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Small-area population estimation is an important task that has received consider-

able attention from the remote-sensing community in the past four decades. The

wealth of related studies reveals that the notion of living space had been considered a

key linkage between population and remote-sensing measurements. Unfortunately,

a formal definition for this important variable has proved difficult, due, in part, to

the relatively coarse spatial resolution of the remote-sensing data used for popula-

tion estimation. The advent of airborne Light Detection And Ranging (LiDAR)

sensors for measuring elevation at fine spatial resolutions has provided new oppor-

tunities for considering the three-dimensional nature of living space in urban envir-

onments and for improving small-area population estimations. In this study, we

assess the potential of fine-spatial-resolution LiDAR measurements (1 m) coupled

with automated techniques for building extraction and land-use classification. The

study seeks to provide an answer to the question: what level of information extracted

from fine-spatial-resolution LiDAR and aerial photographs can be realistically

translated into improved small-area population estimation? This question is

addressed through a comparative study of up to seven linear models with building

count, building area and/or building volume as explanatory variables at one of two

land-use levels: single-family dwelling, multi-family dwelling and other types, versus

residential and other types. Results show that, while building volume fits more

naturally the population figures, it also represents the most challenging variable to

measure by automated means. Because of this, a simple model expressed in terms of

residential-building counts results in more reliable population estimates.

1. Introduction

Small-area population estimates are essential for understanding and responding to

many social, political, economic and environmental problems (Liu 2003), such as

resource allocation (Smith et al. 2002), public-transit route design (Benn 1995),

customer-design analysis, market-area delineation and site-location identification

(Martin and Williams 1992, Plane and Rogerson 1994). Billions of dollars from public

funds are allocated every year based on diagnostic indicators such as unemployment

rates, mortality and morbidity rates, etc., which have population estimates as a

common denominator. Despite its great significance to many applications, detailed
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and accurate population information is only available on one date per decade in most

countries, a sampling rate that is well below the changing rates of fast-growing cities.

Therefore, the development of new techniques for generating accurate and timely

population estimates is of great importance (Smith et al. 2002).

Population estimation by means of remote sensing has a long tradition that can be
traced back to the 1950s (Porter 1956, Hsu 1971, Kraus et al. 1974, Lo and Welch

1977), when aerial photographs were used to count dwelling units. Since then, the field

has evolved both in sophistication of sensors used for data acquisition, as well as in

methods and models involved in estimation. Lo (2006) identified four main

approaches for population estimation using remote sensing. These approaches are:

(1) counting dwelling units, (2) measuring urban built-up areas, (3) measuring areas of

different land use/land cover (LULC) and (4) automated digital analysis. A similar

scheme was also presented by Wu et al. (2005), who also discussed various interpola-
tion approaches pertinent to population estimation. Arguably, Lo’s approaches (2)

and (3) are essentially the same, with the major difference being the scale.

Nonetheless, the LULC provides thematic information apart from area, which is

generally used to mask out non-residential land uses, or for model stratification of

various kinds (e.g. Watkins and Morrow 1985, Lo 1995, 2003, Langford 2006).

Traditionally, population estimates are based on dwelling-unit counts from aerial

photography (Hsu 1971, Lo and Chan 1980, Watkins and Morrow 1985, Lo 1986,

Taragi et al. 1994). This approach, which largely relies on visual identification and
enumeration of dwelling units, is a relic of the housing-unit (HU) method of popula-

tion geography that is used routinely by the US Census Bureau for estimating sub-

county (census-tract and census-block) population in non-census years (Smith and

Cody 2004). The HU method assumes that almost every person (except the homeless)

lives in a housing structure, and it is therefore feasible to generate population esti-

mates for a small area by counting the number of houses within that area (Smith and

Cody 2004). From a remote-sensing perspective, small-area population estimates (P)

are calculated by multiplying the number of housing units (U) determined from the
aerial photography with the average occupancy rate (r) and the average household

size (h), i.e. P ¼ rhU . The approach can be extended to consider various housing types

with different household sizes and vacancy levels. For instance, Watkins and Morrow

(1985) considered the number of single-family (U1) and multi-family (U2) units and

expressed the total population in the form P ¼ r1h1U1 þ r2h2U2, where the model

parameters (r and h) are determined from field surveys or from a prior census, or even

through a regression approach.

A second group of methods relates the planimetric area of living spaces to popula-
tion. Examples of this group include those methods that consider the areas of cities

(Lo and Welch 1977, Lo 1986, 2001, Sutton et al. 2001), areas of land uses (either

residential or non-residential, e.g. Kraus et al. 1974, Lo 2003, 2008, Langford 2006)

and, more recently, areas of impervious surface (Lu et al. 2006a, Wu and Murray

2007, Morton and Yuan 2009). Most of these studies relied on Landsat Thematic

Mapper (TM) or Landsat Enhanced Thematic Mapper (ETMþ) coupled with some

digital image-analysis techniques for LULC or impervious-surface extraction, with

the exceptions of Lo (2001) and Sutton et al. (2001), who applied thresholds to
nighttime light from the Defense Meteorological Satellite Programme Operational

LineScan System (DMSP OLS) to determine urban built-up areas. The initial motiva-

tion for relating area to population was the biological law of allometric growth

introduced by Huxley (1932) and examined by Nordbeck (1965) in a geographical
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context. In a sense, the urban allometric growth law loosely states that the relative

population growth is proportional to the relative growth of the living space. More

precisely, P ¼ aAb, where A is the inhabited area, i.e. the urban area/built-up area at

one scale, or the residential land-use area at another scale, and a and b are the model

parameters. Because population is essentially a three-dimensional variable (i.e. a
measure of the volume occupied by human bodies) and the inhabited area is a two-

dimensional variable, Nordbeck (1971) conjectured that the exponent of the relation

must always be b ¼ 3/2, which appeared to be the case at city level, but is not quite

generalizable for other various urbanization levels or finer spatial units (e.g. Lo 1986,

Sutton et al. 2001, Morton and Yuan 2009). Since a general theory leading to the

allometric growth equation is lacking, and because the implications from the modifi-

able areal unit problem (MAUP; Openshaw and Taylor 1981) question its generality,

others forms of the nonlinear, area–population relationship can be used. For instance,
instead of using logarithms, Lu et al. (2006a) linearized the relationship by taking the

square root of population and found a high correlation coefficient ðR2 � 0:8Þ with

various impervious surfaces. To this end, the complexity of the area–population

relationship is recognized to be strongly scale dependent. At the fine levels, the issues

of spatial autocorrelation and non-stationarity come to play a significant role for

small-area population estimation (Langford 2006, Hardin 2008, Lo 2008).

A third group of methods seeks to directly relate physical measurements made by the

sensors (or their transformed values) to the population. The approach was first pro-
posed by Iisaka and Hegedus (1982) and was extensively used by Lo in his studies of

Chinese cities (Lo 1989, 1995). The rationale for this approach is that some spectral

bands are more sensitive to urban reflectance than others. For instance, Lo (1995)

observed strong negative correlations of population density at city level with radiances

of Satellite Pour l’Observation de la Terre (SPOT) High Resolution Visible (HRV)

band three (infrared) and band one (green) and a positive correlation with band two

(red). Because bands one and three are associated with vegetation density, they serve to

indicate absence of or low-density population, whereas band two is associated with the
high albedo of urban built-up areas, resulting in higher correlation with population

density. Naturally, researchers have also successfully related nighttime light energy

from the DMSP OLS to population, but at a much coarser spatial resolution (Sutton

et al. 1997, Dobson et al. 2000, Lo 2001). While relating urban radiometric measure-

ment to population seems to work for large areas, it has been noted that, for small areas,

this approach tends to produce poor results (Wu et al. 2005). In light of this, many

researchers have also tested transformed values such as principal components and band

ratios (Harvey 2002a, b, Li and Weng 2005), texture descriptors from semi-variances
and the grey level co-occurrence matrix (Wu et al. 2005, Liu et al. 2006), as well as higher

order spatial metrics derived from thematic classifications (Liu et al. 2006, Hardin

2008). All these studies have shown promising results for small-area population estima-

tions (down to aggregation levels of block group and block, in US census units), but are

still limited by the poor spatial resolution of remote-sensing data used.

