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Repeatable approaches for mapping saltcedar (Tamarix spp.) at regional scales, with the ability to detect low
density stands, is crucial for the species' effective control and management, as well as for an improved
understanding of its current and potential future dynamics. This study had the objective of testing subpixel
classification techniques based on linear and nonlinear spectral mixture models in order to identify the best
possible classification technique for repeatable mapping of saltcedar canopy cover along the Forgotten River
reach of the Rio Grande. The suite of methods tested were meant to represent various levels of constraints
imposed in the solution as well as varying levels of classification details (species level and landscape level),
sources for endmembers (space-borne multispectral image, airborne hyperspectral image and in situ spectra
measurements) and mixture modes (linear and nonlinear). A multiple scattering approximation (MSA)
model was proposed as a means to represent canopy (image) reflectance spectra as a nonlinear combination
of subcanopy (field) reflectance spectra. The accuracy of subpixel canopy cover was assessed through a 1-m
spatial-resolution hyperspectral image and field measurements. Results indicated that: 1) When saltcedar
was represented by one single image spectrum (endmember), the unconstrained linear spectral unmixing
with post-classification normalization produced comparable accuracy (OA=72%) to those delivered by
partially and fully constrained linear spectral unmixing (63–72%) and even by nonlinear spectral unmixing
(73%). 2) The accuracy of the fully constrained linear spectral unmixing method increased (from 67% to 77%)
when the classes were represented with several image spectra. 3) Saltcedar canopy reflectance showed the
strongest nonlinear relationship with respect to subcanopy reflectance, as indicated through a range of
estimated canopy recollision probabilities. 4) Despite the considerations of these effects on canopy
reflectance, the inversion of the nonlinear spectral mixing model with subcanopy reflectance (field)
measurements yielded slightly lower accuracy (73%) than the linear counterpart (77%). Implications of these
results for region-wide monitoring of saltcedar invasion are also discussed.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Invasive species threats, which have been recognized as an
important component of global environmental change (Drake et al.,
1989; Vitousek et al., 1996), demand effective analysis with regional-
scale remote sensing measurements. The invasion of saltcedar
(Tamarix spp.) in the southwestern United States and northern
Mexico represents a high priority case, in which remote sensing data
plays a crucial role in both management operations and understand-
ing the invasion process (Hunt et al., 2003; Lass et al., 2005). However,
the analysis of moderate spatial resolution imagery (10–100 m) that
is required for addressing the invasion problem still encounters a
number of challenges. For example, recent studies of spectral
invariants in canopy radiative transfer functions proposed a simple

parameterization of the light–canopy interaction that would allow
more accurate estimations of the canopy cover (Huang et al., 2007;
Lewis & Disney, 2007; Smolander & Stenberg, 2005). These nonlinear
mixture models are, however, difficult to invert, and their application
with moderate-resolution imagery is still to be assessed. These issues
motivated the present study.

Previous studies have shown that saltcedar habitats can be
mapped using remotely sensed data and techniques (1996; Car-
ruthers et al., 2006; Everitt & DeLoach, 1990, Everitt et al., 1992;
Hamada et al., 2007). Approaches coupling high spatial resolution and
hyperspectral images with conventional pixel-level classifications can
achieve high accuracies (Carruthers et al., 2006; Hamada et al., 2007).
Such images, however, tend to cover only small areas on the ground
and are expensive to acquire, thus limiting their utility formacro-scale
monitoring. The application of moderate resolution satellite images,
which cover larger areas on the ground, are advantageous in this
respect. In recent studies, NASA's Moderate Resolution Imaging
Spectroradiometer (MODIS) was successfully used for mapping
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saltcedar habitat suitability at the regional scale (Morisette et al.,
2006). The relatively low spatial resolution of MODIS data, however,
makes it impossible to detect accurately low-density saltcedar stands
(e.g., early invasion stage). In another study along the Arkansas River
in Colorado, the near-infrared bands of Landsat TM data have been
found effective for discriminating large patches of saltcedar during the
leaf-off season (Groeneveld & Watson, 2008). One obvious limitation
for moderate-resolution sensors, however, is the difficulty in
accurately detecting small extents of saltcedar invasion, which is
crucial for effective management (Shafroth et al., 2005). Yet, because
thewidth of saltcedar bands along the river typically varies from a few
meters to hundreds of meters, Landsat measurements represent a
good compromise between spatial resolution and spatial extent for
mapping the distribution of saltcedar. This study hypothesized that
the use of subpixel classification methods would further enhance the
utility of Landsat data for tackling the saltcedar invasion problem.

Subpixel classification techniques are superior to traditional pixel-
level classifications techniques because they allow for the quantification
of subpixel species coverage. Three major approaches for subpixel
classification have been identified (Eastman & Laney, 2002): 1) spectral
mixture analysis (SMA), 2) regressive approaches, such as neural
networks, and 3) soft classification methods based on fuzzy sets and
probability theories. This study focused on the first approach. The
rationale of SMA is that mixed pixels result from a systematic
combination of component spectra (endmembers) present in the
sensor's instantaneous field of view (IFOV) (Adams et al., 1993;
Gillespie, 1992; Milton, 1999. The relative contribution of component
spectra is thendetermined by the inversionofmixturemodels (Chang&
Heinz, 2000; Heinz & Chang, 2001; Hu et al., 1999; Keshava & Mustard,
2002).

Themathematical formof themixturemodel is strongly influenced
by the definition of the endmembers. While the horizontal mixing of
vegetation types across the landscape due to an increase in the IFOV
with respect to plant canopy is primarily a linear process (Adams et al.,
1995; Roberts et al., 1993), the interaction of light with vegetation
components (i.e., leaves, stems, etc.) in the three-dimensional space is
highly nonlinear (Borel & Gerstl, 1994; Ray & Murray, 1996;
Smolander & Stenberg, 2005). The assumption of a linear mixture
process is convenient because the endmembers are, by definition,
confined to the extremes of the mixing space (Boardman et al., 1993;
Small, 2004). For vegetationmapping, however, the endmembers thus
defined may be meaningless or hard to match with ground measure-
ments due to nonlinear mixing processes. Recent studies on canopy
radiative transfer functions have led to the development of the canopy
spectral invariant theory (Huang et al., 2007; Knyazikhin et al., 1998;
Lewis & Disney, 2007), according to which variations of canopy
scattering (reflectance plus transmittance) and absorptance are
mainly influenced by optical properties (spectral leaf transmittance
and reflectance) of individual leaves and twowavelength independent
canopy structural variables: the canopy interceptance and the
recollision probability. Based on this theory, explicit mathematical
relationships of the light–canopy interaction have been developed for
single homogeneous canopies with non-reflective background (Smo-
lander & Stenberg, 2005). Interestingly, the algebraic structure of these
models holds acrossmultiple mixing scales, from needle/leaf to shoot/
branch and from shoot/branch to canopy (2005; Lewis & Disney, 2007,
Smolander & Stenberg, 2003). This study hypothesized that proper
inversion of this kind of model should lead to improved estimations of
subpixel canopy cover of saltcedar.

