of time t1. The regression model is

illustrated as follows:

model A: PPHt ¼ a0 þ
Xm

i¼1

biSi;t þ
Xn

j¼1

�jDj;t; (2)

where PPHt is the PPH value at time t, Si,t indicates a spatial variable derived from

remote-sensing and GIS data at time t, Dj,t represents a demographic variable at time

t, m and n are the total number of spatial and demographic variables, respectively, and

a, b and � are regression coefficients.

Model A assumes that the relationship between PPH and relevant variables does
not change over time. This assumption, however, may be problematic. To have a

better estimation of PPH, a special survey is needed to obtain the knowledge of PPH

and demographic variables for time t2. Therefore, the second model (model B)

attempts to estimate the PPH at time t2 with the PPH value at time t1 and spatial

and demographic variables at time t2 as independent variables. This model is named

an ‘empirical model’, as the PPH at time t1 is employed as an independent variable:

model B: PPHt2
¼ a0 þ a1PPHt1

þ
Xm

i¼1

biSi;t2
þ
Xn

j¼1

�jDj;t2
; (3)

where PPHt1
and PPHt2

are the PPH at time t1 and time t2, respectively, and Si;t2
and

Dj;t2
are the spatial and demographic variables at time t2, respectively.

In addition to model B, the third model (model C) explores the relationship between

the change of PPH and the changes of spatial and demographic variables from time t1

5678 C. Deng et al.
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to time t2. Since this model represents the relationships between the changes of

variables, it is named a ‘change model’. The formulation of this model is as follows:

model C: �PPH ¼ a0 þ
Xm

i¼1

bi�Si þ
Xn

j¼1

�j�Dj; (4)

where �PPH is the change of PPH for a census block from time t1 to time t2, and �Si

and �Dj are the changes of spatial and demographic variables, respectively.

3.3 Small-area population estimation

With the HU and PPH estimates for each census block, it is feasible to derive the
population estimates via the HU method, which can be expressed as follows:

Pt ¼ HUt �Ot � PPHt þGQt; (5)

where Pt is the estimated population for a small area at a non-census time t, HUt is the

number of HUs at time t, Ot is the occupancy rate at time t, PPHt is the average size of

household or PPH at time t and GQt is the group-quarter population (e.g. persons

residing in college dormitories, military barracks, nursing homes and prisons) at time t.

With the estimated values of HU and PPH derived from §§3.1 and 3.2, it is feasible to
estimate the population for each census block with information of occupancy rate (Ot)

and group-quarter population (GQt). In this research, the occupancy rate at time t2 is

assumed to be unchanged from time t1, and this information may also be estimated

from data acquired from a special survey, if available. For an area without large group-

quarter facilities, the group-quarter population for a non-census year can be assumed to

be unchanged or change proportionally to the household population (Smith and Lewis

1980). In this research, group-quarter population in Grafton at time t2 is regarded to be

the same as the value at time t1. Therefore, with the estimated values of HU, PPH, O

and GQ at time t2, the population estimate for a census block at time t2 can be derived.

3.4 Accuracy assessment

To assess the estimation accuracy of HUs, PPH and population, a spatially random

sampling method was used to divide all census blocks into two groups: 50% of data

was used as a training dataset for modelling and the other 50% of data serves as a

testing dataset to assess estimation accuracy. Several error measurements, including
the mean absolute error (MAE) (see equation (6)), mean absolute percentage error

(MAPE) (see equation (7)) and mean algebraic percentage error (MALPE) (see

equation (8)), were employed in this paper:

MAE ¼ 1

n

Xn

i¼1

jÂi � Aij; (6)

MAPE ¼ 100%� 1

n

Xn

i¼1

Âi � Ai

Ai

�����

����� (7)

and

MALPE ¼ 100%� 1

n

Xn

i¼1

Âi � Ai

Ai

; (8)
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where Âi is the estimated value for a variable, Ai is the actual value for that variable

and n is the total number of samples (e.g. census blocks). For these three measure-

ments, the MAE is popularly used in remote-sensing and GIS studies, while the

MAPE and MALPE are widely employed in demographic research. Both the MAE

and MAPE are measures of precision, reflecting how close the estimated values are to
the actual values, while the MALPE is a measure of bias, focusing on whether the total

estimate shows an upward or downward tendency (Smith et al. 2002, Cai 2007).