Although very-fine-spatial-resolution satellites (IKONOS with 1 m and QuickBird

with 0.65 m in their respective panchromatic bands) have been available for around a

decade now (IKONOS launched in 1999 and QuickBird launched in 2001), studies
taking advantage of this fine spatial resolution for small-area population estimations

are still scarce and generally limited to the application of traditional visual interpreta-

tion for HU count (e.g. Yagoub 2006). Likewise, airborne Light Detection And

Ranging (LiDAR) devices have allowed rapid access to vertical information of

Population estimation using remote sensing 5607
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urban structures, but the integration of this new level of information for population

estimation has not been fully investigated. Recently, it was suggested that the volume

information provided by LiDAR could serve to best improve small-area population

estimations (Wu et al. 2008). Whether or not LiDAR measurements coupled with

automated techniques for building extraction and land-use classification can lead to
improved small-area population estimation is still an unresolved matter.

This study sought to provide an answer to the question: what level of information

extracted from LiDAR measurements and fine-spatial-resolution imagery can be

realistically translated into improved small-area population estimation? This question

was addressed through a comparative study of up to seven linear models expressed in

terms of building count, building area and/or building volume, at one of two land-use

levels. At the most detailed land-use level, extracted buildings were classified as single-

family dwelling, multi-family dwelling or other types, whereas at the least detailed
level, they were classified as either residential or other types. The models based on

building count and building area were meant to represent two of the most prominent

categories of population-estimation models discussed above, whereas models that

used building volume served as a means for testing the hypothesis that residential-

building volume can more naturally fit population figures, as it provides a better

representation of the three-dimensional nature of living space. In order to provide and

answer the question posed above, a number of automated building extraction and

land-use classification methods were developed, and the impact of the inaccuracies
from remote-sensing methods in the final population estimation was quantified.

The remainder of the manuscript is organized as follows. Section 2 introduces the

study area and data used in this study, highlighting sources and purpose of data.

Section 3 summarizes the methods used for data preparation, building detection,

land-use classification, population estimation and accuracy assessment. Section 4

presents the main results by providing an answer to the specific question posed in

this study and §5 presents a discussion and conclusions.

2. Study area and data used

The study area is located in the City of Austin, capital of Texas (figure 1). Austin is

currently the third fastest growing large city in the US with a population of 750 000.

According to the US censuses of years 1990 and 2000, the city grew an impressive 41%,

from 465 622 in 1990 to 656 562 in 2000, with an average annual growth rate of 3.5%.

The city’s population has been projected to top 800 000 by 2010 (City of Austin

2009a). The selected area for this study covers approximately 4.8 km x 6.4 km,
representing 4.5% of the entire city area (figure 1). A major interstate highway, IH-

35, runs S–N and splits this area in two sides. The west side is dominated by civic,

commercial, as well as some residential land uses located in the northern and southern

ends (figure 2). Civic land use is defined as the land covered by semi-institutional

housing, hospital, government services, educational meeting and assembly, and cem-

etery (City of Austin 2009b). In the study area, the civic land-use areas correspond to

the University of Texas (UT) campus, whereas the commercial land, located south of

the UT campus, corresponds to the fringes of the city’s central business district, which
is located at the far left of the study boundary. The east side of the study area is

dominated by residential land uses, with some instances of industrial land use located

along major roads. A total of 1153 census blocks, with nearly 20 000 buildings, cover

this area. Most buildings are residential dwellings (85%), of which 94% are

5608 J. L. Silván-Cárdenas et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
n
g
,
 
L
e
]
 
A
t
:
 
1
5
:
2
6
 
1
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0



single-family detached and two-family attached, and only 6% are multi-family three-/

four-plex (dwelling of three or four units) and apartment/condo (individually owned

units in a single building with common facilities).

In order to perform detailed analyses of building-detection and land-use classifica-

tion methods, we selected four small study areas within the larger study area. The inset

boundaries are shown in figure 2. These sites were carefully selected to represent the
spectrum of living environments found in the study area:

l inset 1 contains multi-family dwelling units located in a sparsely vegetated area,

l inset 2 contains single-family dwelling units located in a densely vegetated area,

l inset 3 contains single-family dwelling units located in sparsely vegetated area and

l inset 4 contains both single-family and multi-family dwelling units located in a

sparsely vegetated area.

Datasets acquired for the study area include LiDAR altimetry measurements, demo-

graphic and geographic census data, building footprints and land-use layers, aerial

photography and a Landsat TM image. All datasets were contemporarily acquired
around year 2000. The LiDAR data was provided by the Bureau of Economic Geology

of the University of Texas at Austin, and was acquired in 2000 using an Optech, Inc.

Airborne Laser Terrain Mapper (ALTM; Optech, Inc., Vaughan, Ontario, Canada)

1225 instrument mounted on a single engine craft. The ALTM instrument delivers a

cloud of three-dimensional points for the first and last return of a laser pulse. For each

return, the backscatter intensity was also recorded. The average point density was

around 3 points m-2, and there were around 40 million points in the entire study

0 10 20 km5

Figure 1. Geographic location of the study area. The key maps show the location of Texas
State in the conterminous US (top), the location of Travis County in Texas State (right), and the
location of Austin city in Travis County (centre).
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area. Demographic and geographic data were acquired at census-block level through

the US Census Bureau’s American FactFinder (US Census Bureau 2009a) and TIGER/

Line shapefiles (US Census Bureau 2009b) web sites, respectively. Building footprint

and land-use layers, together with a fine-spatial-resolution (0.6 m) colour–infrared

(CIR) aerial photography, were acquired through the City of Austin Neighborhood

Planning and Zoning Department (NPZD; City of Austin 2009b). A Landsat TM

image acquired in the spring of 2000 was downloaded from the US Geological
Survey’s GloVis data distribution portal (US Geological Survey 2009).

3. Methods

Figure 3 shows the workflow of the study. This workflow involved methods for:

(1) data pre-processing, (2) building extraction, (3) land-use classification, (4)

Figure 2. This map shows the location of four insets within the study area, the residential land-
use areas and the LiDAR elevation measurements as a background image.

5610 J. L. Silván-Cárdenas et al.
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population estimation and (5) accuracy assessment. These methods are briefly

described below, with much technical details obviated due to constraints in the

length of the manuscript. All implementation were based on ESRI’s ArcGIS suite

(ESRI, Redlands, CA, USA), ENVI v4.5 (ITT Visual Information Solutions,

Boulder, CO, USA, 2008), eCognition (Definiens, Inc., München, Germany), the

open-source data mining software WEKA (Witten and Frank 2005) and custom

developments in MATLAB v7.3 programming language (The MathWorks, Inc.,
Natick, MA, USA, 2006).

3.1 Data pre-processing

3.1.1 Derived raster layers. Several raster layers were derived from the LiDAR point

cloud and the CIR photograph (see table 1), which served as inputs to various automatic

building detection and land-use classification methods. The layers derived from the CIR

photograph included the following masks: vegetation, bare ground, impervious surface

and pervious, non-bare ground. The vegetation mask was defined by applying a threshold

to the normalized difference vegetation index (NDVI). Specifically, a pixel was consid-

ered vegetation if NDVI . 0.5, or non-vegetation otherwise. The other masks were

produced through the maximum likelihood classification (MLC) of the CIR photograph.
Training samples of up to five land-cover classes (bare ground, building roof, road/

parking lot, tree and grass) were manually delineated in ENVI software and passed to

the MLC routine to produce a classification image. Then, the bare-ground mask was

extracted from the classification result, the impervious-surface mask was produced by

clumping the classes paved roads, parking lots and building roofs, whereas the pervious,

non-bare-ground mask was produced by clumping the classes tree and grass. The later

can be considered as an alternate vegetation mask.