The general objective of this study was to test linear and nonlinear
spectral mixture models in order to identify the best possible
classification strategy for repeatable mapping of saltcedar on a
regional setting. The specific objectives were:

(1) Assess the role of multiple scattering on canopy reflectance
using a modeling approach,

(2) Test whether the level of constraint imposed in the least square
inversion of the linear mixture model plays a major role in the
accuracy of estimated subpixel canopy coverage,

(3) Determine whether the thematic level at which endmembers
are defined has a significant impact on subpixel canopy cover
estimations,

(4) Test whether the consideration of the multiple scattering
phenomena can lead to increased accuracy in estimating
subpixel saltcedar canopy coverage from Landsat data.

In order to attain the above objectives, seven subpixel classifica-
tion methods were tested. Five of these methods were based on the
linear mixture model with varying levels of constraint (uncon-
strained, sum-constrained, nonnegativity-constrained, fully con-
strained, and tessellated linear spectral unmixing, Section 3.1). The
other two methods were based on a nonlinear mixture model (the
fully constrained and the tessellated multiple scattering approxima-
tion spectral unmixing methods, Section 3.2). The suite of methods
tested involved three spectral libraries that represented three levels of
detail: level 1 of a classification system (L1ETM, Section 3.1.2), level 2
with canopy measurements (L2AISA, Section 3.1.2), and level 2 with
subcanopy measurements (L2SYNTH, Section 3.2.4).

2. Data used

The study incorporated three data sources for derivation of
reference fractions and endmember reflectance spectra (Fig. 1): 1) a
Landsat ETM+ image (Section 2.2), 2) an airborne hyperspectral
image (Section 2.2), and 3) in situ measurements (Section 2.3). The
rest of this section provides details on the processing and role of these
data sets.

2.1. Study site

A study site was selected on the Forgotten River reach of the Rio
Grande River near the town of Candelaria, Texas (Fig. 2). At this site,
the riverbanks have been taken over by saltcedar, and the native
cottonwood (Populus spp) that once dominated the area is completely
absent (Everitt, 1998). The vegetation on both banks of the river is
composed mostly of saltcedar (Tamarix chinensis L.) with some mixes
of willow (Salix spp). The spatial distribution of saltcedar along the
river is variable, due in part to differences in the local hydrologic
system. As one moves into the uplands, honey mesquite (Prosopis
spp) stands are found, although they are generally mixed with other
weeds and saltcedar. A giant saltcedar species (Tamarix aphylla
L. Karst or Athel tamarisk) is also found in the study site, although in
very sparse occurrences along the uplands.

2.2. Image acquisition and processing

The Airborne Imaging Spectroradiometer for Applications (AISA)
sensor system (Spectral Imaging LTD) was flown over the study site
on 21 December 2005. The acquisition time coincided with the time
window when saltcedar's foliage turns a yellow-orange to orange-
brown color before leaf drop and thus can be more easily
discriminated from native mesquite and willow species (Everitt &
DeLoach, 1990). The AISA imagery acquired had 61 bands in the
spectral range 400–1000 nm with an average full width at half
maximum (FWHM) of 9.5 nm and spatial resolution of 1 m. The AISA
digital numbers represented reflectance values (times a multiplier)
that had been corrected from geometric and radiometric distortions.
Five image strips of 10-km length and 1-km swathwere used to create
a mosaic image, from which a subset of 2.3-km by 10-km was
extracted.

The AISA image showed a strong absorption feature around
934 nm (water vapor absorption) and a weaker absorption feature
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around 750 nm (ozone absorption). These absorption features were
eliminated by matching the reflectance spectra of a patch of dry grass
measured in the field with its corresponding reflectance from the
image. Since the scatterplot between the two spectra, for wavelengths
lower than 732 nm, formed a nearly perfect straight line (R2=0.998),
it was assumed that the recalibration would not affect our analysis on
multiple scattering.

A Landsat 7 ETM+ image (path 31, row 39) acquired in the Scan
Line Corrector (SLC)-off mode on 19 December 2005 was used in this
study. The SLC is an electromechanical device that compensates for
the forwardmotion of the satellite, but since it was turned off due to a
failure in May 2003, the ETM+ line of sight now traces a zigzag
pattern along the satellite ground track. The imagewas orderedwith a
gap-fill processing, according to which missing pixels are populated

with histogram-matched data from one or more images acquired at
anniversary dates (see http://eros.usgs.gov/products/satellite/land-
sat7.php for further details). Despite the data gaps, no striping was
apparent in the subset of the study site. However, an atmospheric
correction processing was necessary in order to reduce the effects of
thin cirrus clouds present on the central part of the subset. For this
purpose, the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) algorithm built into the ENVI system (ITT
Visual Information Solutions) was used. The FLAASH program
produced at-surface reflectance through the definition of built-in
atmospheric (U.S. standard) and aerosol (Rural) models with default
settings.

In order to ensure a consistent radiometric scale between the
Landsat and the AISA images, the Landsat image was registered and

Fig. 1. Major processing steps for generating the ground-truth fractional cover at 30-m spatial resolution and canopy reflectance spectra at the Landsat spectral resolution.

Fig. 2. Geographic location of the study site.
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recalibrated using a synthetic image derived from the AISA image. The
synthetic Landsat image was produced by applying spectral and
spatial resampling tools to the AISA imagery. The spectral resampling
used ENVI's built-in filter functions for Landsat ETM+ bands, whereas
the spatial resampling used an average filter function. Since the
spectral range covered by AISA (and also by the field spectra)
overlapped with Landsat bands 1 through 4 (i.e., blue, green, red, and
NIR spectral bands), only bands 1–4 of the Landsat image were used.
These wavebands have been shown effective for saltcedar discrimi-
nation considering the acquisition date (Everitt & DeLoach, 1990). The
four Landsat bands were co-registered to the synthetic image through
pairing of on-screen collected ground control points (n=14,
RMSE=0.38). After the co-registration, a radiometric recalibration
was carried out using the synthetic Landsat image as reference. The
recalibration of the reflectance values further reduced the atmo-
spheric effects on shorter wavelength bands. Specifically, the slope of
the linear transformation ranged from 0.74 for band 1 (blue band) to
1.0 for band 4 (NIR band).

2.3. Canopy and subcanopy reflectance measurements

Canopy and subcanopy reflectance measurements were acquired
through field sampling and from the AISA imagery (Fig. 3). In order to
link field observations to image observations, a two-level classifica-
tion system was defined. Table 1 summarizes the two-level
classification system used in this study.

Two field trips (Nov. 17–19, 2004, Dec. 17–19, 2005) were
arranged to collect sufficient ground truthing data in the study site.
Locations of target species and non-vegetated features were mea-
sured with a hand-held global positioning system (GPS Trimble
GeoXM). The unit is accurate to 1–3 m. Both points and polygon
features were recorded for each target species (46 points and 31
polygons in total). Point features were acquired near the main trunk
of trees using an extendable pole that lifted the GPS antenna up to 4m
above the ground. Polygons and points acquired in the field were
overlaid on true color and color-infrared composites of the AISA
image, and a manual selection of smaller polygons was performed in
order to correct for any spatial misalignment. Additional polygons
were also added for non-vegetated land cover classes based on on-
screen identification. Canopy reflectance measurements were then

produced by averaging the AISA reflectance values within selected
polygons and classified at level 2 of the classification system (Table 1).

