
Abstract
This paper presents a multi-scale approach for delineating
individual tree crowns (ITC) from high spatial resolution
imagery. By analyzing the evolution of image gradients over
the scale-space constructed with orthogonal wavelets, tree
crown boundaries are effectively strengthened while the
textures resulted from tree branches and twigs are largely
suppressed. Two scale consistency checks, a scale and a
geometric consistency check, were devised to account for tree
crown’s radiometric and geometric characteristic. After an
edge-enhanced image was acquired, a previously developed
marker-controlled watershed segmentation method was
adopted to delineate ITC. An experiment was carried out in a
study site in California. Field measurements of crown size of
58 trees were compared with those derived from aerial
imagery. An R square value of 0.68 was achieved. It was
found that crown size was underestimated from the photo
interpretation compared to that from the ground survey. The
result can be attributed to the fact that pixels lying on the
tree crown boundaries are poorly represented in the image.

Introduction
A common practice in forest studies is to stratify forests
into different stands. Each stand occupies a contiguous area
that contains a number of trees that are relatively similar in
species composition or age and different from adjacent
areas (Lindenmayer and Franklin, 2002). At the stand level,
various parameters are of interest including tree density,
stand diameter, stand table, stand height, crown closure,
stand volume, and site index. Timely and accurate acquisi-
tion of these parameters is not only critical to updating
forest inventory, which normally deals with the estimation
of spatial distribution of wood volume (Spurr, 1948), but is
also vital for ecological studies, in which quantitative
modeling of ecosystem processes can be made possible with
such parameters as inputs (Palace et al., 2008). Compared to
traditional labor-intensive field surveys, remote sensing
opens up an effective and unique avenue to acquire these
parameters in a more automatic fashion. This paper aims at
automatically deriving one of these important stand-level
parameters, tree crowns, from remote sensing imagery.

The increasing availability of Very-High-Resolution (VHR:
one meter or sub-meter level) imagery from either airborne or
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satellite optical sensors has boosted the development of
automated methods for acquiring the above-mentioned stand-
level forest parameters (Wang et al., 2004). In particular,
individual tree crowns (ITC) delineations have drawn substan-
tial attention from researchers in the field of remote sensing.
Since the 1990s, a number of methods have been developed
that utilize spatial, spectral, texture, and contextual characteris-
tics pertinent to the tree crowns in the process of ITC delin-
eations (Gougeon, 1995; Pollock, 1996; Brandtberg and Walter,
1998; Pouliot et al., 2002; Erikson, 2003; Leckie et al., 2003;
Wang et al., 2004; Hirschmugl et al., 2007; Palace et al., 2008).
Although various extents of successes have been achieved,
most of these methods are applied to imagery at a single
spatial scale, usually the original scale at which the image was
acquired. Since trees naturally occur at different spatial scales,
the ultimate solution for the tree crown delineation should be
sought from multi-scale analyses, an approach that has
similarity with the general practice of human vision system.

In this regard, Brandtberg and Walter (1998) developed a
multi-scale method to tackle ITC delineations by adapting the
scale-space theory that has been developed in the field of
computer vision. Later, Brandtberg et al. (2003) applied a
similar multi-scale scheme to lidar data in a deciduous forest
in eastern US. Scale-space comprises a family of derived
signals adopted to represent the original signal at various
levels of scale (Lindeberg, 1990). When scale-space methods
are applied to a forested image, a series of images is derived
with successively coarse features suppressed. For example,
tree branches are the major components that are visible at
the finest scale but are gradually suppressed at increasing
coarse spatial scales. With further coarsening of the scale,
tree crowns may be expected to be more apparent before they
too become merged into a forest stand at the coarsest scale.

1 In recognition of the 100th Anniversary of the Association
of American Geographers (AAG) in 2004, the AAG Remote
Sensing Specialty Group (RSSG) established a competition
to recognize exemplary research scholarship in remote
sensing by post-doctoral students and faculty in Geography
and allied fields. Dr. Le Wang submitted this paper, which
was selected as the 2008 winner.
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Figure 1. The scanned aerial photograph displayed as a
composite.