LiDAR
point cloud

Reference-building
footprint

Tax-parcel
boundaries

Reference
land use

Census
population

Census-block
boundaries

Reference-building
footprint

Reference
and use

Census
population

CIR
photo

Landsat
TMCIR

photo

Reference
land use

Extracted
buildings

Extracting of bulding
footprint in test sites

Accuracy assessment
and selection of building
detection strategy

Building extraction in
entire study area

Land-use classification Select residential
buildings

Census-block statistics of
residential buildings

Calibration and
validation of regression

models

Population estimation
from calibrated models

Accuracy assessment
of population estimation

Accuracy assessment of
land-use classifications

Region growing,

Reference-building
footprint

Dempster-shafer, etc.

Clustering (pixel),
Neuralnet (building)

Multi class (tax-parcel)

Building level

Pixel level

DS method only

From actual LU Area

Volume, etc.

Census block statistics of
residential buildings

Area

Volume, etc.

From 3 LU classifications

Object level

Figure 3. This chart shows the workflow of the study, indicating major inputs and processing
steps.

Population estimation using remote sensing 5611

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
n
g
,
 
L
e
]
 
A
t
:
 
1
5
:
2
6
 
1
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0



The datasets derived from LiDAR consisted of the feature height, ground mask,

intensity difference and the grey level co-occurrence matrix (GLCM) angular second

moment of a digital surface model (DSM). The DSM was produced at a spatial

resolution of 1 m by applying a point to raster conversion tool to the point-cloud

elevation values in ArcGIS. Elevation values from the last return of the laser pulse were

selected due to its likelihood of penetrating through tree canopy. Because the ground-

sampling distance of the point data was not uniform, the number of points within each
1 m cell varied from none to several points. The raster conversion assigned the mini-

mum elevation from the points within each cell, or an interpolated value from adjacent

neighbour cells in the case that no point occurred inside the cell. Once in raster format, a

ground mask was produced using the multi-resolution ground-filtering approach

described by Silván-Cárdenas and Wang (2006). Following such a method, the DSM

was first decomposed into coefficients of a multi-resolution transform, termed the

multi-scale discrete Hermite transform (Silván-Cárdenas and Escalante-Ramı́rez

2006). Then, the transform coefficients were eroded, and the inverse transformation
was applied to recover a bare-earth digital terrain model (DTM). The recovered DTM

was then subtracted from the DSM to produce a feature-height layer, which was in turn

used for producing a ground mask. Cells in the ground mask were set to one or zero,

depending on whether the height was less than 1 m. The GLCM angular second

moment texture layer was also produced from the DSM with a moving window of

3 x 3 cells and a shift parameter of one horizontal increment per interval. The angular

second moment calculation is a strong measure of homogeneity versus dissimilarity,

and, when applied to a DSM, is extremely sensitive to changes in elevation, making it an
ideal layer for facilitating building-surface segmentation.

The process used to produce the DSM was also followed for the production of

two intensity layers, one using the first return and one the last, in which the value

assigned to the resulting raster was that of the intensity field rather than the

elevation field. After these two intensity raster layers were computed, a simple

intensity-difference layer was produced using map algebra in ArcGIS, in which the

value of the last-pulse intensity layer was subtracted from the value of the first-

pulse intensity layer.

Table 1. Input–output relationship among various raster layers used in the study. All output
layers had a cell size of 1 m, with the exceptions of the Landsat image, with a cell size of 30 m,

and the building density, with a cell size of 500 m.

Input layer(s) Output layer(s)

LiDAR last return (elevation value) Digital surface model (DSM)
DSM Ground mask

Angular second moment
DSM & ground mask Digital terrain model (DTM)
DSM & DTM Feature height
LiDAR two returns (intensity value) Intensity difference
CIR photo Normalized difference vegetation index (NDVI)

Impervious surface mask
Bare-ground mask
Pervious, non-bare-ground mask

NDVI Vegetation mask
Landsat Digital numbers (six bands)
Building footprint Building count grida

aNumber of footprint centroids per cell of 500 m x 500 m

5612 J. L. Silván-Cárdenas et al.
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3.1.2 Reference-building footprint. The reference-building-footprint layer was an

edited version of the NPZD’s building-footprint layer. Since the latter was produced

by manual digitization using aerial photos and LiDAR datasets collected in 2003

(City of Austin 2009b), we edited this layer to match the aerial photography and the

LiDAR data acquired in 2000. Specifically, we calculated the building height from the
LiDAR data and deleted all buildings with an average height below 2.5 m. Although

the city regulation permits a minimum first-floor height of 4.5 m, the much lower

threshold was used due to possible discrepancy in building-height definition. In this

study, we calculated the building height as the average LiDAR elevation within the

building footprint minus the minimum elevation within a 2 m buffer of the building

footprint. Close inspection of deleted building footprints with the help of the CIR

photography confirmed that these buildings were built after the census year. A total of

18 453 buildings remained in this layer.
Besides building height (H), we calculated, for each building, its footprint area (A),

footprint perimeter (P), volume (V) and shape (S). The building volume was calcu-

lated as the product of footprint area and its height, i.e. V ¼ AH. The building shape

was defined through the two-dimensional compactness index:

S ¼ 4p
A

P2
: (1)

Other building attributes, including neighbourhood and zonal statistics, were also

attached to the reference layer. The complete set of building attributes calculated is

provided in table 2. Attributes related to build-up density were based on Thiessen
polygons around the buildings. Thiessen polygons were first constructed around all

building vertices and then, each of those belonging to a single building, were merged

into one polygon. Merged Thiessen polygons were meant to provide a stand in for

parcels as a source of information about density of buildings. Attributes related to

building neighbourhood correspond to spatial statistics on a neighbourhood defined

through a Delaunay triangulation of building-footprint centroids.

The reference-building-footprint layer was also used to produce a raster layer of

building count. The cell value in this raster layer was the number of building centroids
within each cell of 500 m x 500 m.

Table 2. Attributes calculated for the building layer.

Category Attributes

Building geometry 1. Building footprint area
2. Building footprint perimeter
3. Building footprint shape
4. Building heighta

5. Building volume
Built-up density 6. Area of Thiessen polygonb

7. Footprint area to Thiessen polygon area ratio
8. Impervious surface percentage to Thiessen polygon area

Building
neighbourhood

9–24. Average and standard deviation for attributes above within
neighbourhoodc

aAverage elevation in footprint less minimum elevation in a 2 m buffer
bBased on footprint vertices and merged for each footprint
cBased on a Delaunay triangulation of building centroids

Population estimation using remote sensing 5613
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3.1.3 Reference land-use layer. The spatial unit of the NPZD’s 2000 land-use layer

is the tax parcel. Its classification scheme consists of 15 land-use classes (City of

Austin2009b). The classes (with codes in parentheses) are: large-lot single-family (50),

single-family (100), mobile homes (113), multi-family (200), commercial (300), office

(400), industrial (500), mining (560), civic (600), open space (700), transportation
(800), utilities (870), undeveloped/rural (900) and water (940). This classification

scheme was reduced to nine classes by considering only non-empty classes at the

100 level of the City of Austin’s land-use code. For instance, class mobile homes (113)

was reclassified as single-family (100), whereas class large-lot single-family was

deleted, as it was empty. The reclassification led to two residential classes (single-

family and multi-family) and up to seven non-residential classes (commercial, office,

industrial, civic, open space, transportation and undeveloped/rural). Note that quar-

ter population living in civic land use, such as university accommodation, was not
estimated in this study.