The second field campaign was concurrent with the AISA image
acquisition and hence was more appropriate for spectral reflectance
measurements. Reflectance measurements were taken using a hand-
held spectroradiometer (Analytical Spectral Device UV/VNIR). The
device had fiber optic cable input 1.2 m in length with 25° full angle
cone of acceptance field-of-view. This instrument provides reflectance
spectra at the spectral resolution of 1 nm in the UV/VNIR range (350–
1050 nm). Subcanopy reflectance measurements were made by
pointing the fiber optic cable input vertically towards sun-illuminated
branches at breast height. Each target was measured ten times, and

Fig. 3. This figure shows the approximate locations of some canopy (red arrow) and subcanopy (white arrows) reflectance spectra measurements used in the study.

Table 1
Two-level classification system used in the study.

Class level 1 Class level 2 Description

1. Invasive (Tamarix) 1. Green saltcedar Tamarix dominated by green
and brown foliage

2. Senescent saltcedar Tamarix dominated by
orange foliage

3. Dry saltcedar Tamarix dominated by pale
frosted leaves

2. Native (woody riparian
species)

4. Leaf on willow Salix spp. with leaves on
5. Leaf-off willow Salix spp. with few leaves on
6. Leaf on mesquite Prosopis spp. with leaves on
7. Leaf-off mesquite Prosopis spp. with few

leaves on
8. Poverty weed Iva spp. with greenish leaves

3. Other (non-woody
vegetation and other
land-cover types)

9. Creosote busha Short bush, sparsely
distributed along hillside

10. Herbaceous-dry Primarily dormant grasses,
but includes herbaceous
weedy plants

11. Herbaceous-green Green herbaceous plants
12. Wetland Emergent herbaceous

wetlands
13. Water River, pond or lake water
14. Soil Sandy bare ground
15. Gravel Barren gravel and gravel

road
16. Road Asphalt paved road
17. Roof Any kind of house roof

a Creosote bush was not included in the class Native as it occurs in the hilly region,
i.e., it is non-riparian.
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measurements were averaged to reduce effects from variations in
illumination, movement of branches by wind and/or intrinsic noise
from equipment. The sky was nearly cloud-free at the time of data
acquisition, which occurred from 11 a.m. to 2 p.m. (local time).

Sample sizes from both image and field measurements are
provided in Table 2. The AISA image-based reflectance spectra are
hereafter referred to as canopy spectra, whereas the spectroradi-
ometer reflectance measurements are referred to as subcanopy
spectra. For the purpose of analysis, subcanopy spectra were
resampled to match the spectral resolution of canopy spectra (from
1 nm to around 10 nm). Fig. 4 provides example plots for subcanopy
and canopy reflectance spectra for various classes.

2.4. Reference fractions

Due to the intrinsic difficulties of collecting ground-truth fractional
coverage in the field, reference fractions were derived from the AISA
image (Fig. 1). The AISA image was classified at classification level 2
using the spectral angle mapper (SAM) classification method (Kruse
et al., 1993). This classification method requires a spectral library of
classified spectra, each of which is compared with the image spectra
via the spectral angle, i.e. the angle formed between two spectra of n
bands when considered as vectors of n dimensions. SAM assigns the
class with the smallest angle to the image spectra. The canopy spectra
acquired with the aid of GPS points (Table 2) were used for this
purpose. The SAM classification result was then aggregated to the
classification level 1 and class masks extracted. The reference fractions
were produced by aggregating the class masks at 30-m resolution
(Fig. 5). The accuracy of the reference fraction layer could not be
quantified but was assumed high (say above 90%) given the spectral
and spatial resolution of the AISA image, the relatively large number
of training spectra (60), and because the dominant class (on 31
polygons) matched perfectly the primary land cover recorded in the
field.

A sample set of 300 points was randomly drawn for accuracy
assessment. At each sampled site, four reflectance values from Landsat
bands and associated subpixel fractions for Invasive, Native, and Other
categories were recorded. 100 samples were drawn for each land
cover class where that particular class was dominant, i.e. had the
largest land cover fraction. This equalized sampling scheme was used
in order to ensure that no class contributed more than the others to
the accuracy or error measures.

3. Subpixel classification methods

This section summarizes the methods tested in the study. The two
nonlinear spectral unmixingmethods described in Section 3.2 and the
tessellated linear spectral unmixing presented in Section 3.1.3
represent methodological contributions from this study. In all the
cases, the purpose was to derive subpixel classifications at level 1 of
the classification system in Table 1.

3.1. Linear spectral unmixing

For an image with n bands and m different cover types, the linear
mixture model is expressed in matrix form as:

y = Xα + ε ð1Þ

where y=[y1⋯yn]T is the mixed pixel, α=[α1⋯αm]T is the subpixel
fractional cover, X is an n×m matrix containing m endmember
spectra as column vectors, and ε is the residual not explained by the
linear model.

If y and X are known, α is usually estimated through an ordinary
least square (OLS) optimization procedure. The OLS optimization
estimates α by minimizing the magnitude of the residual between the
observedmixed pixel and the corresponding model mixed pixels for a
given set of endmembers. Otherwise stated:

min
α

‖y−Xα‖2 ð2Þ

subject to:

iÞ1Tα = 1
iiÞα≥0

where 1 and 0 are column vectors ofm ones andm zeros, respectively.
Researchers have noted that the sum constraint (i) above is easy to

implement, but the nonnegativity constraint (ii) is not (Chang &
Heinz, 2000; Heinz & Chang, 2001; Hu et al., 1999). As a result, most
studies only implement the sum constraint in the model and then
apply the nonnegativity constraint to the results. This study sought to
test unconstrained, partially constrained and fully constrained
optimizations and assess the accuracy and relative efficiency of each
method.

3.1.1. Constraint level
If the two constraints are ignored, the solution is given by Eq. (3)

(Ravishanker & Dey, 2002):

αUC = X
T
X

� �−1
X

T
y ð3Þ

This method is hereafter referred to as unconstrained least squares
LSU or simply UCLSU. When the sum constraint is considered alone,
the solution can be found through the Lagrange multiplier method
(Heinz & Chang, 2001; JJ & Drake, 1993). This solution is provided in
Eq. (4), where G=(XTX)− 1 and αUC is the solution to the
unconstrained problem above (Eq. (3)):

αSC = αUC−G1 1T
G1

� �−1
1TαUC−1

� �
ð4Þ

This method is hereafter referred to as sum-constrained LSU or
SCLSU.

The other two formulations considered here, which fulfill the
nonnegativity constraint, do not have exact mathematical solutions. If
the nonnegativity constraint is considered alone, the solution is
termed the nonnegativity-constrained LSU or NCLSU. In this case, an
iterative procedure based on Lagrange multiplier optimization is

Table 2
Number of spectral reflectance samples available for each class.

Target name Field spectra Image spectra

Green saltcedar 5 4
Senescent saltcedar 5 4
Dry saltcedar 4 3
Invasive total 14 11
Leaf on willow 2 4
Leaf-off willow 2 1
Leaf on mesquite 6 2
Leaf-off mesquite 4 3
Poverty weed 4 2
Native total 18 12
Creosote bush 8 1
Herbaceous-dry 5 6
Herbaceous-green 0 2
Wetland 0 5
Water 0 11
Soil 0 1
Gravel 0 5
Road 0 2
Roof 0 4
Other total 13 37
Overall total 45 60
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necessary (Chang & Heinz, 2000). In this study, a LSQNONEG
optimization routine available in the MATLAB optimization toolbox
was used (The MathWorks, Inc., 2002). LSQNONEG required an initial
solution, which was set to the unconstrained solution above (Eq. (3)).
Details on the LSQNONEG optimization algorithm are provided in
Lawson and Hanson (1974).