Hence, when individual trees are of interest, it is not true
that the best performance will come from the image with the
finest scale because the internal tree structures, such as
branches and twigs, will be confused with the boundaries
separating tree crowns. This phenomenon in turn raises a
serious question: at what scale, or interval of scales, can ITC
delineations be tackled most effectively? Given the fact that
within a forest stand, tree crowns are likely to have different
sizes, it becomes difficult or impossible to choose a single
scale based on which all the trees can be identified. Conse-
quently, information at multiple scales should be investi-
gated and effectively integrated in order to produce a more
accurate crown delineation.

To this end, this paper presents a multi-scale scheme
based on scale-space theory to identify tree crown bound-
aries while suppressing excessive texture within the tree
crown. In an earlier work, Wang et al. (2004) developed a
marker-controlled watershed segmentation method to solve
ITC boundaries and treetop locations at the same time.
However, a critical restriction of that method was that it
chose a single smoothing scale parameter ( ) as the basis for
executing Laplacian of Gaussian (LOG) edge detection. The
proposed multi-scale scheme aims to provide an effective
preprocessing method, so that the previously developed
method (Wang et al., 2004) can be made more robust and
applied to more complex forest scenarios.

Study Site and Data Preparation
Study Site
The study site for testing the developed multi-scale scheme is
a young ponderosa pine forest stand located at 38°53�42.9�N,
120°37�57.9�W, adjacent to Blodgett Forest Research Station, a
research forest of the University of California, Berkeley. In
2000, the stand was dominated by 10 to11 year old ponderosa
pine (Pinus ponderosa). The stand has an average diameter at
breast height (DBH) of 9.81 cm, an average height (DBH �3 cm)
of 4.05 m, and a density (DBH �3 cm) of 420 stems/hectare.
Over-story leaf area index (LAI) was about 3.2. In May 2000, a
pre-commercial thinning took place with a thinning density
of 60 percent. Most of shrubs and grass are cut down. The
thinning and removal of shrubs and grasses improves the
spatial separation of the trees in the image, and the contrast
between the trees and background.

Data Preparation
A set of 1:8 000 aerial photographs was acquired by an
aerial camera with a focal length of 152.9 mm and color
aerial film in May 2000 under conditions of uniform cloud
covering the study area. The uniform cloud condition helps
alleviate shadow problems, and therefore, eases the process
of tree crown delineation. After the aerial photos were
developed, they were scanned at 1,000 dpi resulting in an
effective spatial resolution approximately 20.3 cm on the
ground. A sub-area of 500 � 500 pixels was chosen as the
study area, corresponding to a ground area of 10,404 m2

(Figure 1).
A total of 58 trees was selected in a subset of the study

area, as they have been labeled for conducting a long-term
carbon study. They were measured on the ground on the same
day as the aerial photography was acquired. The tree crown
diameter was measured in two directions. One measurement
was made along the maximum axis of the tree crown. Then,
the second measurement was made along the perpendicular
direction to the first one. The two measurements were
averaged to generate a radius value for each ITC. The tree
boles’ perimeter at the height of 1.35 m was measured to
derive the tree DBH. The 58 trees were identified on the aerial

s

photos, and a one-to-one correspondence was made for trees
between photograph and field measurements.

Methods
Scale-space Theory
Scale-space theory aims at making significant structures and
scales explicit (Lindeberg, 1993). The idea is to link low
level features detected at different scales in scale-space, thus
facilitating the identification of high level objects (Lu and
Jain, 1992). The scale-space is also termed an image pyramid.
Differing in how to construct scale-space or how to decom-
pose the original image into pyramids, there are two major
categories of scale-space, i.e., linear and non-linear.

Linear Scale-space
Linear scale-space was proposed by Witkin (1983). He
embedded the original image in a one parameter family of
derived images, the scale-space, where the parameter t
describes the current level of scale resolution. Specifically
with this method, the image pyramid is constructed by
successively convolving the original image with a lowpass
filter. The resulted scale-space has to follow a strict rule:
when the scale parameter t is increased, additional local
extrema or additional zero crossings cannot appear. Babaud
et al. (1986) proved that the Gaussian filter is the only
kernel that satisfies the above-mentioned rule for 1D signal.
Yuille and Poggio (1986) extended this proof to 2D signal in
demonstrating that zero crossings of linear derivative have
this scaling behavior, if and only if the image is filtered by a
2D rotationally symmetric Gaussian. In this case, the scale t
is specifically determined by the of the Gaussian filter.