4. Results and discussion

4.1 HU estimation

Following the methodology described in §3.1, the simple step-down interpolation

technique and the regression-based approach were implemented in the study area. For

the step-down interpolation, the geographical area of each census block is used as the

weight for new HU assignment; that is, the number of new HUs received by a block is

a linear function of its geographical area. The MAE of the HU estimation with this

approach is 8.70 and a comparison with the actual new HU distribution
(see figure 3(a)) illustrates that the HUs in a majority of census blocks are over-

estimated, in particular, the blocks with larger geographical areas (e.g. blocks in the

village of Grafton). Comparatively, the HUs in a few blocks at the edge of Grafton

town are underestimated. This is because recent developments of HUs were along the

edge of Grafton town, while the step-down technique simply assumes that the number

of new HUs is linearly correlated to block size, which does not reflect the actual

development pattern of new HUs.

In addition to the simple step-down interpolation technique, the regression model
with remote-sensing and GIS information was also implemented. Results of this model

(see table 1) indicate that the spatial pattern of new HUs can be reasonably explained by

the GIS and remote-sensing variables, with the adjusted R2¼ 0.526, where adjusted R2

indicates a goodness-of-fit measure of the regression model. Among the three variables,

the change of single-family and multi-family areas are statistically significant at the 95%

confidence level, while the change of NDVI, although negatively correlated with new

housing development, does not have significant contributions. Therefore, for the HU

interpolation, only single-family and multi-family residential area changes were used.
Results show that the MAE with this regression model is 3.37, which is much lower

than that obtained from the simple step-down interpolation method (8.70).

Moreover, when compared with the actual HU map (see figures 3(b) and 3(c)), it is

apparent that the spatial pattern of HU estimates from regression analysis can

accurately reflect the actual distribution of new housing development. In particular,

the HU development in the town of Grafton has been almost saturated, and most of

the new developments are in the fringe of the town of Grafton, with a few new

developments in the village of Grafton.

4.2 PPH estimation

Four methods for estimating PPH, including the current method (PPH is assumed to

be unchanged from the previous census) and three regression models (models A, B

and C) were applied for the study area, and the results of these three regression models

are reported in table 2. Table 2 indicates that the value of PPH can be modelled

reasonably well by demographic and spatial variables. In fact, the adjusted R2 values

5680 C. Deng et al.
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1500 750 0

Above 40

1500 m

10–19

20–29

30–39

1–9

No change

New Housing Units

(b)(a)

(c)

N

Figure 3. Comparison of HU estimates: (a) estimates using the simple step-down interpola-
tion method, (b) estimates using the regression model and (c) actual HU numbers.

Table 1. HU regression-model results. �RM is the change of multi-family
land-use areas, �RS is the change of single-family land-use areas, ** indicates
statistically significant at the 95% confidence level, adjusted R2 is 0.526, B
stands for the coefficients for the regression model, t denotes the critical
value in t-distribution, p-value represents a threshold probability to deter-

mine whether the observed outcome is statistically significant.

Coefficient B t p value

Intercept 1.411 2.027 0.047**
�NDVI -6.744 -1.400 0.163
�RM 18.804 9.818 0.000**
�RS 1.378 6.405 0.000**
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for all these three models are over 0.60, indicating that over 60% of the variations in

PPH can be explained. Four demographic variables, percentage of people with ages

under 17 (Age 0_17), 18–39 (Age 18_39), 40–64 (Age 40_64) and 65 and over

(Age 65above), were used for PPH estimates. Results indicate that the PPH has a

significant and positive relationship with the percentage of young population (people

with age under 17) and a significant but negative relationship with the percentage of
elder population (people with age of 65 and over). These results are not unexpected

and are consistent with the findings of Smith et al. (2002). Beside demographic

variables, several spatial variables, including distance to commercial centres

(Dist_Commercial), distance to schools (Dist_School) and distance to recreational

areas (Dist_Recreation), were calculated using GIS land-use data. Results indicate

that the PPH is positively correlated with the distance to commercial centres, but

negatively correlated with the distance to recreational areas. These results imply that

households with a larger size tend to choose residential locations far away from
commercial centres and close to recreational areas. Spatial variables derived from

Landsat data, including NDVI and textural parameters, however, were insignificant

in any model. Therefore, these variables were dropped from these regression models.