Likewise, the fourth formulation is here referred to as the fully
constrained least squares LSU or simply FCLSU. The fully constrained
problem can be alternatively expressed as a quadratic program (Heinz
& Chang, 2001; Hu et al., 1999). A QUADPROG function in the
optimization toolbox of the software package MATLAB was used with
the unconstrained solution as the initial solution. The QUADPROG

Fig. 4. Examples of subcanopy (a) and canopy (b) reflectance spectra of major vegetation species in the study site. Subcanopy spectra correspond to spectroradiometer
measurements at branch level, whereas canopy spectra correspond to airborne hyperspectral (AISA) measurements.

Fig. 5. Classification map obtained through spectral angle mapper (SAM) classification of AISA imagery at 1-m spatial resolution (left) and map of derived subpixel fractional
coverage at 30-m spatial resolution (right). In the latter case, full subpixel coverage of class Invasive is shown in an intense red tone, full subpixel coverage of class Native is shown in
an intense cyan tone, and full subpixel coverage of class Other is shown in white. Combinations of the three land cover classes yield intermediate tones. The large red patches are
likely to correspond with established stands of saltcedar that have monopolized the space, whereas smaller patches (pink and dark cyan tones) should correspond with incipient
saltcedar invasion or areas where saltcedar remains a sub-dominant species (Sher et al., 2002).
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Author's personal copy

algorithm involves two phases. The first phase involves the calcula-
tion of a feasible point (if one exists). The second phase involves the
generation of an iterative sequence of feasible points that converge to
the solution. The reader is referred to (Gill et al., 1991) and to the
software documentation for further details on this optimization
algorithm.

3.1.2. Endmember definition for LSU
Two endmember definitions were tested with the linear mixture

model. Both definitions were based on image data (image endmem-
bers), as they are most likely linearly mixed. In the first strategy,
endmembers were produced at level 1 by averaging Landsat spectra
from pixels with land-cover fractions greater than 0.95 in the
reference fractions (see Fig. 1). Since fractions were already
aggregated at the thematic level 1, therewere only three endmembers
in this case: one for Native, one for Invasive and one for Other. The
collection of these image spectra is hereafter referred to as L1ETM.
This definition of endmembers contrasts the generic definition
proposed for arid landscapes (Asner & Heidebrecht, 2002; Roberts
et al., 1993), which considers photosynthetic vegetation (PV), non-
photosynthetic vegetation (NPV) and bare soil as endmembers.

The generalization of endmembers above is convenient because
the intrinsic dimension of the data limits the maximum number of
endmembers that can be considered simultaneously for model
inversion. Such generalization may, however, imply significant
spectral variability within each class (intra-class variability) and
neglect the spatial variability of endmembers. To circumvent these
issues, several alternatives have been developed that involve various
endmember selection strategies (Carpenter et al., 1999; Dennison &
Roberts, 2003; Miao et al., 2006; Okin et al., 2001; Plaza et al., 2004;
Roberts et al., 1992, 1998; Smith et al., 1994. Most of these techniques
are computationally intensive and are more appropriate for hyper-
spectral data. The alternative adopted here combines a level 2
definition of endmembers with an automatic selection algorithm
based on concepts of convex geometry (Boardman et al., 1993). The
spectral library used in this case was derived from the AISA image, and
thus is hereafter referred to as L2AISA. The L2AISA library consisted of
the 60 spectra that were used for classifying the AISA image, but
resampled at the spectral resolution of the Landsat image (see Fig. 1).
The endmember selection strategy adopted was based on a tessella-
tion, as described in the following subsection. Hence, the unmixing
method is hereafter referred to as the tessellated linear spectral
unmixing (TLSU).

3.1.3. Tessellated linear spectral unmixing (TLSU)
For the TLSU method, a Delaunay tessellation of the entire set of

endmemberswas built by considering each library spectrum as a point
of the n-dimensional Euclidian space. Such a tessellation partitions the
mixing space into polyhedra called simplices. A simplex is a
generalization of the concept of triangle in two-dimensional space,
or tetrahedron in three-dimensional space. The parts of a simplex are
called vertices or 0-facets, edges or 1-facets, faces or 2-facets, cells or
3-facets or, in general, r-facet, for r=0, …, n.

If mixed pixels are also considered points of the n-dimensional
space, and the Euclidian distance is the spectral proximity measure,
then the vertices of the closest simplex to a point represent
reasonably good candidates for endmembers of the mixed pixel
represented by the point. Based on this spectral proximity criterion,
we selected for each mixed pixel the n+1 vertices of the simplex
enclosing the point (see Fig. 6 for a geometric interpretation).
Consequently, the mixture fractions correspond to the barycentric
coordinates of the point with respect to the selected simplex
(Boardman et al., 1993). One exception occurs if the point falls
outside the convex hull. In such cases, there is no simplex enclosing
the pixel, and the most spectrally similar endmembers correspond to
the vertices of the nearest facet of the convex hull. Instead of

searching for such facets, it was found more convenient to consider
the fully constrained least squares solution with endmembers that
correspond to vertices of the convex hull. In this way, the optimization
routine assigns nonzero fractions to the endmembers that form the
nearest facet and zero fractions to all other endmembers.

A TLSU function was written in MATLAB programming language.
This function used available implementations of the Delaunay
tessellation (DELAUNAYN) and the simplex search methods
(TSEARCHN). These programs are based on the efficient QUICKHULL
algorithm developed by Barber et al. (1996). The TLSU function takes
advantage of the calculation of the barycentric coordinates by
TSEARCH for interior pixels, while it uses the QUADPROG optimiza-
tion routine for unmixing pixels that fall outside the convex hull. The
TLSU function arranges the fractions in a sparse matrix (one column
per mixed pixel and one row per endmember) and then multiplies it
by an aggregation matrix (one column per endmember and one row
per class) that is passed by the user. The aggregation matrix defines
the membership relationship between endmembers and classes. In
this way, TLSU delivered fractions at classification level 1 from
endmembers defined at level 2. The result after aggregation is
comparable to considering endmember bundles (Bateson et al., 2000).

3.2. Nonlinear spectral unmixing

A nonlinear spectral mixture model was developed to account for
effects of the multiple scattering phenomena in canopy reflectance.
The model development builds upon results from the spectral
invariant theory, according to which leaf/shoot reflectance is related
to canopy reflectance through photon recollision probability para-
meters (Huang et al., 2007; Lewis & Disney, 2007; Smolander &
Stenberg, 2005). The description of the model is presented below
followed by two spectral unmixing methods based on the model.