By increasing the value of Gaussian filter and con-
volving it with the original image, a Gaussian pyramid is

s
s
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Figure 2. Workflow of multi-scale tree-crowns
delineation.

obtained. The difference of any two consecutive scale
images gives an approximation of the Laplacian of Gaussian.
In this manner, a Laplacian pyramid is generated as well.
Burt and Adelson (1983) and Crowley (1987) separately
implemented the proposed Laplacian pyramid and found
two inherent problems when successive convolution was
used to construct the scale-space. First, correlation exists
among different level of images in the Laplacian pyramid,
and it prevents differentiating true image details from the
intrinsic redundancy of the representation. Second, the
Laplacian pyramid does not contain the spatial orientation
information, a property that is inconvenient for object
recognition problems.

Mallat (1989) provides a wavelet-based decomposition
scheme to build the linear scale-space, i.e., a wavelet
representation. By definition, a function is called 
a scaling function if the following criterion is met: 

. A function can be called a wavelet if 

the following criterion is met: . Wavelets are

also referred to as “mother functions.” By successively
convolving the original image with a dilated and transformed
scaling function, approximations of the image at all the
intermediate scales are obtained. To be named as a multi-
resolution approximation, the scaling function cannot be
chosen arbitrarily, but has to satisfy seven criteria listed by
Mallat (1989). By convolving the original image with the
dilated and transformed wavelet, the difference between any
two approximations is extracted. Consequently, the original
image can be decomposed as one approximation image
together with various difference images at different scales.
Given that only a limited range of scales can be chosen for
the decomposition, Mallat and Zhong (1992) proposed a
dyadic wavelet transform in which the scale varies only
along the dyadic sequence (2j). They proved that although
the image was decomposed only at the dyadic scales, it can
be fully recovered with the summation of approximations
and differences that were acquired during the decomposition.

Compared to the Laplacian pyramid, the wavelet decom-
position has several strengths: first, no correlation exists
among different levels due to the decomposition of the
original image (the independence is due to the orthogonality
of the wavelet functions); second, it is possible to characterize
local edges based on coefficients in a wavelet orthonomal
basis expansion (the spatial orientation of edges can be
differentiated in a wavelet decomposition); third, orthonormal
wavelets have good localization properties in both the spatial
and Fourier domain.

Non-linear Scale-space
The second category of methods for constructing a scale-space
is through non-linear operators. Pei and Chen (1995) pro-
posed a non-redundant decomposition scheme based on
mathematical morphology. However, their method cannot
guarantee a complete reconstruction. Egger and Li (1995)
developed a non-linear decomposition scheme with perfect
reconstruction based on a median-type operator. Although
non-linear scale-space provides some intriguing characteristic
features that cannot be obtained in linear scale-space, non-
linear decomposition has received less attention compared to
its linear counterparts due to some unresolved theoretical
problem (Borsworth and Acton, 2003).

A Wavelet-based Method to Enhance Tree Crown Boundaries
In this study, a multi-scale scheme was developed with use
of wavelet methods. Scharcanski et al. (2002) proposed a

L
�q

�q
c(x)dx � 0

c(x)L
q

�q
 u(x)dx � 1

u(x)

denoising method based on wavelet decomposition. I revised
and adapted their methods for enhancing tree crown
boundaries instead of denoising. First, an orthonormal
wavelet basis was used to construct a linear scale-space
through which image edges were carefully examined at
series of scales. By exploring the evolution of the edges, I
discriminated edges that correspond to true tree crown
boundaries from edges that correspond to the tree branches
and twigs. Then, the image texture within a single tree
crown was suppressed while true edge boundaries were
strengthened. A systematic framework of the scheme is
presented in Figure 2. The following sections provide the
details for each step.