The results of PPH estimates are illustrated in figure 4, with figures 4(a), 4(b), 4(c)

and 4(d) showing the estimation results of models A, B, C and the current method,

respectively, and figure 4(e) displaying the actual spatial distribution of PPH in 2000

for comparison purposes. It can be discerned that the PPH estimates from models A,

B and C have similar spatial patterns when compared to the actual PPH values in
2000. Comparatively, the estimates of models A and B seem to be consistent with the

spatial patterns of the actual PPH distribution, and model C clearly over-estimates the

PPH in many census blocks. For the current method, though, the spatial trend is

inconsistent with the actual PPH distribution, and the PPH values in a large number

of blocks are visibly over-estimated, particularly in the blocks in Grafton village. The

reason of this over-estimation may be that the PPH in the study area has had a

downward trend in the past decades due to the declining birth rates and the tendency

for adults to lead separate households.
In order to quantitatively evaluate the accuracy of the PPH estimates, the three

accuracy measurements, MAPE, MALPE and MAE, were calculated and are

reported in table 3. Results indicate that the current method has the lowest precision,

with the highest MAPE (24.19%) and MAE (0.62). Moreover, it has the largest bias

Table 2. Coefficient summary of PPH regression models. ‘/’ indicates the variable
does not have significant contribution (at the 95% confidence level) to the regression

model. PPH_90 denotes person per household in 1990.

Coefficients Model A Model B Model C

Intercept 1.646 1.012 -0.215
PPH_90 / 0.208 /
Age 0_17 4.334 3.391 3.681
Age 18_39 / / /
Age 40_64 / / /
Age 65above / / -0.855
Dist_Commercial 0.349 0.361 /
Dist_School / / /
Dist_Recreation -0.96 / -0.346
R2 0.627 0.718 0.698
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and over-estimates the PPH by approximately 13%. This proves that it is inappropri-

ate to assume that the PPH is constant over time. Comparatively, all three regression

models perform better than the current method. Models A and C have slightly better

precisions, but much lower bias than the current method. For example, the MALPEs

of models A and C are 4.21% and 7.77%, much lower than that of the current method

Table 3. Accuracy comparison of estimation models of HU, PPH and population at the
census-block level.

Model MAPE (%) MALPE (%) MAE

HU Step-down method 41.08 19.26 8.70
HU regression 35.34 6.82 3.37

PPH Current method 24.19 13.13 0.62
Model A 22.22 4.21 0.59
Model B 9.98 0.21 0.27
Model C 19.19 7.77 0.50

Population Simple demographic
method

58.27 32.68 30.02

Regression model 25.56 5.52 11.68

1000 2000 3000 40005000

N

4 and above

2–2.9
1–1.9

3–3.9

No PPH
Person Per Household

m

(b)

(d) (e)

(a) (c)

Figure 4. Comparison of persons per household (PPH) estimates among (a) model A, (b)
model B, (c) model C, (d) current method and (e) actual PPH values.
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(13.13%). Model B has the best overall performance. In particular, it has the highest

precision, with the lowest MAPE (9.98%) and MAE (0.27) and the smallest bias

(MALPE ¼ 0.21). The lack of precision improvements with models A and C may

be associated with the assumptions of these two models. In particular, model A, as an

‘inherit model’, assumes that the relationship between PPH and relevant variables
does not change over time. Model C, as a ‘change model’, considers that the change of

PPH can be effectively explained by the changes of spatial and demographic variables,

irrelevant to the previous PPH values. These assumptions, however, are problematic,

as the PPH in a census block is dependent on both the previous PPH values and the

changes of spatial and demographic variables. Therefore, model B, taking both

factors into account, has proven to be the most accurate model for PPH estimation.

4.3 Small-area population estimation

With the HU and PPH estimates for a non-census year, it is necessary to generate the

population estimates using the HU method described in §3.3. In this paper, two

approaches were developed for comparison. The first one is the simple demographic

approach, which uses the step-down interpolation method for HU estimation and

assumes that the PPH is the same as that obtained from the previous census. The second

approach involves a sequence of regression analyses with demographic and spatial data.