The land-use layer was also edited to minimize discrepancies with other data

sources. Inspection of consistency between land use and population revealed that

some census blocks that corresponded to non-residential (nor civic) land uses had

non-zero population. This inconsistency could have been due to a temporal mismatch

between acquisition dates of census and the land-use data. Hence, the land-use parcels

within such census blocks were reclassified as either residential or other types based on

a visual inspection of the CIR photography and with the help of Google Earth v4.3
(Google, Inc., Mountain View, CA, USA, 2008).

A number of attributes were also calculated for each parcel in the edited land-use

layer. A complete list of attributes is provided in table 3. The various percent covers

Table 3. Attributes calculated for the tax-parcel layer.

Category Attributes

Parcel geometry 1. Parcel area
2. Parcel perimeter
3. Parcel shape

Neighbour
parcels

4. Distance to nearest neighbour
5. Similarity of parcel area to nearest neighbour’sa

6. Similarity of parcel perimeter to nearest neighbour’sa

7. Similarity of parcel shape to nearest neighbour’sa

Vegetation 8. Average NDVI
9. Standard deviation of NDVI
10. Percent cover of vegetation

Impervious
surface

11. Percent cover of impervious surfaces
12. Percent cover of bare ground
13. Percent cover of pervious, non-bare ground

Building 14. Number of buildings in parcel
15. Building area to parcel area ratio
16–30. Average, minimum and maximum of building area, perimeter, shape,

height and volume in parcel
Neighbour

buildings
31–33. Average, minimum and maximum of distance between buildings in

parcel and their nearest neighbourb

34. Building density within a cell of 500 m x 500 mc

aAbsolute difference normalized by parcel value
bDistances based on footprint centroid
cAverage taken when multiple cells overlapped with the parcel
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were computed using ArcGIS zonal statistic operations on the corresponding masks.

Distances among parcels and among buildings were defined from polygon centroids,

and nearest neighbours were found using a Delaunay triangulation on centroids. The

building density for each parcel was calculated as a zonal average of the building-

count grid divided by the area of the cell.

3.2 Building-detection methods

In order to select an appropriate building-detection method for population estima-

tion, four building-extraction methods were tested on each of the insets shown in

figure 2. These methods were based on region-growing segmentation (Zhang et al.

2006), the Hermite transform (Silván-Cárdenas and Escalante-Ramı́rez 2006),

Dempster–Shafer theory of evidence (Shafer 1976, Lu et al. 2006b) and Definiens’
eCognition segmentation method.

3.2.1 Region-growing segmentation. The first method consisted of a segmentation

of the height layer by means of the region-growing algorithm as proposed by Zhang

et al. (2006). The region-growing segmentation (RGS) is an iterative method that

applies a plane-fitting technique to grow regions from seed pixels.

For each non-ground measurement area, inside and boundary points are identified.

If at least one of the eight neighbours of a point is a ground measurement, the point is
defined as a boundary point. Otherwise, the point is an inside point. The following

residual is calculated for each inside point p0ðx0; y0; z0Þ and its eight neighbours:

R ¼
X

k2M

½aðxk � x0Þ þ bðyk � y0Þ þ c� zk�2; (2)

where M is a set for the inside point and its neighbours, and a,b and c are plane

parameters estimated through least-squares analysis. The point with the minimum

residual R is labelled and selected as the first seed point for region growing. All

neighbours of a seed point are labelled as belonging to the same segment if the
deviation between its height and the plane height is under a threshold. A threshold

of 0.1 m was used in our implementation. The plane parameters are then updated

including the new labelled points. The neighbours of the grown area are examined

further, and the process is continued until no additional points can be added into the

segment. Then, the unlabelled point with the minimum R is selected as the next seed

point. The process is repeated until all non-ground points are labelled.

After the RGS algorithm was run (and following Zhang et al. (2006)), small

segments (with less than five pixels) were removed, holes were filled and contiguous
segments were merged to form building footprints.

3.2.2 Hermite transform. The second method tested was based on the computation

of a rotated discrete Hermite transform (DHT) from the height layer. A detailed

description of this method will be provided in another article and, therefore, only a

summary is provided here.

The rotated DHT coefficients, denoted as zn,m, for n;m ¼ 1; . . . ;N, correspond to

scale–space derivatives of order n with respect to a variable varying along the local
surface gradient, and of order m with respect to a variable varying in the direction

orthogonal to the local gradient. The parameter N (which defines the length of

the discrete approximation of Gaussian derivative filters; Silván-Cárdenas and
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Escalante-Ramı́rez 2006) was set to N¼ 4. At each pixel location of the height layer, a

residual energy was defined from a subset of DHT coefficients as:

E2 ¼
XN

i¼2

Xi

j¼1

z2
i�j;j: (3)

This residual energy measures the degree to which the local surface (within a neigh-

bourhood of 5 x 5 cells) does not conform to a one-dimensional signal embedded in

three-dimensional space. More specifically, since the scale–space derivatives are

sensitive to polynomial variations of the order of the derivative or superior, then

the energy of the coefficients zi–j,j, with i� 2, provides a measure of deviation from the
planar surface, such as roofs with planar surfaces. On the other hand, the use of

coefficients of order j � 1 account for deviation from one-dimensional patterns, such

as linear edges formed by building walls. Thus, E is typically greater for trees than for

buildings because canopy heights are neither uniformly distributed along one pre-

ferred direction nor planar. Therefore, a building mask was computed in which

building pixels were assumed wherever a small E was found (i.e. E , 0.1).

3.2.3 Dempster–Shafer method. The third method was the Dempster–Shafer (DS)

data-fusion technique introduced by Lu et al. (2006b) for building detection. This

method is based on the Dempster–Shafer theory (DST) of evidence (Shafer 1976). The

DST uses a belief (or mass) function and plausible reasoning to combine separate

pieces of information (evidence) to calculate the probability of a proposition or event

(such as ‘the patch is building’ or ‘the patch is non-building’).
Let S denote a set of basic propositions and 2S its power set, including the empty set F.

The theory of evidence assigns a belief mass to each element of the power set. Formally, a

function m : 2X 7!½0; 1� is a belief or mass function if it satisfied two conditions:

ðiÞ mðFÞ ¼ 0; (4)

ðiiÞ
X

A22S
mðAÞ ¼ 1: (5)

For each member of the power set, the DST provides representation of both impreci-

sion and uncertainty through the definition of two measures called support (Sup) and

plausibility (Pls). These measures are defined as follows:

SupðAÞ ¼
X

B2A
mðBÞ; (6)

PlsðAÞ ¼
X

B˙A�F
mðBÞ: (7)

For two independent mass assignments m1 and m2, a joint mass assignment m is
defined using the Dempster’s rule of combination:

mðAÞ ¼
P

B˙C¼A m1ðBÞm2ðCÞ
1�

P
B˙C�F m1ðBÞm2ðCÞ

: (8)

This rule, and its generalization to multiple mass assignments (see Lu et al. (2006b),

for a general formula), is the key for combining multiple sources of evidence.

The DS method, as applied in this study, combined three sources of evidence and,
hence, used three mass assignments: (1) from a mask of preliminary buildings detected
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though the DHT method above, (2) from a mask of pixels detected as vegetation with

the help of the NDVI from the CIR photograph and (3) from a mask of pixels detected

as ground during the filtering stage of the LiDAR data. Three basic propositions or

classes were considered: building (C1), vegetation (C2) and ground (C3). Hence, the

power set included up to seven non-null propositions: C1, C2, C3, C1 ¨ C2, C1 ¨ C3, C2

¨ C3 and C1¨C2¨C3. Then, for each building in the initial building layer, the support
of each proposition was calculated following Lu et al. (2006b). Table 4 summarizes

the calculation of probability masses, support and plausibility for each proposition.