3.2.1. The multiple scattering approximation (MSA) model
Considering a homogeneous canopy composed of leaves only and

bounded at the bottom by a black surface, the canopy scattering y(λ)
at wavelength λ is related to the leaf scattering x(λ) through a
nonlinear model of the form (Smolander & Stenberg, 2005):

y λð Þ = α
1−pð Þx λð Þ
1−px λð Þ ð5Þ

Fig. 6. Geometric interpretation of the tessellated linear spectral unmixing (TLSU)
method for four endmembers with two bands. A, B, C and D represent endmembers,
whereas P and Q represent mixed pixels. The discontinuous lines indicate the Delaunay
tessellation defining the endmember selection criterion. Pixel P is unmixed using the
vertices of the closest simplex (triangle ABD), whereas Q is unmixed using the vertices
of the convex hull (triangle ABC). Although the endmember D is interior to the mixing
space of endmembers A, B and C, it cannot be considered a combination of the latter
(see, for example, Fig. 9 for the relative location of leaf-on willow, which can play the
role of D, and green saltcedar, poverty weed and grass, which can play the roles of A, B
and C, respectively, in the PC1–PC2 plane). This situation is likely to happen when using
broadband spectra such as Landsat TM.
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whereαdenotes the canopy interceptance, i.e., the portions of photons
intercepted by the canopy, and p denotes the photon recollision
probability, i.e., the mean probability that a photon scattered from a
leaf in the canopy will interact with the canopy again. Consequently,
1−p is the photon escaping probability, and 1−α is the portion of
photons transmitted directly to the ground.

The photon–canopy interaction can be conceptualized as a closed
systemwith a positive feedback of gain p. Such a system is graphically
illustrated in Fig. 7(a), where the wavelength dependency is obviated
to simplify the notation. In this diagram, the outer box represents the
canopy scattering, the inner box represents the leaf scattering, and the
feedback link represents the multiple scattering. If we further assume
a negligible downward component of scattered photons and null leaf
transmittance, then y corresponds to the canopy reflectance, i.e., the
mixed spectrum, and x correspond to the leaf reflectance, i.e., the
endmember spectrum.

The model was generalized here to consider multiple endmem-
bers, e.g., when the homogeneous canopy has a non-dark background
or when two or more canopies contribute to the mixed spectrum. The
system diagram for the general case is shown in Fig. 7(b). In this
model, the total incoming radiation is split into endmember
interceptances (αs). Then, a single photon that has interacted with
the ith endmember may interact with the jth endmember with
probability pij or escape recollision with probability:

qi = 1− ∑
m

j=1
pi;j ð6Þ

Using the diagram of Fig. 7(b) and Eq. (6), the canopy reflectance
yields Eq. (7), where α=[α1⋯αm]T defines the proportion of light

intercepted by each endmember, X(λ)=diag[x1(λ), …, xm(λ)] is a
diagonal matrix of endmember spectra, P=[pij]i,j=1,…,m is termed the
recollision probability matrix (RPM), and I is the identity matrix of
order m:

y λð Þ = 1−P1ð ÞT I−X λð ÞPT
h i−1

X λð Þα ð7Þ

Eq. (7) is hereafter referred to as the multiple scattering
approximation (MSA) model and, hence, Eq. (5) is the MSA model
for one endmember (MSA-1). An explicit expression for the two-
endmember model (MSA-2) is provided in Eq. (8):

y λð Þ = α1q1x1 λð Þ + α2q2x2 λð Þ + K1x1 λð Þx2 λð Þ
1−p1;1x1 λð Þ−p2;2x2 λð Þ + K2x1 λð Þx2 λð Þ ð8Þ

with constants K1=α1(q2p1,2− q1p2,2)+α2(q1p2,1− q2p1,1),
K2=p1,1p2,2−p2,1p1,2, and q1 and q2 are defined by Eq. (6). Fig. 8
illustrates the mixing space using the MSA-2 model (Eq. (8)) on three
wavebands. The surface is bounded by the linear mixing subspace at
the top (q1=q2=1) and by the shade point at the bottom
(q1=q2=0). As the escaping probabilities decrease, and for fixed
interceptances, the mixed points describe nonlinear, yet smooth
trajectories converging at the shade point.

It should be noted that if the RPM is zero, then the MSA model
results in the linear model. If the RPM is diagonal, the MSA model
results in a linear combination of multiple MSA-1 models. Further-
more, if the RPM is invariant across the landscape, the MSAmodel can
be treated as a linear model with transformed endmembers. In
practice, however, the recollision probabilities depend on the canopy
structure, which may vary significantly even between vegetation
canopies of the same species. For the case of a single homogenous
canopy with a dark background, a theoretical expression for the
dependence of recollision probability on leaf area index (LAI) had
been derived from nesting recollision probabilities using Eq. (5)
(Lewis & Disney, 2007). In this study, only the cases for one, two and
three endmembers with varying recollision probabilities were
considered.

Fig. 7. These flow diagrams show the system-like representation of the multiple
scattering approximation models for one endmember (a) and for m endmembers (b).
The unit input indicates a normalized number of photons. Variables xs represent
subcanopy endmember reflectance, whereas y represents the canopy reflectance. The
canopy structural parameters are interceptances (αs), recollision probabilities (ps) and
escaping probabilities (qs).

Fig. 8. Mixing space generated with a two-endmember multiple scattering approxi-
mation (MSA-2) model. Locations of endmembers are labeled as X1 and X2. Each point
in the surface represents a mixed pixel and its color represents the relative contribution
from each endmember (α for X1 and 1−α for X2). The surface was generated from
varying the endmember interceptance α=α1=1−α2 and the escaping probability
q=q1=q2, while fixing p1,1=p1,2=p2,1=p2,2=0.5(1−q). The surface is representa-
tive of the mixing space because the variation in the proportion of auto recollision (pi,i)
to inter recollision (pi,j, i≠ j) did not produce significant deviations from the surface.
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3.2.2. A fully constrained MSA spectral unmixing
The fully constrained MSA spectral unmixing method consisted of

fitting directly theMSAmodel to Landsat reflectancemeasurements in
order to estimate the wavelength independent parameters (P and α).
In this case, the OLS approach was adopted so that the residual
between the mixed spectra y and the model-synthesized spectra yP,α
was minimized. The optimization problem is formally stated as
follows:

min
α;P

‖y−yP;α‖
2 ð9Þ

subject to:

iÞ1Tα = 1
iiÞα≥0
iiiÞP1≤1
ivÞP≥0

Since the MSA model is far more complex than the linear model,
the optimization had to be solved numerically. A FMINCON function
available in the optimization toolbox of MATLAB software was used
with the medium-scale optimization option. FMINCON uses a
sequential quadratic programming (SQP) method. At each iteration,
the function solves a QP subproblem using an active set strategy
(similar to that described by Gill et al., 1981). Initially, this method
was meant to be tested using field measurements. Unfortunately, due
to the spatial heterogeneity of subcanopy spectra, and to the
computational burden of the optimization method, image spectra
were considered instead. The optimization method was tested using
the L1ETM library discussed in Section 3.1.2. The optimization
algorithm required an initial solution, which was set to 1/3 for the
three fractions and zero for the nine recollision probabilities. This
method is hereafter simply referred to as MSA.

3.2.3. The tessellated MSA spectral unmixing method
A second method used MSA-1 and MSA-2 models to synthesize

canopy spectra from subcanopy spectra. The synthesized spectra were
used to create a new library referred to as the L2SYNTH spectral
library (see Fig. 1 and Section 3.2.4). The L2SYNTH spectral library was
then passed to the TLSU procedure (Section 3.1.3) with an aggregation
matrix that weighted the contribution of each library spectrum
according to the interceptances of subcanopy endmembers. For
instance, if the linear spectral unmixing of a pixel yields a fraction
of 0.70 for a simulated spectrum with 0.80 interceptance of saltcedar
and 0.20 interceptance of grass, then the fractions of subcanopy
endmembers assigned through the aggregation matrix are
0.7×0.8=0.56 for saltcedar and 0.7×0.2=0.14 for grass. The
rationale of this method is that while the MSA model captures the
nonlinearity between subcanopy and canopy reflectance, the linear
unmixing accounts for the light integration at the scale of the sensor's
field of view. This method is hereafter referred to as the tessellated
MSA or TMSA.