Dyadic Wavelet Decomposition
I adopted the cubic spline function that was used in
Mallat (1989) as the scaling function for the multi-resolu-
tion representation. The scaling function can be treated as
a low-pass smoothing filter. In turn, the wavelet function
can be considered as the derivative of the smoothing
function with orthonormal characteristics. In the discrete
wavelet transform, calculating wavelet coefficients at every
possible scale requires an impractical amount of work.
Thus, the dyadic wavelet decomposition was applied in
this study, i.e., only scales at the power of 2 were used. At
each decomposed level, four wavelet coefficients were
obtained: approximate, horizontal, vertical, and diagonal
coefficients. Mallat and Zhong (1992) found one can obtain
a precise description of the signal sharp variation points
from the evolution of the wavelet transform modulus
maxima across scales. Since the objective of using wavelet
decomposition is to quantify the evolution of different
sources of edge pixels across the scale-space, the gradient
magnitude and orientation was calculated at the scale 2j

with Equations 1 and 2.

(1)

(2)Aedge � arctan( 
W 2 j

v

W2 j
h  )

Medge � 31W2 j
h22 � 1W2 j

v22
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Figure 3. An example of tree crown’s
gradient direction along the boundary pixels.

where Medge stands for gradient magnitude, and 
are the wavelet coefficients for horizontal and vertical
directions, respectively, and Aedge stands for the gradient
orientation.

Edge Probability by Modeling the Gradient Magnitude
Although an edge magnitude was obtained at each scale
for every pixel, using a simple threshold to judge whether
a specific pixel belongs to edge or the background appar-
ently cannot work effectively on a complex forest image.
On the other hand, edge probability provides a more
accurate way to tell edge pixels apart from background
pixels than a simple threshold method. Scharcanski et al.
(2002) showed the gradient magnitude of background
related pixels can be modeled by a Rayleigh probability
density function as follows,

(3)

in which: Pj (r/background) is the probability of a pixel
having gradient magnitude equal to r, given that it belongs
to a background pixel at the scale of 2j, and is the
standard deviation of a background pixel’s
gradient magnitude at the scale of 2j. Here background can
be understood as the pixels falling within tree crowns but
not on the boundaries of tree crowns.

In the same manner, the gradient magnitude of edge-
related pixels can be modeled by the same form of
Rayleigh probability density function with a new 	 value
that corresponds to edge pixels instead of background
ones. The equation is as follows:

. (4)

As a result of the Equations 3 and 4, the overall proba-
bility of a pixel occupying the gradient magnitude value
equal to r is given by:

(5)

By associating Equation 5 with Equations 3 and 4, it can
be observed that three parameters have to be known in order
to calculate . They are , , and . In 
the field of computer science, a typical method to solve the
three unknown parameters is through maximizing the
likelihood function as follows:

(6)

in which: stands for the joint probability of gradient 

magnitude, while is the prior probability of a

pixel being background or noise.

By respectively modeling the distribution of magnitude
for the two types of pixels (edge and background), I end up
with using the Bayes theorem to calculate a posterior
probability as described in Equation 7:

(7)

where p(edge/r) stands for the probability of a pixel belonging
to edge given the gradient magnitude is equal to r.

p(edge/r) �  
(1 � wbackground)p(r/edge)

p(r)

p(edge/r)

wbackground
j

qpj(r)

[wbackground
j ,sedge

j ,snoise
j ] � arg max(qpj(r))
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jsedge

jwbackground
jPj(r)
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Pj(r) � w background
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r

[s j
edge]2  exp�r2n2[sedge

j ]2

s background
j

Pj (r/background) �  
r

[s j
background]2  exp �r 2n2[s background

j ]2

W2j
vW2j

h As a result of the calculation of , I assigned a
probability to every pixel to quantify its similarity to an
edge pixel. The probability will take the place of
gradient magnitude in the following process to enhance tree
crown boundaries.

Scale Consistency Constraints
Solely using the gradient magnitude or the probability of
edge at a single scale, it is very hard to differentiate true
crown boundaries from the small textures embedded
within a tree crown, for example, twigs and branches.
Since scale-space provides a range of scales, it is now
possible to monitor the evolution of each pixel along
various scales, from which the expected discrimination
goal can be achieved. A basic assumption is made that in
the scale-space, true crown boundaries will demonstrate a
consistently large edge probability whereas undesired
texture pixels will only possess a large edge probability at
a specific or a small range of scales. To accomplish this
goal, I chose the calculation of harmonic mean to evaluate
the scale consistency as follows:

(8)

in which pj(edge/r) is the edge probability at the scale 2j,
pj+m(edge/r) is the edge probability at the scale 2j�m, and M�1 is
the total number of scales that are included in the analysis.