These calculations are based on the belief parameters b1, b2 and b3. The belief that a

patch in the initial building layer is indeed a building patch was set to b1 ¼ 0.33. This

relatively low value was chosen to allow detection only if there was a strong support

from other data sources. The belief that a patch in the initial building layer is a

vegetation patch (b2) or a ground patch (b3), were set to the proportion of vegetation

and ground pixels in the bounding box of the building patch. These proportions were
determined from the vegetation and ground masks, respectively. Finally, a building

patch in the initial layer was retained if and only if the support for the proposition C1

(building) was the largest and greater than the support to the proposition C1 (not

building).

3.2.4 eCognition. The fourth building-detection method tested was based on

Definiens’ eCognition segmentation of LiDAR derived layers followed by a super-

vized object-level classification in MATLAB.

The segmentation was based on a stacked image containing the ground mask, the
feature height and the angular second moment layers. The segmentation algorithm

was set up with a scale parameter of 4, and with a weight of 0.8 on layer values and 0.2

on segment shape, with a 0.6 bias towards segment smoothness over 0.4 towards

segment compactness. The layer weights assigned for the segmentation process were 5

for ground mask, 4 for angular second-moment and 2 for feature height. The seg-

mented image was exported from Definiens software, along with the mean and

standard deviation for each of the layers used for segmentation plus the intensity-

difference layer.

Table 4. Calculation of probability masses, support and plausibility for Dempster–Shafer data
fusion for three data sources. The proposition A take values in the power set of basic propositions
or classes, whereas the classes are: building (C1), vegetation (C2) and ground (C3). Mass assign-
ments from each source are denoted by m1 for initial building mask, m2 for vegetation mask and
m3 for the ground mask. The normalization factor k ¼ 4ðq1q2 þ q1q3 þ q2q3 � 9q1q2q3Þ, where
qi ¼ 1� bi and bi are belief of patch being of class Ci. See the text for details on calculation of

belief parameters.

A m1 m2 m3 m Sup(A) Supð�AÞ

C1 b1
1
3

q2
1
3

q2
1
k

b1q2q3
1
k

b1q2q3
4
k

q1ðq2 þ q3 � 2q2q3Þ
C2

1
3

q1 b2
1
3

q2
1
k

q1b2q3
1
k

q1b2q3
4
k

q2ðq1 þ q3 � 2q1q3Þ
C3

1
3

q1
1
3

q2 b3
1
k

q1q2b3
1
k

q1q2b3
4
k

q3ðq1 þ q2 � 2q1q2Þ
C1 ¨ C2 0 0 1

3
q2 0 4

k
q3ðq1 þ q2 � 2q1q2Þ 1

k
q1q2b3

C1 ¨ C3 0 1
3

q2 0 0 4
k

q2ðq1 þ q3 � 2q1q3Þ 1
k

q1b2q3

C2 ¨ C3
1
3

q1 0 0 0 4
k

q1ðq2 þ q3 � 2q2q3Þ 1
k

b1q2q3

C1 ¨ C2¨C3 0 0 0 0 1 0
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The segments were further classified into building and non-building using a back-

propagation neural network (BPNN) with two hidden layers (of 25 and 15 neurons)

from the MATLAB Neural Network Toolbox (v5.0.1). The network inputs consisted

of per-segment mean and standard deviation of feature height, angular second

moment, intensity difference and ground mask, whereas the output neurons consisted
of two activation values in the interval 0–1, one for building and one for non-building.

As such, all neurons had a logarithmic sigmoid function (logsig). The network was

trained using the resilient back-propagation algorithm available in the toolbox. This

method required a training sample, which consisted of pairs of segment properties and

segment class (building, non-building). Ten percent of the total segments were ran-

domly selected for this purpose. The reference building/non-building labels used for

training were assigned to each segment based on a spatial query of whether or not the

segment’s centroid occurred within the boundaries of a building polygon (this was
found to provide the best fit to building shape and avoid edge-match errors incurred

when intersection or partial-overlap methods were used).

3.3 Land-use classification

The ability for automatic discrimination between residential and non-residential

areas, and among the various dwelling types, within the urban environment is what

makes remote sensing appealing for population estimation. Such a discrimination
task is known as land-use classification, and is considered a critical component for

accurate small-area population estimation. In order to test the impact that land-use

accuracy had on the final population estimation, we selected three classification

methods that represented three accuracy levels: low accuracy (overall accuracy less

than 70%), moderate accuracy (overall accuracy between 70% and 80%) and high

accuracy (overall accuracy higher than 80%).

3.3.1 Clustering-TM pixel. The low classification accuracy was yielded by a per-
pixel supervized clustering approach (Silván-Cárdenas 2003). This method uses

ISODATA to estimate centroids from a training sample. Then, it calculates a

Delaunay tessellation from the centroids. The tessellation is used to build a neural

network that performs a nearest-neighbour classification in which each class is

defined through a number of centroids. This method was applied to six Landsat

TM bands to classify pixels into single-family residential (SF), multi-family residential

(MF) and other land-use types (OTs). This method is hereafter referred to as the

clustering-TM pixel.

3.3.2 Neuralnet-building. The moderate classification accuracy was yielded by a

BPNN trained using 24 building attributes (table 2). These attributes consisted of

building geometry (area, perimeter, height, shape and volume) and built-up density

(area of Thiessen polygon, footprint area to Thiessen polygon area ratio and

impervious-surface percentage to Thiessen polygon area), which were computed on

a per-building and on a per-neighbourhood basis (average and standard-deviation

statistics). The 24 attributes assigned to each building footprint were imported into

MATLAB, and a random sample was drawn to train a BPNN with 24 inputs, two
hidden layers with 35 and 25 neurons, and nine output neurons. As such, the output

vectors for each class were assigned values (1,0,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0,0), etc.

Thus, in a classification mode, the class was determined according to the highest
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activation of the output neurons. The BPNN was trained with the resilient back-

propagation algorithm, which ran for 500 iterations.

In this case, the classification was performed at the 100 level of the City of Austin’s

land-use code, which resulted in nine separate classes. However, the non-residential

land-use classes were clumped into one class in the final classification result. This
classification method is hereafter referred to as the neuralnet-building method.

3.3.3 Multi-class-tax parcel. The high classification accuracy was the hardest to

attain. After an extensive test of classification methods implemented in WEKA soft-

ware, the multi-class method in the classifier catalogue called Meta was selected. This
Meta classifier transforms a multi-class problem into several binary problems (Ichino

1979).

The multi-class method was applied to classify tax parcels in nine classes, which

were subsequently combined to form three classes, as with the previous method. The

use of tax parcel as the classification unit is justified because it is the legal land-use

unit, its limits seldom change and a geographic information system (GIS) layer is

readily available. The attributes used in this case (see table 3) were derived from parcel

boundaries (area, perimeter and shape), neighbour parcels (distance to nearest parcel,
similarity of area between parcel and the nearest parcel, similarity of perimeter

between parcel and the nearest parcel, and similarity of shape between parcel and

the nearest parcel, where similarity was defined as a normalized absolute difference),

NDVI zonal statistics (average and standard deviation), vegetation mask (percent of

vegetation cover in parcel), land-cover proportions (percent of impervious surface,

percent of bare ground, percent of other land-cover type), building-footprint layer

(number of buildings in parcel, fraction of building cover in parcel, average, minimum

and maximum statistics of area, perimeter, shape, volume and height of buildings
within the parcel), neighbour buildings (average, minimum and maximum of distance

to nearest neighbours) and building density. This method is hereafter referred to as

the multi-class-tax-parcel method.

3.3.4 Training samples. Table 5 summarizes the training sample used for each

land-use-classification method. For the clustering-TM pixel method, the training

sample consisted of 950 randomly selected pixels, which yielded 50 centroids (16 for

SF, 16 for MF and 18 for OTs). Likewise, the neuralnet-building method was trained

using a random sample of 100 buildings per class, 900 in total. For the multi-class-tax-

parcel method, the training sample consisted of around 40% of parcels from each

land-use class, with the exception of the single-family class, for which only 20% were

selected due to its larger proportion in the study area (see table 5 for sample sizes).