3.2.4. The L2SYNTH spectral library
The L2SYNTH spectral library was formed using primarily

synthesized canopy spectra from the MSA-1 and MSA-2 models.
Fifteen subcanopy spectra were selected to serve as endmembers of
the nonlinear models (Table 3). The selection process aimed to reduce
the redundancy of measurements. Redundant spectra were identified
in terms of the spectral angle among spectra of the same class, so that
selected spectra differed from each other by no less than 3°. The values
of auto recollision probabilities (p for MSA-1 or p1,1 and p2,2 for MSA-2)
were selected within a range (pmin–pmax) that was determined
empirically from fitting the AISA spectra to field spectra. More
specifically, scatter plots of subcanopy vs. canopy spectra of major
woody riparian species were examined and fit to theMSA-1 andMSA-2

models. All possible one- and two-endmember combinations of
subcanopy spectra were fit to each canopy spectra. Fitting results
were inspected andmodels classified intoplausible andnon-plausible. A
plausible model satisfied three criteria: 1) the spectral angle between
model spectra and image spectra was under 3°, 2) at least one
endmember, the dominant endmember, had interceptance of 0.7 or
greater and 3) the class of the dominant endmember coincidedwith the
class of the canopy spectra.

Although the same rangeof valueswasusedwithMSA-1 andMSA-2,
a coarser quantization (Δp) had to be used for MSA-2 due to the huge
number of endmember–parameter combinations. Table 3 summarizes
the range and quantization values for all field spectra. The values for
inter recollision probabilities (p1,2 and p2,1) were selected in such a way
that the escaping probabilities took the values of 1−pi,i, (1−pi,i)/2 and
(1−pi,i)/4 for each value of pi,i considered. While the interceptance
parameter of MSA-1 (α) was set to 1.0, interceptance parameters in
MSA-2 (α1 and α2) were allowed to take values of 0.1, 0.3, 0.5, 0.7 and
0.9 (while fulfilling the sum-to-one constraint) for a strict two-
endmember mixture.

Initially, all possible two-endmember mixtures were simulated
with all parameter combinations. Upon subsequent crosschecking
with field observations, some cases were excluded and additional
combinations included. Combinations with creosote bush were
excluded because that plant is unlikely to occur in mixed stands
with the other species. In contrast, grass, water and soil are likely to
occur in the under story of saltcedar, mesquite or willow species.
Hence, AISA spectra for water and soil, with zero auto recollision
probabilities, were also combined with the woody species using the
MSA-2 model. Combinations of non-woody vegetation, such as grass–
soil, water–grass, etc., were excluded as these are unlikely to undergo
multiple scattering. Parameter combinations that yielded diagonal
recollision probability matrices were also excluded because they can
be represented as linear combinations of twoMSA-1models. The final
number of two-endmember combinations yielded 28,530 spectra,
plus 61 spectra from one-endmember combinations. In addition, 25
AISA spectra from non-vegetated land cover classes were included in
the final library.

3.3. Methods of accuracy assessment

The performance of each unmixingmethodwas assessed using the
root mean square error (RMSE) criterion. Specifically, if ỹk and yk
denote the estimated and actual reflectance spectra at pixel k, and αk̃

and αk denote the estimated and actual subpixel fractions at pixel k,
then the following error measures are defined on a per-pixel basis:

RMSE yk;y~kð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i=1
yi;k− ỹi;k

� �2
s

ð10Þ

Table 3
Selected subcanopy spectra and quantization of recollision probabilities used for
synthesizing canopy spectra with one- and two-endmembers multiple scattering
approximation models (MSA-1 and MSA-2, respectively).

Target name
(selected samples)

Recollision probabilities

pmin–pmax Δp (MSA-1/MSA-2)

Green saltcedar (3) 0.6–0.9 0.15/0.3
Senescent saltcedar (2) 0.3–0.9 0.15/0.3
Dry saltcedar (2) 0.2–0.8 0.15/0.3
Leaf on mesquite (1) 0.1–0.5 0.1/0.2
Leaf-off mesquite (1) 0.1–0.3 0.1/0.2
Leaf on willow (1) 0.1–0.7 0.15/0.3
Leaf-off willow (1) 0.1–0.4 0.15/0.3
Poverty weed (2) 0.1–0.9 0.2/0.4
Creosote bush (1) 0.1–0.7 0.2/0.2
Grass (1) 0.0 0/0
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and

RMSE αk; α̃kð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

∑
m

j=1
αj;k− α̃j;k

� �2
s

ð11Þ

Average and standard deviation of RMSEmeasures were calculated
from the test sample discussed in Section 2.4.

In addition, the subpixel confusion-uncertainty matrix (SCM) was
calculated, and overall and per-class accuracy measures were derived
(Silván-Cárdenas & Wang, 2008). The SCM provided detailed
information on the source and type of errors, analogous to the
traditional confusion matrix for crisp classifications. In general, the
SCM consists of confusion intervals that quantify the uncertainty of
subpixel confusions. However, since the classification system includ-
ed only three classes, interclass confusions can be uniquely deter-
mined (Silván-Cárdenas & Wang, 2008). In this case, the confusion
was quantified through the following composite operator:

Cij =
∑k min α̃i;k;αj;k

� �
for i = j

∑k Δα̃i;kΔαj;k = ∑l Δαl;k for i≠j

(
ð12Þ

where

Δα̃i;k = α̃i;k−min α̃i;k;αi;k

� �
Δαj;k = αj;k−min α̃j;k;αj;k

� �

denote the over- and underestimation errors of classes i and j at pixel
k, respectively. For the calculation of the SCM, subpixel classification
fractions were first trimmed to the unit interval and then normalized
to sum to one on a per-pixel basis.

4. Results

4.1. Role of multiple scattering on canopy spectra

In order to search for evidence of the multiple scattering
phenomena (objective 1) and its proper representation with the
MSA model, canopy spectra were compared with subcanopy spectra.
Average canopy and subcanopy spectra were projected onto the
principal components plane PC1–PC2 that was generated from

Landsat mixed pixels (Fig. 9), and the displacement between the
locations of subcanopy spectra to their corresponding locations of
canopy spectra was inspected. If a canopy spectrum results from the
mixture of subcanopy spectra as prescribed by the MSAmodel, then it
is reasonable to expect a displacement vector pointing slightly
towards the shadow point, but perhaps not straight to the shadow
point (see Fig. 8). It was observed that all species, excluding leaf-off
mesquite, had displacement vectors with a positive component
pointing towards the origin (Fig. 9). Such a displacement should
indicate an escaping probability under one (i.e., multiple scattering).
Moreover, the greater the component of the displacement towards
the origin, the smaller (larger) the escaping (recollision) probability
should be. Consistently, leaf-off vegetation had small displacement
vectors, whereas leaf-on vegetation showed the largest displacement
indicating a higher effect from multiple scattering on canopy spectra.