The harmonic mean of edge probability at M�1 scales
will be used to update edge probability at the current scale 2j.
In this way, a true crown boundary pixel’s edge probability
will be further enhanced and the undesired small texture’s
edge probability will be suppressed because they only
demonstrate an inconsistent edge probability.

Geometric Consistency Constraints
Given that the tree crowns are usually curved in shape,
the gradient orientation along the pixels in the same tree
crown boundary should not undergo significant changes,
but instead should follow a smooth transition. Using
Equation 2, I assigned each pixel with a gradient direc-
tion. The gradient direction of current pixel indicates
the next step to which tree crown should extend in the 
8-neighborhood. Figure 3 presents a typical example of a

pj (edge/r) �  
M � 1

1
pj (edge/r)

 �
1

pj�1(edge/r)
 �Á�

1
pj�m(edge/r)

p(edge/r)

p(edge/r)
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TABLE 1. WEIGHT FUNCTION USED IN GEOMETRIC CONSISTENCY CHECK:
(A) WEIGHT FUNCTION WHEN GRADIENT DIRECTION � 45°, AND (B) WEIGHT

FUNCTION WHEN GRADIENT DIRECTION � 0°

0 0 0 0 0 0 0.1186
0 0 0 0 0 0.1418 0
0 0 0 0 0.1578 0 0
0 0 0 0.1636 0 0 0
0 0 0.1578 0 0 0 0
0 0.1418 0 0 0 0 0
0.1186 0 0 0 0 0 0

(A)

0.1186 0.1418 0.1578 0.1636 0.1578 0.1418 0.1186

(B)

tree crown with the gradient direction represented with
the arrow for the boundary pixels.

In theory, the calculated gradient direction can take any
possible value between 0 and 180 degrees. For simplicity, I
first quantize the gradient direction into eight groups of
directions: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, and 157.5°.
Then, I obtained a new edge probability pj(edge/r) by
accumulating the existing probability along the gradient
direction with the weight assigned by a Gaussian function.
The following is an example of the weights adopted when
the gradient direction for current pixel is 45° and 0°,
respectively (Table 1).

The geometric consistency will strengthen edge pixels
along a continuous smooth curve, whereas the isolated edge
pixels will be suppressed. Given the fact that small texture
pixels in a tree crown tend to generate isolated edge pixels,
the geometric consistency strengthens the edge probability
along the true crown boundary.

Up to this point, I have conducted two-consistency
constraints (scale and geometric consistency constraints)
along the scale-space that was constructed by wavelet
decomposition. The consistency constraints are designed
with a purpose to augment the ITC boundary from various
sources of edges. As a result of the consistency check, an
enhanced edge probability at any dyadic scales was derived.

Inverse Wavelet Transform
To integrate the enhancement that was obtained at different
scales, the wavelet coefficients (horizontal and vertical
ones) were modified according to the acquired edge
probability. Together with the same approximation and
diagonal coefficients derived from the decomposition step,
an inverse wavelet transformation was applied to recon-
struct the image with the crown boundary strengthened
using the same scaling function.

Tree Crowns Delineation with Marker-controlled
Watershed Segmentation
With the enhanced version of the tree image, task of
delineating the tree crown boundary now becomes much
easier because the undesired texture has been largely
reduced. The marker-controlled watershed segmentation
method introduced in Wang et al. (2004) was adopted
using the edge enhanced tree image.

Experiment Results and Discussion
With the aerial photos, I first undertook an object-based
classification using eCognition® 4.0 software with a classifi-
cation scheme containing two classes: tree crown pixels and
background pixels. The classification allowed removing the

noise coming from the bare soil and other undesired fea-
tures. As a result, I assigned a zero value to those pixels that
were classified as background pixels while still kept the
original tonal information for the tree crown pixels. Next,
the filtered color image was transformed to a grey level
image through an Intensity-Hue-Saturation transformation.
Only the intensity image was used in the subsequent
processing, because the tree crown delineation method can
only handle grey level images.

As previously described, dyadic wavelet decomposition
was implemented, and I chose the decomposition level as 3
as it is more computationally efficient. Consequently, the
coefficients for the approximation and details at each level
were derived, and the gradient magnitude and gradient
direction was calculated. The histograms of gradient
magnitudes at the scale 21, 22, 23 are presented in Figure 4.