3.4 Population-estimation models

Seven linear models of population estimations were tested in this study, with the

explanatory variables used being the fundamental difference among them. It is

through the explanatory variables that the models incorporated information about

building structure and land-use type.

3.4.1 Model characteristics. Table 6 summarizes the building statistics and land-

use information required by each model. The first six models are generated by

combining three building statistics at block level (building count, footprint area and

total volume) with two levels of land-use information (residential versus SF and MF).

Thus, model 1 uses the per-block counts of residential buildings (N) regardless of
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whether it is SF or MF, whereas model 2 uses the split of the count of residential

building into the count of single-family buildings (N1) and the count of multi-family

buildings (N2). These two models are inspired in the HU method (Watkins and

Morrow 1985, Smith and Cody 2004), where the number of buildings replaces the

number of housing units. Likewise, models 3 and 4 are inspired in the broadly used

area-based methods, but with a linear form. We used the linear form of the area-
population relationship because a preliminary exploratory analysis confirmed that

the linear form fitted the data better than the allometric form. Models 4 and 5 were

Table 5. Characteristics of training sample for each land-use-classification method tested. All
sample sets were randomly selected

Method Sample attributesa Sample size

Clustering-
TM pixel

Landsat pixels (6) 950 pixels: 300 single-family, 300 multi-family
and 350 otherLand-use class (3)

Neuralnet-
building

Building
geometry (5)

900 buildings: 100 buildings per class

Built-up density (3)
Neighbourhood (16)
Land-use class (9)

Multi-class-
tax parcel

Parcel geometry (3) 3451 parcels: 1600 single-familyb, 240 multi-family, 470
commercial, 260 office, 212 industrial, 209 civic, 58
open space, 133 transportation and 269 undeveloped

Neighbour
parcels (4)

Vegetation (3)
Impervious

surface (3)
Building (17)
Neighbour

building (4)
Land-use class (9)

aNumber of attributes for each category is in parenthesis
bProportion of sample was 20% for single-family, and 40% for other classes

Table 6. Population-estimation models tested. Per-block building statistics and land-use infor-
mation required by each model are also provided

Name Equationa Building statistics Land use

Model 1 P1 ¼ a1N þ e Building count Residential
Model 2 P2 ¼ a1N1 þ a2N2 þ e Building count SF and MF
Model 3 P3 ¼ a1Aþ e Footprint area Residential
Model 4 P4 ¼ a1A1 þ a2A2 þ e Footprint area SF and MF
Model 5 P5 ¼ a1V þ e Total volume Residential
Model 6 P6 ¼ a1V1 þ a2V2 þ e Total volume SF and MF
Model 7b P7 ¼ a1A1 þ a2N2 þ a3V2 þ e Building count, footprint

area and total volume
SF and MF

aa parameters are to be estimated by minimizing the squared residuals, e2

bA variable selection strategy was applied for this model (see the text)
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proposed under the premise that building volume can better describe the living space,

and thus may allow for more accurate population estimates.

In addition to the six models above, an optimal linear model (model 7) was

constructed by selecting a few explanatory variables out of 16 variables. The set of

initial variables included building count, area, volume, perimeter, shape and height,
from both single-family and multi-family buildings. The variable selection strategy

sought to include the lowest number of explanatory variables while maintaining a

high correlation with the dependent variable.

3.4.2 Construction of model 7. The procedure for building model 7 was based in the
part-correlation statistics (Selvin 1995). The squared part correlation C2

ðiÞ is equal to the

increase in the squared multiple-correlation coefficient achieved by adding a specific

variable (say xi) to the regression equation, i.e. C2
ðiÞ ¼ R2

xi�included � R2
xi�excluded. The

procedure for the generation of model 7 can be summarized as follows:

(i) build the regression line considering all 16 explanatory variables,

(ii) compute the part correlation for each variable through:

C2
ðiÞ ¼

tið1� R2Þ
n� ðk þ 1Þ ; (9)

where ti is the t-statistics for the ith variable, R2 is the coefficient of determina-

tion from the regression, n is the number of samples used in the regression and
k is the number of explanatory variables or degrees of freedom and

(iii) make the variable with the least part correlation unavailable for further

analysis and repeat from step 1 until the lowest part correlation is greater

than a preset threshold.

3.4.3 Parameter estimation. The coefficients for each of the seven models were

estimated through the ordinary least-squares procedure (Selvin 1995). We also calcu-

lated normalized coefficients or path coefficients, which correspond to the regression
coefficients multiplied by the standard deviation of the explanatory variable divided

by the standard deviation of the dependent variable. The normalized forms are useful

for inter-comparisons as they represent the sensitivity of the dependent variable to the

variation of the independent variable (Selvin 1995).

3.5 Methods of accuracy assessment

Methods of accuracy assessment include the accuracy assessment of building detec-

tion, land-use classification and population estimations.

3.5.1 Statistics. Building-detection accuracy assessment was performed at both

pixel and object level. At the pixel level, we derived the overall accuracy (percent of

correctly classified pixels) and the kappa statistics, both from the standardized con-
fusion matrix (Congalton and Green 1998). At the object level, we calculated the

detection rate, i.e. the percentage of correctly detected buildings to total number of

reference buildings, and the commission error, i.e. percentage of false detections to

total number of detected buildings.

For the accuracy assessment of land-use classifications, both the reference and the

extracted land-use labels were first attached to each building footprint. Then, a

confusion matrix was built by comparing the reference and extracted land-use labels.

Population estimation using remote sensing 5621

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
n
g
,
 
L
e
]
 
A
t
:
 
1
5
:
2
6
 
1
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Finally, we calculated the overall and per-class accuracy ratios and the kappa coeffi-

cient of agreement from the confusion matrix.

The goodness-of-fit of population-estimation models was assessed through the

coefficient of determination (R2), whereas the model validation was based on statistics

derived from the absolute difference between census and estimated populations, i.e.
absolute error. The statistics included the mean, standard deviation, median (50

percentile), maximum (100 percentile), lower quartile (25 percentile), upper quartile

(75 percentile) and interquartile range (the difference between upper and lower

quartiles) of the absolute error. Among these error measures, the median absolute

error (MAE) and the interquartile range (IQR) were more extensively considered as

they are most common in population estimation studies. Relative errors were not

considered due to sensitivity issues in areas of low population density, or even

indetermination in non-populated areas.

3.5.2 Sampling. The accuracy assessment of building-detection methods was

based on insets 1 through to 4. The sample sizes in term of pixels were 498 525, 374

519, 398 463 and 500 500 pixels for insets 1 through to 4, whereas in terms of objects,

the sample sizes were 145, 476, 427 and 490 buildings for insets 1 through to 4,
respectively. No random sample was drawn for accuracy assessment of classification

methods. Instead, the assessment was based on the entire study area.

Random samples were also drawn from the total number of blocks in the study site

(1153 blocks) for calibration (90 blocks) and validation (85 blocks) purposes. Table 7

summarizes the land-use characteristics and number of blocks used for calibration,

validation and estimation. Note that while the estimation was based on the entire

dataset, the sample sizes for validation and calibration were sufficiently large to be

statistically significant, but not so large that it would not have been realistically
collectible, i.e. in case census data were not available.

In addition to the above, an independent sample was selected for construction of

model 7. This sample consisted of 150 randomly selected blocks, drawn from a total of

775 blocks containing at least one residential building. The relatively large sample size

was necessary given the number of coefficients (16) to be estimated during the

construction of the model. In order to ensure that the sample captures the variability

in composition of dwelling units within the blocks, 60 blocks were selected from pure

SF land use, 30 from pure MF land use and 60 from mixed SF/MF land use.