In addition to the vector displacement analysis above, results from
fitting the MSA-1 and MSA-2 models yielded least square estimates of
recollision probabilities, which are summarized in Table 3. The
estimated recollision probabilities were consistent with the vector
displacement analysis above. The effect of multiple scattering was
apparent in the attenuation of canopy reflectance with respect to
subcanopy reflectance (see e.g., Fig. 10). Interestingly, canopies of
green and senescent saltcedar tended to have a larger likelihood of
photon recollision than all other species (Table 3). This was
presumably due to its tiny, needle-like leaf (3 mm in length against
3 cm for mesquite), as well as its canopy structure.

4.2. Subpixel classification results

Maps of retrieved subpixel fractions from the top-five most
accurate methods are provided in Fig. 11. The accuracy assessment
results are discussed below in terms of the role of constraint level and
endmember definition (objectives 2 and 3) as well as in terms of
mixture model (objective 3).

4.2.1. Role of constraint level and endmember definition
In terms of the constraint levels considered for LSU, it was

observed that the fitting error (RMSE of reflectance) increased for
increasing levels of constraint. Nonetheless, the relatively low RMSE of
reflectance spectra (less than 1% in most cases) indicated that all
solutions fit the data fairly well (Table 4). In contrast, subpixel fraction
estimation errors decreased with increasing levels of constraint. In
this case, the nonnegativity constraint was found to be more
important than the sum constraint, so FCLSU performed comparably
with NCLSU. When fractions were renormalized to the unit interval,

Fig. 9. Two dimensional scatterplot on the space spanned by two principal components
(PC1 and PC2) of Landsat pixel cloud. The average locations of canopy reflectance are
shown as filled circles. Arrows represent the displacement from average location of
subcanopy spectra (branch/shoot level) to average location of canopy spectra. The
background image represents pixel counts of Landsat pixels.

Fig. 10. Subcanopy vs. canopy reflectance scatterplot from spectral curves in Fig. 4.
Discontinuous lines represent the least square fitting of the one-endmember multiple
scattering approximation (MSA-1) model. Estimated recollision probabilities (p) are
provided for each case.
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the subpixel classification accuracy improved for unconstrained and
partially constrained methods (Table 5).

In addition to the constraint level, the thematic level of end-
member definition seemed to have a significant effect on the final
subpixel fractional estimation. The TLSU method (and also TMSA),
which employed level 2 endmembers, showed superior performance
over linear methods based on level 1 endmembers. This result is
attributed to the fact that intra-class variability of spectral signatures
was better represented by level 2 spectra.

4.2.2. Role of mixture model
Although linear mixing was expected to occur for image

endmembers, MSA yielded the best result among methods that used
endmember definition at thematic level 1. This result advocates for
nonlinear mixing at a landscape level, which appears to be better

represented by the MSAmodel than by the linear model. Nonetheless,
the least square inversion of the MSA was sensitive to the initial
solution. Some early tests using random initializations yielded poorer
estimates of fractional cover (data not shown). The best result was
found when the recollision probability matrix was initially set to zero,
so the solution found through least square optimization resulted in a
nearly linear mixture model. The proximity to linearity is indicated
through the relatively low average recollision probabilities provided
in Table 6.

For comparison of the linear and nonlinear spectral unmixing,
Table 7 presents the confusion matrices and derived accuracy indices
for FCLSU and MSA. One major difference between the two methods
was the higher confusion of Native classified as Invasive by FCLSU
(20.6%) with respect to MSA (1.5%). These confusion values led to
higher producer accuracy of retrieved saltcedar from MSA (96.7%)
than from FCLSU (78.8%). However, the user accuracy of saltcedar was
the same for both methods (59.3%). The user accuracy indicated

Fig. 11. Subpixel canopy cover retrieved from several methods. From left to right: NCLSU, FCLSU, TLSU, MSA and TMSA. Red tones correspond to invasive species, cyan tones
correspond to native species. See Fig. 5 for reference fractions and color scale.

Table 4
Root mean square error (RMSE) statistics of mixed reflectance and subpixel fractional
land cover estimations by several spectral unmixing methods: unconstrained, sum-
constrained, nonnegativity-constrained, fully constrained, and tesselated linear
spectral unmixing (UCLSU, SCLSU, NCLSU, FCLSU and TLSU, respectively), and fully
constrained and tesselated multiple scattering approximation spectral unmixing (MSA
and TMSA, respectively).

Method Average RMSE (standard dev.)

Reflectance [%] Fractions [%]

UCLSU 0.2(0.2) 31.5(23)
SCLSU 0.7(0.7) 48.1(45)
NCLSU 0.4(0.6) 25.5(15)
FCLSU 1.3(1.8) 25.1(15)
TLSU 0.1(0.3) 16.9(11)
MSA 1.1(1.6) 20.8(13)
TMSA 0.0(0.3) 23.3(14)

Table 5
Overall accuracy, kappa statistics, and user and producer accuracies for class Invasive.
Computations were based on renormalized fractional land cover estimations by several
spectral unmixing methods: unconstrained, sum-constrained, nonnegativity-con-
strained, fully constrained, and tesselated linear spectral unmixing (UCLSU, SCLSU,
NCLSU, FCLSU and TLSU, respectively), and fully constrained and tesselated multiple
scattering approximation spectral unmixing (MSA and TMSA, respectively).

Method Overall acc. (kappa) User accuracy Producer accuracy

UCLSU 72(0.57) 75 85
SCLSU 63(0.45) 54 84
NCLSU 72(0.58) 68 94
FCLSU 67(0.51) 59 79
TLSU 77(0.66) 78 90
MSA 73(0.59) 59 97
TMSA 69(0.53) 72 51
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similar reliability of saltcedar canopy cover estimations from both
methods.

Contrary to expectations, the TMSA method, which accounts for
the nonlinear mixing of subcanopy spectra onto canopy spectra,
performed under its linear counterpart (TLSU). Nonetheless, a close
inspection of the errors yielded by TMSA revealed that the reference
fractions could have favored methods based on image endmembers.
The issue is the reference fractions were derived using image spectra
selected from the AISA image. These image spectra should have been
considered mixed spectra from subcanopy spectra.

Consistently, results from TMSA (Fig. 12) showed a trend from
slight overestimation (under 20%) for low fractions to strong
underestimation (around −60%) of higher fractions. Higher fractions
imply a high canopy closure and, consequently, little or no direct light
transmission to the ground. This is unlikely to happen in reality
considering the small leaf sizes of both native and invasive species and
the phenological stage at the time of image acquisition. If this were the
case, then the actual subpixel class distribution would look more
fragmented and mixed than that shown in Fig. 5. Fig. 11 (far right)
shows the map derived from TMSA, which matches more closely the
above description. Aside from errors in the reference data, other
factors could have affected the performance of TMSA. These include,
for instance, the use of a relatively coarse quantization of parameter
values and the lack of a comprehensive spectral sample of the
understory. Despite this, the subpixel classification accuracy through
TMSA was among the top three considering the RMSE of fractions
(Table 4). It was also among the top three methods in terms of
reliability for saltcedar's subpixel canopy coverage estimation, as
indicated through the user accuracy (Table 5).

5. Discussion

Results indicated that linear models can achieve higher accuracy
when at least the nonnegativity constraint is imposed. Unfortunately,
the consideration of such a constraint with the least square
optimization may not be practical for a regional-scale mapping task
due to the iterative nature of the algorithm (Heinz & Chang, 2001).
The unconstrained solution with post-classification normalization can
yield comparable accuracy to the nonnegative constrained method,
with the advantage of being more efficient. The consideration of a
nonlinear mixture model further increased the accuracy. However,
the marginal improvement with respect to the best linear spectral
unmixing method was not sufficient enough to justify the computa-
tional burden imposed by the nonlinear method. Although the use of
aggregated endmembers can yield relatively high accuracy, its
definition relied on knowledge of nearly pure pixels derived from
the AISA image.