In particular, the HU estimates were achieved from the regression model using detailed
land-use datasets (as described in §3.1) and the PPH estimates were generated using

model B, in which demographic and spatial variables were used (as detailed in §3.2).

Results of population estimates with these two approaches, together with the actual

population count from 2000 census, are displayed in figure 5. In particular, figure 5(a)

shows the results obtained from the simple demographic approach and 5(b) illustrates

the estimates from the regression models. In addition, detailed accuracy assessments

of these population estimates are reported in table 3. Analysis of results indicates that

the estimates from the simple demographic method are not acceptable. In general, it
over-estimates the population for the whole study area by over 30%, largely due to the

over-estimates of the PPH values. Moreover, the relative errors are also very large, as

the MAPE is approximately 58% and the MAE is about 30. On the contrary, the

regression-based approach only slightly over-estimates the overall population (5.5%)

and is much more precise than the simple demographic approach. In fact, the MAPE

(25.56%) and MAE (11.68) indicate that the regression models with demographic and

spatial variables can derive small-area population estimates reasonably well.

Besides an overall accuracy assessment, analysis of relative errors for the HU, PPH
and population estimates (see figure 6) illustrates the patterns of error propagation.

Figure 6(a) shows that the HU values in seven blocks (out of 313) have been highly

over-estimated (with relative errors higher than 15%). Within these seven blocks, six

have highly over-estimated population counts (see figure 6(c)). In addition, the HU

values in 19 blocks are highly under-estimated (with relative errors lower than 15%) and

with them, 15 have highly under-estimated population counts. These results indicate

that the errors of HU estimates have significant influences on those of population

estimates. When compared to the HU, the errors of PPH do not have such strong
influences on the errors of population estimates. In particular, within the 12 blocks with

highly over-estimated PPH values, the population counts within nine of them are highly

over-estimated. Moreover, within the 10 blocks with highly under-estimated PPH

values, only four of them have highly under-estimated population counts.
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5. Conclusions

In this paper, we proposed to integrate GIS and remote-sensing techniques into the
HU method for generating better small-area population estimates. In particular, HUs

and PPH at the census-block level were derived using regression models with demo-

graphic and spatial variables. Then these estimates were input to the HU method for

deriving block-level population estimates. The accuracy of small-area estimation with

this regression-based method was compared to the current method.

Analysis of results suggests two major conclusions. Firstly, the accuracy of small-

area population estimates can be significantly improved through integrating

(a) (b)

(c)

1500 750 0 1500 m

Population 2000
0–19
20–49
50–99
100–149
150–199
200–299
300 Above

N

Figure 5. Comparison of block-level population estimates derived from (a) the simple demo-
graphic method, (b) regression analyses with demographic and remote-sensing/GIS data and (c)
actual population count from the 2000 census.
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remote-sensing/GIS information. Detailed land-use information has proven to be the

most important GIS dataset for small-area population estimation. In particular, it can

be used to redistribute aggregated building-permit information for better HU gen-

eration and employed to calculate spatial variables for better PPH estimation.

Secondly, this research proves that the PPH can be effectively modelled by

(a) (b)

(c)

N

0 500 1000 2000 3000 4000
m

Relative Error%
< –15
–15 – –5
–5 – 5
5 – 15
>15

Figure 6. Comparison of relative errors at the block level for (a) estimated HUs using the
regression method, (b) PPH using regression model B and (c) population using equation (5) with
the estimated HUs from (a) and PPH from (b).
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demographic and spatial variables. In fact, several demographic variables, including

the percentage of population with age under 17 and population with age 65 and over,

and several spatial variables, such as the distance to commercial centres, schools and

recreational areas, can explain over 60% of PPH variations.

Although this study showed that the integration of GIS and remote-sensing infor-
mation into the HU method can greatly improve the small-area population estimates,

there are many issues for future research. One direction is for better HU estimation.

Detailed and more accurate HU estimation can be achieved using high-spatial-

resolution remote-sensing imagery (such as IKONOS and QuickBird data) and

Light Detection and Ranging (LiDAR) datasets. Moreover, the footprint and volume

information generated from these data can help the estimation of PPH. Another

direction is to explore whether demographic variables can be derived through GIS

and remote-sensing information. Currently, a special census, or sampling, is needed
for creating demographic variables. This work, however, is always time consuming

and labour intensive.
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