4. Results

4.1 Building-detection results

The results from each building-detection method are illustrated in figure 4. These

error maps were built through comparing the detection mask from each method with

the reference-building-footprint layer in raster format. Errors of omission and com-

mission are coloured in blue and red for easy identification. In addition, the overall

per-pixel accuracy, the kappa statistics, the detection rate and the commission error

were calculated for each method and inset. Average statistics over all insets are
provided in table 8. It was observed that although most methods had acceptable

performance, with average overall accuracy ranging from 87 to 92% and detection

rate ranging from 84 and 90%, there was considerable variability across insets.

Specifically, inset 1 was the most accurately classified into building and non-building
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by any method, with a per-pixel accuracy ranging from 92 to 95%. This was due to the

relatively high and large structure of multi-family buildings. On the other hand, inset 2

represented the most challenging area due to the relatively small size of single-family

buildings and the high chance of occlusions by trees. In this case, per-pixel accuracies

ranged from 83 to 89%. In between these two extreme were insets 3 and 4.

Based on the accuracy levels and its consistency over the various insets, the DS

method was selected for detecting buildings over the entire study area. The accuracy

of the detected buildings for the entire study area was not assessed, but it is reasonable
to assume a detection rate of around 90%, as this was the average performance from

selected insets (table 8). The building mask for the entire study area was imported into

ArcGIS and converted to vector format (yielding 15211 building polygons) for further

analysis.

Correct False Correct TrueOmission Commision

Figure 4. Error maps from each building-detection method and inset. Rows from top to
bottom correspond to Dempster–Shafer, region growing, Hermite transform and eCognition,
whereas columns from left to right correspond to subsets from inset 1 through to inset 4,
respectively.
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4.2 Land-use classification results

The three selected land-use classification methods (multi-class-tax parcel, neuralnet-

building, clustering-TM pixel) were used to produce three land-use layers of different

accuracy levels. For building-driven land-cover classification methods (multi-class-

tax parcel and neuralnet-building), training samples were based on the reference-

building-footprint layer. Figure 5 shows classification results from each classification

method and from reference land-use layer (top row) for portions of insets 2–4. Note

that these maps are in their native classification unit.

The land-use information, from both the reference and classifications, was attached
to the extracted buildings (overlaid on figure 5) for population estimation and

accuracy assessment purpose. In this step, the class with the largest overlap was

assigned to the building. Although each land use classification result was produced

in different spatial units, namely tax-parcel, building footprint and Landsat pixel, the

accuracy assessment was performed on a per building basis. For this matter, detected

building footprints were considered in order to account for detection errors. Table 9

summarizes various accuracy measures for each classification method.

The land-use layers extracted from each method, as well as the reference land-use
layer, were used to mask out non-residential buildings from the detected building

layer. This process made available up to four layers of residential buildings, which

were used with each population-estimation model.

4.3 Population-estimation results

4.3.1 Construction of model 7. The construction of model 7 followed the procedure

outlined in the previous section using a threshold of 0.1 for the part correlation. The
initial set of explanatory variables consisted of the following block-level statistics:

building count, total building-footprint area, total building volume, maximum building

volume, average building height, maximum building height, average building-footprint

perimeter and average building-footprint shape, for both single-family and multi-family

dwelling types. The variable selection procedure yielded a model of the form:

P7 ¼ a1A1 þ a2N2 þ a3V2 þ e; (10)

where A1 is the area of single-family dwellings, N2 and V2 are count and volume of
multi-family dwellings, e is the residual not explained by the linear model, and a values

are model parameters.

Interestingly, the building perimeter, building shape and building height did not

provide further explanation to the variability of block population. Equation (10) also

Table 7. Number and land-use characteristics of census blocks selected for model calibration
and validation, and for population estimation.

Land-use mixture Calibration Validation Estimation Percent

Pure single-family (SF) 30 30 594 52%
Pure multi-family (MF) 30 25 55 5%
Mixed SF/MF 30 30 126 11%
Non-residential 0 0 378 33%
Total 90 85 1153 100%
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Single-family residential

Unclassified DS building footprint

Multi-family residential Other land use

Figure 5. Land-use classification result. Rows from top to bottom correspond to reference
land use, multi-class-tax parcel, neuralnet-building and clustering-TM pixel, whereas columns
from left to right correspond to subsets from insets 2 through to 4, respectively.
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tells us that the volume information from single-family buildings is not as important

as its area and suggests that the contribution from multi-family units depends both on

the number and the volume.

4.3.2 Calibration of models. The estimated coefficients for all the models are

provided in table 10, together with the normalized form ð~aÞ. The values for the

normalized coefficients suggest that population estimates are more sensitive to

multi-family than to single-family building characteristics.

The bar chart of figure 6 compares the goodness-of-fit in terms of R2 values

obtained from each model. As it turns out, building-volume information, at both

land-use levels, fits better than building area and building counts. It is also noticeable

Table 9. Building-level accuracy assessment of land-use classification methods. Statistics were
based on a total of 15 211 extracted buildings in the study site. Entries under columns SF, MF
and res correspond to per-class producer accuracies of classes single-family, multi-family and
residential, respectively. Columns labelled as OA and kappa correspond to the overall accuracy

and the kappa coefficient of agreement. Values were rounded to the nearest integer.

% Correct

Method SF MF Res OA Kappa

Multi-class-tax parcel 91 55 85 83 71
Neuralnet-building 93 17 80 73 48
Clustering-TM pixel 75 67 73 66 47

Table 10. Estimated coefficients for each model defined in table 6. The path coefficients are the
regression coefficients multiplied by the standard deviation of the explanatory variable and

divided by the standard deviation of the dependent variable.

Regression coefficients Path coefficients

Model a1 a2 a3 ~a1 ~a2 ~a3

1 3.4335 – – 0.65 – –
2 1.8129 11.8573 – 0.35 0.75 –
3 0.0303 – – 0.76 – –
4 0.0153 0.0416 – 0.32 0.87 –
5 0.0036 – – 0.81 – –
6 0.0025 0.0039 – 0.04 0.89 –
7 0.0153 4.7673 0.0031 0.32 0.30 0.72

Table 8. Two-level accuracy assessment of building detection. Values denote average statistics
over four insets with 498 525, 374 519, 398 463 and 500 500 pixels, and 145, 476, 427 and 490

buildings, respectively. Values were rounded to the nearest integer.

% pixels % objects

Method Overall accuracy Kappa Detection rate Commission

Dempster–Shafer 92 66 90 30
Region growing 91 64 83 19
Hermite transform 91 62 85 21
eCognition 87 55 84 43
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that all models that distinguish between SF and MF dwelling types yielded superior

goodness-of-fit with respect to their counterpart that did not made this distinction.
This is largely due to the fact that such models have greater degrees of freedom and

thus are more flexible. Interestingly, the improvement achieved when making the

distinction of dwelling types was most notable for building counts (from R2¼ 0.34 to

R2¼ 0.59), and building area (from R2¼ 0.71 to R2¼ 0.81) than for building volume

(from R2 ¼ 0.81 to R2 ¼ 0.82). This result suggests that building volume already

accounts for the dwelling-type characteristic. The observation is important because,

unlike area-based or count-based models, a volume-based model would not rely on

detailed land-use information (at least not to the level of distinguishing between
dwelling types), which is generally difficult to extract by automated means.

4.3.3 Validation of models. In order to confirm the fitting trends observed during the

calibration stage, a validation sample (table 7) was used to test each model. The absolute-
error statistics are summarized in table 11. The various statistics reveal the form of the

error distribution in terms of central values (mean and median), dispersion (standard

deviation, maximum and interquartile range (IQR)) and non-central values (25 and 75

percentile). The R2 and MAE with interquartile ranges are plotted in figure 7 for a visual

comparison. Contrary to expectation, models 2 and 4 performed comparably to, or even

better than, models that incorporate volume information (models 5–7). This may be due

to the fact that trees hanging above the buildings, especially for single-family residential

buildings, cast significant errors on the estimation of building height and volume. The
inaccurate height information negatively impacted the population estimations from

Model 7

Model 6

Model 5

Model 4

Model 3

Model 2

Model 1

0.0 0.1 0.2 0.3 0.4

R2

0.5 0.6 0.7 0.8 0.9 1.0

Figure 6. Model-calibration results.