Per-species spectra collected through sampling the AISA image
provided a better representation of the intrinsic variability of canopy
spectra. The main problem faced in this case was the automatic
selection of endmember spectra. An efficient solution based on

Table 6
Statistics of least square estimated recollision probabilities from the fully constrained
multiple scattering approximation spectral unmixing method (MSA). pi,j represents the
recollision probability from land cover class i to land cover class j, for the land cover
classes 1 = Invasive, 2 = Native and 3 = Other.

Recollision probability Min. Max. Avg. Std. Dev.

p1,1 0 0.54 0.06 0.11
p2,1 0 0.45 0.04 0.08
p3,1 0 0.43 0.06 0.08
p2,1 0 0.49 0.03 0.08
p2,2 0 1.00 0.05 0.12
p2,3 0 0.30 0.06 0.08
p3,1 0 0.29 0.02 0.04
p3,2 0 0.31 0.02 0.05
p3,3 0 0.42 0.07 0.10

Table 7
Subpixel confusion matrix for (a) fully constrained linear spectral unmixing (FCLSU)
and (b) fully constrained multiple scattering approximation spectral unmixing (MSA),
and (c) accuracy indices from each method.

Class Reference (%) Total

1 2 3

(a)
1. Invasive 78.8 35.6 18.9 43.8
2. Native 20.6 62.9 21.7 34.0
3. Other 0.7 1.6 59.4 22.2
Total 100.0 100.0 100.0 100.0

(b)
1. Invasive 96.7 45.6 21.7 53.8
2. Native 1.5 51.3 9.9 19.9
3. Other 1.8 3.1 68.4 26.3
Total 100.0 100.0 100.0 100.0

Class FCLSU MSA

Prod. acc. User acc. Prod. Acc. User acc.

(c)
Invasive 78.8 59.3 96.7 59.3
Native 62.9 57.0 51.3 79.5
Other 59.4 96.8 68.4 94.0

OA=66.86% (κ=0.5056) OA=72.46 (κ=0.5865)

Fig. 12. Error bars from estimated fractions for Invasive (top) and Native (bottom)
classes. Bars correspond to average errors within each reference fraction interval. The
standard deviation for each interval is indicated with the length of the vertical line.
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concepts of computational geometry was adopted. This method
achieved the highest accuracy measures of all methods tested,
presumably due to a better representation of intra-class spectral
variability. The fact that the reference fractions and the endmember
library had a common source, the hyperspectral imagery, may also
have contributed to the superior performance of the TLSU method.
One major limitation of this approach is the cost associated with
acquisition of the hyperspectral image. Nevertheless, such costs are
not significantly high considering that the spectral sampling and
fraction derivation for accuracy assessment is only necessary for
limited spatial extents, while the benefit of monitoring through
Landsat imagery comes from considering wide spatial extents (e.g., a
basin-wide area). A cheaper alternative would be using comprehen-
sive top-of-canopy measurements from fieldwork in place of airborne
measurements. Such datasets are, however, hard to collect and can
lead to larger discrepancywith respect to imagemeasurements due to
differences in acquisition conditions (Plaza et al., 2004).

As an alternative to canopy endmembers, subcanopy reflectance
measurements were considered. The linkage between subcanopy
spectra and image spectra requires a nonlinear mixture model that
accounts for the multiple scattering phenomena. A model rooted in
spectral invariant theory (Huang et al., 2007; Lewis & Disney, 2007;
Smolander & Stenberg, 2005; Stenberg, 2007) was proposed in this
study. The matching of subcanopy reflectance spectra with canopy
reflectance spectra provided evidence of a nonlinear relationship and
allowed estimation of canopy recollision probabilities through least
square model inversion. Results showed that leaf on trees had larger
recollision probabilities than leaf-off trees. While variability of
recollision probabilities was significant for most species, saltcedar
trees generally yielded higher values (0.3–0.9), followed by willow
(0.1–0.7) and mesquite (0.1–0.5). This result supported the hypoth-
esis that effects from multiple scattering can be more significant for
saltcedar canopies than for native species canopies.

The empirical recollision probability ranges were used to synthe-
size a large number of canopy spectra from one- and two-endmember
combinations of subcanopy spectra. Since canopy spectra are more
likely to undergo a linear mixing at the sensor's resolution (Roberts et
al., 1993), it sufficed to apply the tessellated linear spectral unmixing
of synthesized spectra to the Landsat image. The retrieved fractions of
synthesized spectra were transformed back to fractions of subcanopy
spectra. The accuracy of this method was moderate despite the large
number of synthesized canopy spectra. Nonetheless, the accuracy
measures may be more reliable provided that the reference fraction
was derived from a totally independent source. This method may be
cheaper to implement than the TLSU as it does not require the
hyperspectral image for endmember definitions and measuring
subcanopy reflectance is less tedious than measuring top-of-canopy
spectra in the field. Furthermore, a method to measure the average
value of the canopy recollision probability from canopy gap fraction
data, which are provided for example by the LAI-2000 plant canopy
analyzer (Stenberg, 2007), could be a reasonable alternative to the
model fitting technique used here.

6. Conclusions

Moderate resolution remote sensing images, such as Landsat
TM/ETM+, represent an attractive source of information formapping
the canopy cover of saltcedar and native species over wide extents at
a low cost. In this study, seven spectral unmixing methods were
tested on Landsat measurements for retrieving subpixel canopy
cover of saltcedar and associated native species. A hyperspectral
image was used derive reliable subpixel land cover fractions for
accuracy assessment as well as for deriving canopy spectra to use as
endmembers. Additionally, subcanopy reflectance measurements
were acquired in the field. Based on these datasets, three endmember
libraries were defined with varying level of detail.

Results indicated that: 1) When saltcedar was represented by one,
single image spectrum (endmember), the unconstrained linear
spectral unmixing with post-classification normalization produced
comparable accuracy (OA=72%) to those delivered by partially and
fully constrained linear spectral unmixing (63–72%), and even by
nonlinear spectral unmixing (73%). 2) The accuracy of the fully
constrained linear spectral unmixing method increased (from 67% to
77%) when the classes were represented with several image spectra.
3) Saltcedar canopy reflectance showed the strongest nonlinear
relationshipwith respect to subcanopy reflectance, as indicated through
a range of estimated canopy recollision probabilities. 4) Despite the
consideration of these effects on canopy reflectance, the inversion of the
nonlinear spectral mixing model with subcanopy reflectance (field)
measurements yielded slightly lower accuracy (73%) than the linear
counterpart (77%).

The experiments presented in this study offer several avenues for
further research. For instance, before any claim can be made about its
explanatory power as model of canopy reflectance (or scattering), the
MSA model should undergo more rigorous testing under controlled
situations. One underlying assumption of the MSA model is that the
reflectance spectra are continuous. This assumption is violated by the
Landsat data used here. Hence, future work should also examine
whether the consideration of a higher spectral resolution (i.e.,
hyperspectral data) coupled with the nonlinear mixture model
could yield superior subpixel canopy cover retrieval than its linear
counterpart.
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