(a)

(b)

(c)

Figure 4. (a) histogram of gradient
magnitude at the scale 21, (b) histogram
of gradient magnitude at the scale 22,
and (c) histogram of gradient magnitude
at the scale 23.
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(a)

(b)

(c)

Figure 5. (a) Edge probabilities at
the scale 21, (b) Edge probabilities
at the scale 22, and (c) Edge proba-
bilities at the scale 23.

Figure 6. Enhanced image from the inverse wavelet
transform.

It is easy to observe the bi-modal shape in the histograms,
which motivates me to model true crown boundary and
other background separately. Subsequently, Figure 5
exhibited the edge probability that was calculated according
to the Equation 7 at the scale 21, 22, 23, respectively.

Furthermore, the scale consistency was conducted based on
the calculation of harmonic mean, and the geometric
consistency was accomplished through the use of gradient
directions. An updated edge probability was applied to
adjust the magnitude of the horizontal and vertical wavelet
coefficients based on which an inverse wavelet transform
was carried out.

The resulting image is presented in Figure 6. To illus-
trate the effect of wavelet enhanced method, the post-
enhanced version of the image was subtracted from the
original image, and a shaded relief image is laid out in
Figure 7 to show the difference between the two images. As
can be seen from Figure 7, a significant number of small
textures within tree crowns stand out in the difference
image, suggesting they have been suppressed on the
enhanced image. This result largely alleviates the difficulty
for using edge detection method to extract tree crown
boundary in the subsequent steps.

The tree crown delineation method that was introduced
in Wang et al. (2004) was then applied to the enhanced
version of the image. The gradient was chosen as the
watershed function based on which marker-controlled
watershed segmentation was executed. Final delineated tree
crowns are shown in the Figure 8. As a further step to make
the results usable for Geographic Information System (GIS)
applications, a conversion was carried out to transform the
tree crowns to a polygon coverage that can be easily
imported into many popular GIS packages, for example,
ESRI’s ArcView® software.

As a further validation, for the total of 58 trees meas-
ured from the ground, 56 trees were correctly identified
from the automated method. Two trees were missing from
the automated method. For the 56 correctly-identified trees,
crown size was then compared between the automated
method and the field measurements. The crown area was
directly extracted by using the function embedded in
ArcView®. The area was then converted to the radius based
on a circular crown shape assumption. The automated and
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Figure 8. Delineated tree crowns.

Figure 7. Shaded relief of difference between enhanced
and original image.

Figure 9. Regression between crown radii measured
on the ground and from the image.

field measurements were then regressed (Figure 9). It is
worthwhile to point out that noise is introduced when a
circular shape was used to convert the irregular crown area
to radius value. The noise partly contributes to the relative
low r2 (0.68). The slope value in the regression equation is
0.875, indicating that crown size was underestimated from
the photo interpretation. The result can be attributed to the

fact that pixels lying on the tree crown boundaries are not
well recorded in the image.

Conclusions
In summary, by analyzing the evolution of image gradients
over the scale-space that was constructed based on orthogo-
nal wavelets, tree crown boundaries are effectively strength-
ened while the textures resulted from tree branches and
twigs are largely suppressed. The scale and geometric
consistency check play an important role in the process of
enhancement because they account for tree crown’s charac-
teristic in terms of both radiance and shape. Promising ITC
delineations were achieved with the developed multi-scale
scheme. 56 out of 58 field-surveyed trees were identified
from the automated method. A comparison of crown size for
56 trees were conducted between those derived from aerial
image and those measured on the ground. R square value of
0.68 was achieved indicating the feasibility of obtaining
crown area from remote sensing imagery. In addition, it was
found that crown size was underestimated from the photo
interpretation compared to that from the ground survey. In
practice, for a VHR image, it is necessary to perform an
effective enhancement before the tree crown delineation can
be employed. In future work, this developed method should
be tested in a range of forests, most importantly in undis-
turbed forest that has not been thinned. Adoption of
different types of imagery, such as the latest high spatial
resolution satellite imagery, may help to further augment the
agreement of image-derived crown size in relation to ground
truth.
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