Table 11. Model validation based on statistics from absolute error. Values were rounded to the
nearest integer. The minimum value for each column is indicated in boldface.

Model Mean Standard deviation Median Maximum 25 percentile 75 percentile IQR

1 26 76 26 421 10 73 62
2 17 56 17 272 8 41 33
3 30 46 30 224 14 59 45
4 15 43 15 239 6 33 27
5 19 58 19 354 8 46 38
6 14 60 14 388 6 36 31
7 16 51 16 320 8 45 38
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building volumes. Presumably, this also explains why model 7 was no longer the best-

performing model. Nevertheless, the differential improvement by the incorporation of the

finest land-use information seemed to hold in the validation sample (compare model 1

with model 2, model 3 with model 4 and model 5 with model 6).

4.3.4 Population estimation and accuracy assessment. The calibrated models were

applied to the entire study area using the extracted buildings combined with the
various land-use layers of varying accuracy. The goal here was to determine the effect

of inaccuracies from building detection and land-use classification.

In a first test, the detected buildings layer replaced the reference-building-footprint

layer, while the reference land-use layer was still used for assigning the type of dwell-

ing. Then, geometric attributes were calculated from the extracted buildings and

aggregated at census-block level. Figure 8 shows the scatter plots of estimated versus

measured building attributes at census-block level. These scatter plots evidence that

detected buildings generally yielded lower values than those derived from the
reference-building-footprint layer. This trend was the strongest for blocks dominated

by single-family dwelling units. Because of this, population counts were also under-

estimated from all the models. The sensitivity of each model to the underestimation

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
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Mode 7

Mode 6

Mode 5

Mode 4

Mode 3

Mode 2

Mode 1

0.0 0.1 0.2 0.3

(a)

0.4 0.5 0.6 0.7 0.8

R2

Figure 7. Model-validation results. (a) R2 statistics and (b) median absolute error, with
interquartile range (vertical bars) based on a validation sample. Note the vertical axis in (b) is
on a logarithmic scale.
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errors of explanatory variables was then assessed through the MAE of population

estimates.
Figure 9 compares the MAE yielded by each model when using the reference

buildings and when using the extracted buildings. The two series are negatively

correlated (R2 ¼ 0.86, n ¼ 7, p , 0.05), showing that the trend observed in the

model fitting stage (figure 6) is inverted due to building-detection errors alone. In

other words, although building volume fits block population better than building

area, and building area fits better than building count, it appears that building count is

less sensitive to building-detection errors than building area, and building area is less

sensitive than building volume. Since both building area and building-volume mea-
surements heavily depend on LiDAR measurements, they are more severely affected

by detection and measurement errors. This is the case especially for single-family

residential buildings located in densely vegetated areas. Moreover, the models that

distinguish between dwelling types (models 2, 4 and 6) tend to have larger errors than

their counterparts that consider residential buildings altogether (models 1, 3 and 5).

This result suggests that the best strategy is to use the minimal amount of information:

residential-building counts.

In a second test, the extracted land-use information was incorporated in addition to
the extracted buildings. The increments of MAE due to land-use inaccuracies, for

each land-use classification method, are plotted in figure 10. As expected, the accu-

racy of population estimation can be seriously affected by the accuracy of land use,

especially when using very sensitive explanatory variables such as area and volume.

Interestingly, model 1 showed the least sensitivity to land-use inaccuracies. Even when

the least accurate (overall accuracy ¼ 66%, k ¼ 0.47) land-use data was used, the

increase of the MAE was less than two people per block for model 1. This value was

much lower than that obtained for the volume-based models, even when the most
accurate (overall accuracy ¼ 83%, k ¼ 0.71) land-use data was used. The same trend

was observed for the mean and maximum absolute error (data not shown).
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Figure 8. Scatter plots of estimated versus reference data at the aggregation level of census
block: (a) building count, (b) building area and (c) building volume. Axes are on a logarithmic
scale.
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5. Discussion and conclusions

Small-area population estimation is an important task that has received considerable

attention by the remote-sensing community in the past four decades (Hsu 1971, Kraus

et al. 1974, Lo and Welch 1977, Lo and Chan 1980, Watkins and Morrow 1985, Lo

1986, Harvey 2002b, Li and Weng 2005, Wu et al. 2005, Liu et al. 2006, Lu et al. 2006a,

Wu and Murray 2007, Hardin 2008, Morton and Yuan 2009). The wealth of related
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Figure 10. Effect of land-use accuracy on population estimation. This chart shows increments
in the median absolute errors (MAEs) yielded by each model when using land-use information
extracted from three classification methods of varying accuracy. Refer to table 9 for land-use
classification accuracy.
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Figure 9. Effect of building-detection accuracy on population estimation. This chart shows
the median absolute error from the reference buildings (True Bldg) and from the extracted
buildings (DS Bldg). In the two cases, the reference land-use layer was used to discriminate
residential from non-residential buildings. The extracted buildings were produced using the
Dempster–Shafer method, with an accuracy of around 90%.
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studies reveals that the notion of living space had been considered a key linkage between

population and remote-sensing measurements. Unfortunately, a formal definition for

this important variable has proved difficult, due, in part, to the relatively coarse spatial

resolution of the remote-sensing data used for population estimation. The advent of

fine-spatial-resolution satellite images (1–5 m) coupled with LiDAR measurements
opened new opportunities for considering the three-dimensional nature of living

space in urban environments and for improving small-area population estimations.

In the study reported here, we tested the potential of fine-spatial-resolution LiDAR

measurements coupled with automated and semi-automated techniques for building

extraction and land-use classification. We compared seven linear models for small-

area population estimations, each of which is expressed in terms of one, two or three

explanatory variables representing building statistics on a per-block basis (count, area

and volume) at one of two land-use classification levels (residential/non-residential
versus single-family residential/multi-family residential/non-residential). These expla-

natory variables were meant to more closely represent the living space because the

great majority of population lives inside buildings. Interestingly, when considering

other geometric characteristics of buildings, such as perimeter, shape and height, their

contribution to the regression was negligible (model 7).

At the model-fitting stage, it was observed that the incorporation of either the

detailed land-use information or the volume information led to higher correlation

coefficients. At a validation stage, however, the differential improvement by building
volume appeared not as important as that of using detailed land-use information.

Presumably, this was due to errors introduced by the method used for calculating the

height information from LiDAR data. At the estimation stage, we first replaced the

reference buildings by the detected buildings and tested the effect on the population

estimation errors. The original trend observed during the fitting state was totally

inverted. The sensitivity of each model to the errors in the land-use information

further favoured the simplest model based on counts of residential buildings. While

the reason for this inversion appeared to be the violation of the fundamental assump-
tion that the high-quality calibration sample was representative of the remote-

sensing-derived buildings, it was also apparent that the most important building

characteristics for population estimation, namely dwelling type and volume, were

also the most difficult to accurately extract from automated means.

Overall, the results suggested that the incorporation of detailed land use or building

volume (or even building area) does not necessarily imply an improvement over the

traditional approach that relies on unit counts. Hence, for fine-spatial-resolution

remote sensing to play a significant role in improving small-area population estima-
tion, building extraction and classification methods must be improved. Improvements

should not be focused on increasing the detection accuracy alone, but also on reducing

the bias of estimated building attributes. Unbiased estimations of building attributes

may improve population estimates, as errors tend to cancel out during the aggregation

at the spatial unit of the census.
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